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Abstract. In 1939, L. Rédei introduced a certain triple symbol in order to generalize the Legendre symbol and
Gauss’ genus theory. Rédei’s triple symbol [a1, a2, p] describes the decomposition law of a prime number p in a
certain dihedral extension over Q of degree 8 determined by a1 and a2. In this paper, we show that the triple symbol
[−p1, p2, p3] for certain prime numbers p1, p2 and p3 can be expressed as a Fourier coefficient of a modular form
of weight one. For this, we employ Hecke’s theory on theta series associated to binary quadratic forms and realize an
explicit version of the theorem by Weil-Langlands and Deligne-Serre for Rédei’s dihedral extensions. A reciprocity
law for the Rédei triple symbols yields certain reciprocal relations among Fourier coefficients.

Introduction

As is well known, the Legendre symbol
(

a
p

)
describes the decomposition law of a prime

number p in the quadratic extension Q(
√

a)/Q. We may note that
(

a
·
)

is seen as a Dirichlet
character, an “abelian modular form” on GL1 over Q.

In 1939, L. Rédei ([Ré]) introduced a certain triple symbol with the intension of a gen-
eralization of the Legendre symbol and Gauss’ genus theory ([G]). Rédei’s triple symbol
[a1, a2, p] describes the decomposition law of a prime number p in a certain dihedral ex-
tension over Q of degree 8 determined by a1 and a2. In this paper, we show that the triple
symbol [−p1, p2, p3] for certain prime numbers p1, p2 and p3 can be expressed as a Fourier
coefficient of a modular form on GL2 over Q of weight one. For this, we employ Hecke’s
theory on theta series associated to ideal classes (binary quadratic forms) of the imaginary
quadratic field Q(

√−p1p2) ([H]) and realize an explicit and constructive version of the the-
orem by Weil-Langlands and Deligne-Serre ([Se]). A reciprocity law for the Rédei triple
symbol yields certain reciprocal relations among Fourier coefficients.

The Rédei triple symbol may be interpreted as an arithmetic analog of Milnor’s triple
linking number just as the Legendre symbol is an arithmetic linking number ([Mo]). It is
known that there are analytic expressions for Milnor’s higher linking numbers (for example,
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[Ro]). It was our motivation to get an analytic expression for the Rédei triple symbol. We
hope to come back to this problem together with the real quadratic case in the future.
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NOTATION. For a number field k we denote by Ok the ring of integers of k.

1. Rédei’s dihedral extensions and triple symbols

In this section, we recall the construction of Rédei’s dihedral extension over Q ([Ré]) for
a certain case and give its arithmetic characterization ([Am]). We then introduce the Rédei
triple symbol and show a reciprocity law.

Let p1 and p2 be distinct primes number satisfying the condition

(1.1) p1 ≡ 3 mod 4, p2 ≡ 1 mod 4,

(
p1

p2

)
=

(
p2

p1

)
= 1 .

We set

k1 := Q(
√−p1) , k2 := Q(

√
p2) and k := Q(

√−p1p2) .

LEMMA 1.2. There are integers x, y, z satisfying the following conditions:
(1) x2 + p1y

2 − p2z
2 = 0,

(2) g.c.d(x, y, z) = 1, y ≡ 0 mod 2, x − y ≡ 1 mod 4.

Furthermore, for a given prime ideal p of Ok lying over p2, we can find integers x, y, z which
satisfy (1), (2) and (x + y

√−p1) = pm for an odd positive integer m.

PROOF. Since
(−p1

p2

) = 1, p2 is decomposed in k1, say (p2) = pp. Since −p1 ≡ 1

mod 4, the class number, say h1, of k1 is odd by genus theory ([O, 4.7]). Write ph1 = (α) for

some α = (a + b
√−p1)/2, a, b ∈ Z, a ≡ b mod 2. Since N((α)) = Nph1 = p

h1
2 , we have

Nk1/Q(α) = p
h1
2 · · · (�).

(i) The case p1 ≡ −1 mod 8: If a ≡ b ≡ 1 mod 2, a2 ≡ b2 ≡ 1 mod 8 and so
a2 + p1b

2 ≡ 0 mod 8. Hence Nk1/Q(α) = (a2 + p1b
2)/4 ≡ 0 mod 2, which contradicts

(�). Therefore we have a ≡ b ≡ 0 mod 2. Put x = a/2, y = b/2 ∈ Z. By (�), Nk1/Q(α) =
x2 + p1y

2 = p2z
2, z = p

(h1−1)/2
2 . Therefore x2 + 3y2 ≡ 1 mod 4 which yields x ≡ 1 mod

2, y ≡ 0 mod 2 and so (x, y, z) = 1. We can take a suitable sign of x if necessary so that
x − y ≡ 1 mod 4.



RÉDEI’S TRIPLE SYMBOLS AND MODULAR FORMS 407

(ii) The case p1 ≡ 3 mod 8: If a ≡ b ≡ 0 mod 2, we can find x, y, z ∈ Z satisfying (1)
and (2) as in the case (i). Now assume that a ≡ b ≡ 1 mod 2. Then we have a2 − 3b2p1 ≡
3a2 − b2p1 ≡ 0 mod 8 and so

α3 =
(

a + b
√−p1

2

)3

= a(a2 − 3b2p1) + b(3a2 − b2p1)
√−p1

8
= x + y

√−p1 ,

where we put x = a(a2 − 3b2p1)/8 and y = b(3a2 − b2p1)/8. Therefore x2 + p1y
2 =

Nk1/Q(α3) = p2z
2, z = p

(3h1−1)/2
2 . As in the case (i), x ≡ 1 mod 2, y ≡ 0 mod 2 and

(x, y, z) = 1. We can take a suitable sign of x so that x − y ≡ 1 mod 4.
The latter assertion follows immediately from the above argument. �

Let a = (x, y, z) be a triple of integers satisfying the conditions (1), (2) in Lemma 1.2.
We then set

Ka := Q(
√−p1,

√
p2,

√
α) , α := x + y

√−p1 .

The following theorem is due to Rédei ([Ré]). Since Rédei’s account was written in a rather
classical style, we give here a proof for the sake of readers.

THEOREM 1.3. (1) The extension Ka/Q is a Galois extension whose Galois group
is the dihedral group D8 of order 8.

(2) All prime numbers ramified in Ka/Q are only p1 and p2 with ramification index 2.

PROOF. (1) Let Kf be the splitting field over Q of f (T ) := T 4 − 2xT 2 + p2z
2 =

(T − √
α)(T + √

α)(T − √
α)(T + √

α) ∈ Z[T ], where α := x − y
√−p1. Since α2 =

x + y
√−p1 and

√
α
√

α = z
√

p2, we have Ka = Kf and so Ka is a Galois extension over
Q. Define s, t ∈ Gal(Ka/Q) by

s(
√−p1) = √−p1 , s(

√
p2) = −√

p2 , s(
√

α) = √
α ,

t (
√−p1) = −√−p1 , t (

√
p2) = −√

p2 , t (
√

α) = −√
α .

Then we easily see that

s2 = t4 = 1 , sts = t−1

and so s, t generate the dihedral group D8 of order 8. Since it is easy to see [Ka : Q] = 8, we
conclude Gal(Ka/Q) = D8.

Putting β := (
√

α +√
α)2 = 2(x + z

√
p2), all subfields of Ka/Q and the corresponding

subgroups of Gal(Ka/Q) are illustrated as follows.
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(1.4)

Q

k2 k k1

k1k2

Ka

k1(
√

α)k2(
√

β) k1(
√

α)k2(
√

β)
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���

���

���

���

������
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Gal(Ka/Q)

〈st, t2〉 〈t〉 〈s, t2〉

〈t2〉

{1}

〈s〉〈st〉 〈st2〉〈st3〉

��� ���

���

���

���

���

���

������

���

������

(2) By the condition (1.1), pi is the only ramified prime number in ki/Q (i = 1, 2) and
that p1 (resp. p2) splits in k2/Q (resp. k1/Q). So, looking at the diagram (1.4), it suffices to
show that the only one prime of k1 lying over p2 is ramified in k1(

√
α)/k1. First we note that

λ := (1 + √
α)/2 ∈ Ok1(

√
α), since λ satisfies λ2 + λ + (1 − α)/4 = 0 and (1 − α)/4 ∈ Ok1

by x − y ≡ 1 mod 4. Since the relative discriminant of λ in k1(
√

α)/k1 is

d(λ, k1(
√

α)/k1) =
∣∣∣∣ 1 λ

1 λ

∣∣∣∣
2

= α ,

where λ := (1 − √
α)/2, and (α) is prime to 2, any prime of k1 lying over 2 is unramified in

k1(
√

α)/k1. Next let

(α) = peq
e1
1 · · · qer

r

be the decomposition of (α) into the product of positive powers of distinct prime ideals
p, q1, . . . , qr of Ok1 . Since Nk1/Q(α) = p2z

2, we can take p to be one of primes lying
over p2 and e to be odd. We claim that all ei’s are even. Suppose that there is an odd ej .
Let qj be the prime number lying below qj . If (qj ) splits to qjqj in k1, we have α ∈ qj

by Nk1/Q(α) = p2z
2. Then α, α ∈ qjqj = (qj ) and so 2x, 2y ∈ (qj ). This contradicts

(x, y, z) = 1. If qj is inert in k1/Q, α, α ∈ (qj ) and so 2x, 2y ∈ (qj ) again, which is

a contradiction. If (qj ) = q2
j in k1, qj must be p1. So Nq

ej

j = p
ej

1 , which contradicts

Nk1/Q(α) = p2z
2. Thus we have the decomposition

(α) = pea2 , (p, a) = 1 , e is odd .

By the ramification theory in a Kummer extension ([F, Ch.4, Theorem 2.1, Lemma 2.1]), p is
the unique prime ideal of Ok1 which is ramified in k1(

√
α)/k1. �
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The following theorem shows that the properties (1), (2) in Proposition 1.3 characterize
Rédei’s extension Ka/Q.

THEOREM 1.5. Let p1 and p2 be prime numbers satisfying the condition (1.1). Sup-
pose that an extension K/Q satisfies the following properties:

(1) K/Q is a Galois extension whose Galois group is the dihedral group D8 of order
8.

(2) All prime numbers ramified in K/Q are only p1 and p2 with ramification index 2.
Then K is uniquely determined.

PROOF. By the properties (1) and (2), K contains quadratic fields k1, k2 and k, and
K/k is an unramified cyclic extension of degree 4. Since the 2-primary part of the ideal class
group of k is cyclic by genus theory ([O, 4.7]), the unramified cyclic extension K/k of degree
4 must be unique by class field theory. �

By Theorem 1.5, the extension Ka/Q is independent of a choice of a.

DEFINITION 1.6. We denote Ka by K{−p1,p2} the field and call K{−p1,p2} the Rédei
extension over Q associated to prime numbers p1 and p2 satisfying the condition (1.1).

The following corollary will be used later. Let Hk denote the ideal class group of k

with hk := #Hk, the class number of k, and let Hk(2) denote the 2-primary part of Hk with
hk(2) := #Hk(2), the 2-class number of k.

COROLLARY 1.7. Notations being as above,
(1) K{−p1,p2} is an unramified cyclic extension over k of order 4.
(2) Hk(2) is a cyclic group of order 2m, m ≥ 2.
(3) Let pi be the prime ideal of Ok lying over pi . Then the class [pi] has order 2 in Hk

for i = 1, 2 and the Frobenius automorphism of pi in K/k is given by(
K/k

pi

)
=

{
1 if hk(2) ≥ 8 ,

t2 if hk(2) = 4 .

PROOF. (1) and (2) were shown in the proof of Theorem 1.5. For (3), suppose that

pi = (x + yω) with x, y ∈ Z, ω := (1 + √−p1p2)/2. Then we have (2x + y)2 + p1p2y
2 =

4pi . This never occurs. Hence [pi] has order 2 and the Frobenius automorphism
(

K/k
pi

)
is

thk(2)/2 by class field theory. So the last assertion follows. �

Finally, we introduce the Rédei triple symbol and show a reciprocity law. Let p1, p2 and
p3 be distinct prime numbers satisfying the condition

(1.8) p1 ≡ 3 mod 4 , pi ≡ 1 mod 4 (i = 2, 3) ,

(
pi

pj

)
= 1 (1 � i �= j � 3) .
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DEFINITION 1.9. We define the Rédei triple symbol by

[−p1, p2, p3] :=
{

1 if p3 is completely decomposed in K{−p1,p2}/Q ,

−1 otherwise .

Let p2 (resp. p3) be one of the prime ideals of k1 lying over p2 (resp. p3). Then
there is a triple of integers (x2, y2, z2) with α12 = x2 + y2

√−p1 (resp. (x3, y3, z3) with
α13 = x3 + y3

√−p1) satisfying the conditions (1), (2) in Lemma 1.1 with respect to the pair
(p1, p2) (resp. (p1, p3)) such that

(α12) = p2
m2 , (α13) = p3

m3 (m2,m3 being odd integers) ,

K{−p1,p2} = Q(
√−p1,

√
p2,

√
α12) , K{−p1,p3} = Q(

√−p1,
√

p3,
√

α13) .

Since p3 is unramified in k1(
√

α12)/k1 by Theorem 1.2 (2), we have the Frobenius automor-

phism
(

k1(
√

α12)/k1
p3

)
∈ Gal(k1(

√
α12)/k1). We note that the Rédei triple symbol is rewritten

as

(1.10) [−p1, p2, p3] =
{

1 if
(

k1(
√

α12)/k1
p3

)
= idk1(

√
α12) ,

−1 otherwise .

For a prime p of k1, we denote by
(

,
p

)
the Hilbert symbol in the local field k1p (:= the

completion of k1 at p), namely,

(a, k1p(
√

b)/k1p)
√

b =
(

a, b

p

) √
b (a, b ∈ k×

1p) ,

where ( , k1p(
√

b)/k1p) : k×
1p → Gal(k1p(

√
b)/k1p) is the norm residue symbol of local class

field theory.

LEMMA 1.11. We have

[−p1, p2, p3] =
(

α12, α13

p3

)
, [−p1, p3, p2] =

(
α12, α13

p2

)
.

PROOF. Let π be a prime element of k1p3 and Up3 denote the unit group in k×
1p3

. We

write α13 = uπm3 , u ∈ Up3 . Noting that u, α12 ∈ Up3 and m3 is odd, we have(
α12, α13

p3

)
=

(
α13, α12

p3

)

=
(

u, α12

p3

)(
πm3 , α12

p3

)

=
(

π, α12

p3

)



RÉDEI’S TRIPLE SYMBOLS AND MODULAR FORMS 411

= (π, k1p3(
√

α12)/k1p3)
√

α12√
α12

=
(

k1(
√

α12)/k1

p3

)
(
√

α12)/
√

α12

= [−p1, p2, p3] ((1.10)) .

Similarly, we can show
(

α12,α13
p2

)
= [−p1, p3, p2]. �

Finally, we show a reciprocity law for the Rédei symbol.

THEOREM 1.12. We have

[−p1, p2, p3] = [−p1, p3, p2] .

In particular, p3 is completely decomposed in K{−p1,p2}/Q if and only if p2 is completely
decomposed in K{−p1,p3}/Q.

PROOF. By Lemma 1.11 and the product formula for the Hilbert symbol

∏
p

(
α12, α13

p

)
= 1 (p runs over all primes of k1) ,

we have only to prove

∏
p �=p2,p3

(
α12, α13

p

)
= 1 .

If p is prime to 2 or ∞ (the infinite prime of k1), we have(
α12, α13

p

)
= 1 ,

since α12, α13 ∈ Up. Since ∞ is the complex prime, it is obvious that
(

α12,α13∞
) = 1. Let P be

a prime ideal of k1 lying over 2. Noting that 2 is unramified in k1/Q and that α12, α13 ∈ 1+P2

by the condition (2) of Lemma 1.2, we have
(

α12,α13
P

)
= 1 ([Sa, Theorem 10.29]). This

completes the proof. The latter assertion just follows from Definition (1.9). �

2. Galois representations and Artin L-functions

In this section, we interpret the Rédei triple symbol in terms of a two dimensional Galois
representation, and consider the associated Artin L-function to relate the triple symbol with
modular forms in the subsequent sections. We keep the same notations as in Section 1.

Let p1 and p2 be prime numbers satisfying the condition (1.1), and let K{−p1,p2} be the
Rédei dihedral extension over Q in Definition 1.6. In this section, we denote K{−p1,p2} by K

for simplicity.
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We let

ρ : Gal(K/Q) −→ GL(V (ρ)) , V (ρ) = C2

be the two dimensional complex representation of the Galois group

Gal(K/Q) = 〈s, t | s2 = t4 = 1, sts = t−1〉 defined by

(2.1) ρ(s) =
( −1 0

0 1

)
and ρ(t) =

(
0 −1
1 0

)
.

We note that ρ is irreducible and odd (det(ρ(complex conjugate)) = −1).
First, we have the following

LEMMA 2.2. For a prime number p3 satisfying the condition (1.8), we have

[−p1, p2, p3] = 1

2
tr(ρ(σP))

where σP is the Frobenius automorphism of a prime P of K lying over p3.

PROOF. The assertion follows immediately from (1.10) and ρ(t2) = −I2. �

Next, we consider the Artin L-function associated to ρ, which is defined by

(2.3)

⎧⎪⎨
⎪⎩

L(ρ, s) :=
∏
p

Lp(ρ, s) (p runs over all prime numbers, Re(s) > 1) ,

Lp(ρ, s) := det(I2 − ρ(σP)p−s |V (ρ)IP)−1 ,

where IP denotes the inertia group of a prime P of K lying over p and σP mod IP is the
Frobenius automorphism.

LEMMA 2.4. We have

Lp(ρ, s)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − p−s )−1 if p = p1 or p2 and hk(2) ≥ 8 ,

(1 + p−s )−1 if p = p1 or p2 and hk(2) = 4 ,(
1 − tr(ρ(σP))p−s +

(−p1p2

p

)
p−2s

)−1

if p �= p1, p2 .

PROOF. If p = p1 or p2, V (ρ)IP is one dimensional and, by Corollary 1.7, (3), σP mod

IP ≡ 1 mod IP or t2 mod IP according to hk(2) ≥ 8 or hk(2) = 4. Since ρ(t2) = −I2,
the assertion follows. If p �= p1, p2, IP = {1} by Theorem 1.3, (2) and so Lp(ρ, s) = (1 −
tr(ρ(σP))p−s +det(ρ(σP))p−2s )−1. Since det◦ρ is a non-trivial character Gal(k/Q) → C×,
the assertion follows. �

By Lemmas 2.2 and 2.4, we have the following.

COROLLARY 2.5. For a prime number p3 satisfying the condition (1.8), we have

Lp3(ρ, s) =
(

1 − 2[−p1, p2, p3]p−s
3 +

(−p1p2

p3

)
p−2s

3

)−1

.
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Now, let k = Q(
√−p1p2) as in Section 1 and let

χ : Gal(K/k) −→ C×

be the character defined by

(2.6) χ(t) = √−1 .

We let

Ind(χ) : Gal(K/Q) −→ GL2(C)

be the induced representation of χ .

LEMMA 2.7. The representation ρ is equivalent to Ind(χ).

PROOF. The induced representation Ind(χ) is given by

Ind(χ)(s) =
(

0 1
1 0

)
, Ind(χ)(t) =

( √−1 0
0 −√−1

)
.

Since Pρ(g) = Ind(χ)(g)·P for g = s, t with P =
(

1
√−1

−1
√−1

)
, the assertion follows. �

By Lemma 2.7, we have

(2.8) L(ρ, s) = L(χ, s) ,

where L(χ, s) is the abelian Artin L-function defined by

(2.9) L(χ, s) =
∏
p

(1 − χ(σp)Np−s)−1 (p runs over all prime ideals of Ok) .

Since K/k is an unramified abelian extension (Theorem 1.3), we have the Artin reciprocity
homomorphism (

K/k

·
)

: Hk −→ Gal(K/k); [a] �→
(

K/k

a

)
= σa

Let χ be the Hecke character on Hk obtained as the composite of
(K/k

·
)

with χ :

(2.10) χ := χ ◦
(

K/k

·
)

: Hk −→ C×

and let L(χ , s) be the Hecke L-function defined by

(2.11) L(χ , s) =
∏
p

(1 − χ([p])Np−s)−1 =
∑
a

χ([a])Na−s

where a runs over all integral ideals of k and Re(s) > 1.
Getting (2.8) ∼ (2.11) together, we have the following
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PROPOSITION 2.1. We have

L(ρ, s) = L(χ , s) .

3. Ideal classes and quadratic forms

In this section, we express the Hecke L-function L(χ , s) in terms of the binary quadratic
forms corresponding to ideal classes of k. We also show some formulas on the numbers of
integral representations by these quadratic forms, which will be used in the next section. We
keep the same notations as in the previous sections.

Let k be the imaginary quadratic field Q(
√−p1p2) for prime numbers p1, p2 satisfying

the condition (1.1). Let Hk be the ideal class group of k with class number hk = #Hk. We
write

Hk = {C0, C1, . . . , Chk−1} , C0 = [Ok] .

Let Qi = Qi(x, y) be a representative of the SL2(Z)-equivalence class of binary quadratic
forms corresponding to the ideal class Ci for i = 0, . . . , hk−1 ([O, Notes D]). For a positive
integer n, we set

(3.1)

A(Ci, n) := {(x, y) ∈ Z2 | Qi(x, y) = n} ,

a(Ci, n) := #A(Ci, n) , and
B(Ci , n) := {a ∈ Ci

−1 | a ⊂ Ok,Na = n} ,

b(Ci, n) := #B(Ci, n) .

LEMMA 3.2. There is a surjective and two to one map

A(Ci, n) −→ B(Ci , n).

In particular, we have a(Ci, n) = 2b(Ci, n).

PROOF. Take an integral ideal b = Zμ + Zν ∈ Ci where {μ, ν} is a well ordered
basis of b ([O, Notes D]). We define the map ϕ : A(Ci, n) → B(Ci , n) by ϕ((x, y)) :=
(xμ + yν)b−1. Since (Nb)−1Nk/Q(xμ + yν) = Qi(x, y), ϕ is well defined. For any a ∈
B(Ci , n), a · b ∈ Ci

−1 · Ci = C0 and so ab = (z) for some z ∈ Ok . Since z ∈ b, we
can write z = xμ + yν so that ϕ((x, y)) = a, hence ϕ is surjective. Further, we have
ϕ((x, y)) = ϕ((x ′, y ′)) ⇔ (xμ + yν) = (x ′μ + y ′ν) ⇔ x ′μ + y ′ν = ±(xμ + yν) because
Ok

× = {±1}. Hence ϕ is two to one. �

Let χ : Hk → C× be the Hecke character defined in (2.10). For a positive integer n, we
set

(3.3) aχ(n) := 1

2

hk−1∑
i=0

χ(Ci)a(Ci, n) =
hk−1∑
i=0

χ(Ci)b(Ci, n) .
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PROPOSITION 3.4. Let I be the set of indices i (0 ≤ i ≤ hk − 1) such that χ(Ci) ∈
{±1}. Then we have

aχ(n) = 1

2

∑
i∈I

χ(Ci)a(Ci, n)

and

L(χ , s) =
∞∑

n=1

aχ (n)n−s .

PROOF. By Lemma 3.2, we have

L(χ , s) =
hk−1∑
i=0

χ(C−1
i )

∑
a∈C−1

i
a⊂Ok

Na−s

=
hk−1∑
i=0

χ(C−1
i )

∞∑
n=1

b(Ci, n)n−s

=
∞∑

n=1

(
1

2

hk−1∑
i=0

χ(C−1
i )a(Ci, n)

)
n−s .

Since L(χ , s) = L(ρ, s) by Proposition 2.12 and Im(ρ) ⊂ GL2(Z) by (2.1), the coefficients

aχ (n) should be in Z. Since Imχ ⊂ {±1,±√−1} by (2.6) and (2.10), and a(Ci, n) ∈ Z, we
have

1

2

hk−1∑
i=0

χ(Ci
−1)a(Ci, n) = 1

2

∑
i∈I

χ(Ci)a(Ci, n) = aχ (n)

and hence

L(χ , s) =
∞∑

n=1

aχ (n)n−s . �

Here are some properties about the integer coefficients aχ (n) which will be used in the
next section. Similar results were stated in [HM, 2.3].

PROPOSITION 3.5. (1) If (m, n) = 1, then aχ (mn) = aχ (m)aχ(n).

(2) If p is a prime number different from p1 and p2, then we have

aχ(pr+1) − aχ (p)aχ (pr ) +
(−p1p2

p

)
aχ (pr−1) = 0 for r ≥ 1 .

Here we mean
(−p1p2

2

) = 1 or −1 according as 2 is decomposed or inert in k/Q, respectively.
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(3) Suppose p = p1 or p2. If the 2-class number hk(2) ≥ 8, then we have aχ (pr) = 1
for r ≥ 0. If hk(2) = 4, we have

aχ (pr) =
{

1 if r ≡ 0 mod 2 ,

−1 if r ≡ 1 mod 2 .

PROOF. (1) Let m,n be coprime positive integers. It is easy to set that the map⊔
Ci1Ci2 =Ci

(
B(Ci1 ,m) × B(Ci2 , n)

) −→ B(Ci ,mn) ; (a1, a2) �→ a1a2

is bijective and so, by Lemma 3.2, we have

a(Ci,mn) = 1

2

∑
Ci1Ci2=Ci

a(Ci1,m)a(Ci2, n) .

Therefore by (3.3) we have

aχ(mn) = 1

2

hk−1∑
i=0

χ(Ci)a(Ci,mn)

=
(

1

2

∑
i1

χ(Ci1)a(Ci1,m)

)(
1

2

∑
i2

χ(Ci2)a(Ci2 , n)

)

= aχ (m)aχ(n)

(2) (i) The case p is inert in k/Q, (p) = p: Then (
−p1p2

p
) = −1 and so we have to prove

(3.5.1) aχ (pr+1) − aχ(p)aχ (pr ) − aχ (pr−1) = 0 (r ≥ 1) .

First, since Np = p2, a(Ci, p) = 0 for any i and so we have aχ (p) = 0. Next, since
[p] = C0, we note that the map

B(Ci, p
r−1) −→ B(Ci , p

r+1) ; a �→ ap

is a bijection for any i. By Lemma 3.2 and (3.3), we have aχ (pr+1) = aχ(pr ). This proves
(3.5.1).

(ii) The case p splits in k/Q, (p) = pp̄: Then (
−p1p2

p
) = 1 and so we need to prove

(3.5.2) aχ (pr+1) − aχ(p)aχ (pr) + aχ(pr−1) = 0 (r ≥ 1) .

(ii)1. Suppose [p] = [p̄]. By (3.1) and Lemma 3.2, we have

a(Ci, p) =
{

4 if C−1
i = [p] = [p̄] ,

0 otherwise.
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Therefore we have

(3.5.3) aχ(p) = 1

2

hk−1∑
i=0

χ(Ci)a(Ci, p) = 2χ([p]) .

Note that the map

B(Ci [p], pr) −→ B(Ci, p
r+1) \ {pr+1} ; a �→ ap

is a bijection for each i and so, by Lemma 3.2, we have

a(Ci[p], pr) =
{

a(Ci, p
r+1) if Ci �= [p]r+1 ,

a(Ci, p
r+1) − 2 if Ci = [p]r+1 .

Therefore we have, for r ≥ 0,

(3.5.4)

aχ (pr+1) = 1

2

hk−1∑
i=0

χ(Ci)a(Ci, p
r+1)

= 1

2

hk−1∑
i=0

χ(Ci)a(Ci[p], pr) − χ([p])r+1

= χ([p])aχ(pr) − χ([p])r+1 ([p]−1 = [p]) .

By (3.5.3) and (3.5.4), we get

aχ (pr+1) − aχ (p)aχ (pr ) + aχ (pr−1)

= (χ([p])aχ(pr ) − χ([p])r+1) − 2χ([p])aχ(pr) + (χ([p])aχ(pr ) + χ([p])r+1)

= 0 .

(ii)2. Suppose [p] �= [p̄]. By (3.1) and Lemma 3.2, we have

a(Ci, p) =
{

2 if C−1
i = [p] or [p] ,

0 otherwise.

Therefore we have

(3.5.5) aχ (p) = 1

2

hk−1∑
i=0

χ(Ci)a(Ci, p) = χ([p]) + χ([p]) .

Note that the map

B(Ci [p], pr) −→ B(Ci, p
r+1) \ {pr+1}; a �→ ap

is a bijection for each i. Therefore, noting [p]−1 = [p], the argument similar to the case (ii)1

shows

(3.5.6) aχ(pr+1) = χ([p])aχ (pr) − χ([p])r+1 (r ≥ 0) .
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Since the map B(Ci [p̄], pr ) → B(Ci, p
r+1)\ {pr+1}; a �→ ap is also bijective for each i, we

obtain similarly

(3.5.7) aχ(pr+1) = χ([p])aχ(pr) − χ([p])r+1 (r ≥ 0) .

By (3.5.5), (3.5.6) and (3.5.7), we get

aχ(pr+1) − aχ (p)aχ (pr) + aχ (pr−1)

= (χ([p])aχ(pr )−χ([p])r+1)−(χ([p])+χ([p]))aχ(pr)+(χ([p])aχ(pr)+χ([p])r+1)

= χ([p])aχ(pr )−χ([p])r+1−(χ([p])aχ(pr )−χ([p])r+1)

= 0 .

(3) Let p = p1 or p2 so that (p) = p2, Np = p. Since [p] has order 2 in Hk by
Corollary 1.7,(3), we have

a(Ci, p
r ) = 2b(Ci, p

r ) = 0 unless Ci = C0 or [p]
and

a(C0, p
r ) = 2b(Ci, p

r ) =
{

2 if r ≡ 0 mod 2 ,

0 if r ≡ 1 mod 2 ,

a([p], pr) = 2b(Ci, p
r ) =

{
0 if r ≡ 0 mod 2 ,

2 if r ≡ 1 mod 2 .

Further, χ(C0) = 1, and by Corollary 1.7,(3),

χ([p]) =
{

1 if hk(2) ≥ 8 ,

−1 if hk(2) = 4 .

Hence, if hk(2) ≥ 8, we have

aχ (pr) = 1

2
(a(C0, p

r ) + a([p], pr)) = 1 ,

and if hk(2) = 4,

aχ(pr ) = 1

2
(a(C0, p

r ) − a([p], pr)) =
{

1 if r ≡ 0 mod 2 ,

−1 if r ≡ 1 mod 2 .
�

4. Theta series and reciprocity laws

In this section, we express the Artin L-function in Section 2 as the L-function of a mod-
ular form associated to binary quadratic forms in Section 3. This may be seen as an explicit
and constructive version of the theorem by Weil-Langlands and Deligne-Serre ([Se]) for the
Rédei extension. In particular, the Rédei triple symbol is expressed as a Fourier coefficient of
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a modular form which is given in terms of the numbers of integral representations of binary
quadratic forms. A reciprocity law for the triple symbol yields certain reciprocal relations
among Fourier coefficients.

Let H be the upper half plane in C. Let Mw(Γ0(N), ε) be the space of holomorphic

modular forms on H of weight w and character ε mod N with respect to Γ0(N) =
{(

a b

c d

)
∈

SL2(Z)

∣∣∣ c ≡ 0 mod N
}

on which the Hecke operators T (m) (m ∈ Z > 0) act. Each modular

form f ∈ Mw(Γ0(N), ε) has the Fourier expansion

f (z) =
∞∑

n=0

anq
n , q := exp(2π

√−1z) (z ∈ H) ,

and the action of the Hecke operator T (m) is defined by

(4.1) (f |T (m))(z) =
∞∑

n=0

bnq
n , bn =

∑
0<d |(m,n)

ε(d)dω−1amn/d2 ,

where we understand that bn = amn if m divides N .
Let Sw(Γ0(N), ε) be the subspace of Mw(Γ0(N), ε) consisting of cusp forms f (z) (i.e.,

a0 = 0) which is stable under the action of Hecke operators T (m) (m ∈ Z > 0). A cusp form
in Sw(Γ0(N), ε) is called a Hecke eigenform if it is a common eigenfunction of all Hecke
operators T (m)’s.

Now, let us be back in the situation of the previous sections. We consider the following
theta series. For z ∈ H, we let

(4.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ(Ci, z) := 1

2

∞∑
n=0

a(Ci, n)qn = 1

2

∑
x,y∈Z

qQi(x,y) (0 ≤ i ≤ hk − 1) ,

Θχ (z) :=
∞∑

n=0

aχ(n)qn =
hk−1∑
i=0

χ(Ci)θ(Ci, z) .

Here we set a(Ci, 0) = 1 for all i and aχ (0) = ∑hk−1
i=0 χ(Ci) = 0. The following theorem is

due to E. Hecke ([H]).

THEOREM 4.3. (1) θ(Ci, z) ∈ M1
(
Γ0(p1p2),

(−p1p2·
) )

.

(2) Θχ (z) ∈ S1
(
Γ0(p1p2),

(−p1p2·
))

and it is a Hecke eigenform.

PROOF. (1) We refer to [Mi, Corollary 4.9.5].
(2) Since χ is not a genus character (i.e., a character of order 2), Θχ (z) is a cusp form

([Z, 4.3], [Mi, Theorem 4.8.2]). Further, by proposition 3.5, the Dirichlet series associated to
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Θχ (z) is written as

(4.4)

∞∑
n=1

aχ (n)n−s =
∏
p

(1 − aχ (p)p−s +
(−p1p2

p

)
p−2s )−1

where p runs over all prime numbers and we set
(−p1p2

p

) = 0 if p = p1 or p2. This implies

that Θχ (z) is a Hecke eigenform ([Mi, Theorem 4.5.16]). �

Let L(Θχ , s) denote the L-function of the modular form Θχ (z), namely, the Dirichlet
series

(4.5) L(Θχ , s) :=
∞∑

n=1

aχ (n)n−s .

By (4.4), we have⎧⎪⎪⎨
⎪⎪⎩

L(Θχ , s) =
∏
p

Lp(Θχ , s) (p runs over all prime numbers) ,

Lp(Θχ , s) =
(

1 − aχ (p)p−s +
(−p1p2

p

)
p−2s

)−1

.

By Proposition 3.5, (3), we note

Lp(Θχ , s) =
{
(1 − p−s )−1 if p = p1 or p2 and hk(2) ≥ 8 ,

(1 + p−s )−1 if p = p1 or p2 and hk(2) = 4 .

The following theorem may be regarded as an explicit and constructive version of the theorem
of Weil-Langlands and Deligne-Serre ([Se]).

THEOREM 4.6. We have

L(ρ, s) = L(Θχ , s).

For a prime number p �= p1, p2, we have

tr(ρ(σP)) = aχ (p)

where σP is the Frobenius automorphism of a prime of K lying over p.

PROOF. The first assertion follows from Propositions 2.12, 3.4 and (4.5). The second
one follows from Lemma 2.4 and (4.4). �

Let p1, p2 and p3 be prime numbers satisfying the condition (1.8). The following corol-
lary gives a relation between the Rédei triple symbol and modular form.

COROLLARY 4.7. We have

[−p1, p2, p3] = 1

2
aχ(p3) .
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In particular, p3 is completely decomposed in the Rédei extension K{−p1,p2}/Q if and only if
aχ (p3) = 2.

PROOF. This follows from Lemma 2.2 and Theorem 4.6. �

Now we write k12 and χ12 : Hk12 → C× for k = Q(
√−p1p2) and χ in the previous

sections, and we let k13 := Q(
√−p1p3) and denote by χ13 the Hecke character Hk13 → C×

defined in the similar manner to the case of χ12. The reciprocity law for the triple symbol
yields the following

THEOREM 4.8. Notations being as above, we have

aχ12(p3) = aχ13(p2) .

PROOF. It follows from Theorem 1.12 and Corollary 4.7. �

5. Numerical examples

In this section, we discuss numerical examples. We keep the same notations as in the
previous sections.

EXAMPLE 5.1. Let p1 = 11 and p2 = 5. The associated Rédei extension is given by

K{−11,5} = Q(
√−p1,

√
p2,

√
α) , α = 3 + 2

√
5 .

Let ρ : Gal(K{−11,5}/Q) → GL2(C) be the representation defined in (2.1). The ideal class

group Hk of k = Q(
√−55) is a cyclic group of order 4:

Hk = {C0 = [Ok], C1 = [p2], C2 = C2
1 = [p5], C3 = C3

1 = [p2]}
where Ok = [1, ω], p2 = [2, ω], p5 = [5, 2 +ω], p2 = [2, 1 +ω]. (ω = (1 +√−55)/2),
and the corresponding binary quadratic forms are given respectively by

Q0 = X2 + XY + 14Y 2 , Q1 = 2X2 + XY + 7Y 2 ,

Q2 = 5X2 + 5XY + 4Y 2 , Q3 = 2X2 + 3XY + 8Y 2 .

Note that K{−11,5} is the Hilbert class field of k. For a positive integer n, a(Ci, n) :=
#{(x, y) ∈ Z | Qi(x, y) = n} (0 ≤ i ≤ 3). Since the character χ : Hk → C× in (2.10) is

given by χ(Ci) = (±√−1)i (0 ≤ i ≤ 3), we have

aχ (n) = 1

2
(a(C0, n) − a(C2, n))

and

Θχ (z) =
∞∑

n=1

aχ (n)qn = 1

2

( ∑
x,y∈Z

qx2+xy+14y2 −
∑

x,y∈Z

q5x2+5xy+4y2
)
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= q − q4 − q5 + q9 − q11 + q16 + · · ·
Theorem 4.6 reads:{

L(ρ, s) = L(Θχ , s) ,

tr(ρ(σP)) = aχ(p) for a prime number p �= 5, 11 .

By Corollary 4.7, for a prime number p3 satisfying (1.8), i.e., p3 ≡ 1 mod 4,
(

11
p3

)
=

(
5
p3

)
=

1, we have

[−11, 5, p3] = 1

2
aχ (p3) .

For example, let p3 = 89 satisfying (1.8). To distinguish the notations, we write k12,

Q12,i and χ12 for the above k, Qi and χ , and let k13 := Q(
√−11 · 89) = Q(

√−979).
The ideal class group Hk13 of k13 is a cyclic group of order 8 consisting of C13,0, C13,i =
(C13,1)

i (1 ≤ i ≤ 7):

C13,0 = [X2 + XY + 245Y 2] , C13,1 = [7X2 + XY + 35Y 2] ,

C13,2 = [5X2 + 9XY + 53Y 2] , C13,3 = [13X2 + 23XY + 29Y 2] ,

C13,4 = [11X2 + 11XY + 25Y 2] , C13,5 = [13X2 + 35XY + 29Y 2] ,

C13,6 = [5X2 + XY + 49Y 2] , C13,7 = [7X2 + 13XY + 41Y 2] .

We set a(C13,i, n) := #{(x, y) ∈ Z | Q13,i(x, y) = n} Since the character χ13 : Hk13 → C×

in (2.10) is given by χ13(C13,i) = (±√−1)i (0 ≤ i ≤ 7), we have

aχ13(n) = 1

2
(a(C13,0, n) − a(C13,2, n) + a(C13,4, n) − a(C13,6, n)) .

The reciprocity law of Theorem 4.8 then reads

aχ12(89) = aχ13(5) .

In fact, we can easily see aχ13(5) = −2. So the above reciprocity tells us aχ12(89) = −2.

Therefore 89 is decomposed as (89) = P1P2P3P4, NPi = 892 in K{−11,5}.

EXAMPLE 5.2. Let p1 = 3 and p2 = 73. The associated Rédei extension is then
given by

K{−3,73} = Q(
√−p1,

√
p2,

√
α) , α = −17 + 2

√
73 .

Let ρ : Gal(K{−3,73}/Q) → GL2(C) be the representation defined in (2.1). The ideal class

group Hk of k = Q(
√−219) is a cyclic group of order 4:

Hk = {C0 = [Ok], C1 = [p5], C2 = C2
1 = [p3], C3 = C3

1 = [p5]}
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where Ok = [1, ω], p5 = [5, ω], p3 = [3, 1+ω], p5 = [1, 4+ω]. (ω = (1+√−219)/2),
and the corresponding binary quadratic forms are given respectively by

Q0 = X2 + XY + 55Y 2 , Q1 = 5X2 + XY + 11Y 2 ,

Q2 = 3X2 + 3XY + 19Y 2 , Q3 = 5X2 + 9XY + 15Y 2 .

Note that K{−3,73} is the Hilbert class field of k. For a positive integer n, a(Ci, n) :=
#{(x, y) ∈ Z | Qi(x, y) = n} (0 ≤ i ≤ 3). Since the character χ : Hk → C× in (2.10) is

given by χ(Ci) = (±√−1)i (0 ≤ i ≤ 3), we have

aχ (n) = 1

2
(a(C0, n) − a(C2, n))

and

Θχ (z) =
∞∑

n=1

aχ(n)qn = 1

2

( ∑
x,y∈Z

qx2+xy+55y2 −
∑

x,y∈Z

q3x2+3xy+19y2
)

= q − q3 + q4 + q9 − q12 + q16 − · · ·
Theorem 4.6 reads:{

L(ρ, s) = L(Θχ , s) ,

tr(ρ(σP)) = aχ (p) for a prime number p �= 3, 73 .

By Corollary 4.7, for a prime number p3 satisfying (1.8), i.e., p3 ≡ 1 mod 4,
(

3
p3

)
=

(
73
p3

)
=

1, we have

[−3, 73, p3] = 1

2
aχ (p3) .

For example, let p3 = 97. To distinguish the notations, we write k12, Q12,i and χ12 for

the above k, Qi and χ , and let k13 := Q(
√−3 · 97) = Q(

√−291). According to the table
of [WS], the triple of prime numbers {3, 73, 97} is an example such that (1.8) is satisfied and
the ideal class groups of k12 and k13 are both cyclic group of order 4. In fact, the ideal class
group Hk13 of k13 consists of C13,0, C13,i = (C13,1)

i (1 ≤ i ≤ 3):

C13,0 = [X2 + XY + 73Y 2] , C13,1 = [5X2 + 7XY + 17Y 2] ,

C13,2 = [3X2 + 3XY + 25Y 2] , C13,3 = [5X2 + 3XY + 15Y 2] .

So K{−3,97} is also the Hilbert class field of k13. We set a(C13,i, n) := #{(x, y) ∈
Z | Q13,i(x, y) = n}. Since the Hecke character χ13 : Hk13 → C× in (2.10) is given by

χ13(C13,i) = (±√−1)i (0 ≤ i ≤ 3), we have

aχ13(n) = 1

2
(a(C13,0, n) − a(C13,2, n)) .
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The reciprocity law of Theorem 4.8 reads

aχ12(97) = aχ13(73) .

In fact, we can easily see aχ12(97) = aχ13(73) = 2. So 97 (resp. 73) is completely decom-
posed in K{−3,73}/Q (resp. K{−3,97}/Q).

REMARK 5.3. In Appendix, a neat formula for aχ(n) is presented in the case that

k = Q(
√−p1p2) has the class number 4, equivalently, the Rédei extension K{−p1,p2} is the

Hilbert class field of k. According to the table of [WS], there are 21 pairs of (p1, p2) in the
range p1p2 < 10000 such that the condition (1.1) satisfied and the class number of k is 4,
namely, (p1, p2) = (3, 13), (11, 5), (31, 5), (7, 29), (3, 73), (7, 37), (3, 97), (19, 17), (71, 5),
(23, 29), (3, 241), (7, 109), (191, 5), (59, 17), (79, 13), (3, 409), (11, 113), (19, 73), (83, 17),
(11, 137), (311, 5).1 Among these, the triples of (p1, p2, p3) such that the condition (1.8) is
satisfied are given by (3, 73, 97), (3, 97, 241), (7, 29, 109).

Appendix by Takeshi Ogasawara

In this appendix, we express the modular form Θχ (z) = ∑∞
n=1 aχ (n)qn defined in (4.2)

in terms of eta quotients, when k = Q(
√−p1p2) has the class number 4 so that the Rédei

extension K{−p1,p2} is the Hilbert class field of k. From this, we obtain a formula for the
Fourier coefficient aχ (n) and hence for the Rédei symbol [−p1, p2, p3] in this case. We keep
the same notations as in the previous sections.

Let η(z) be the Dedekind eta function defined by

η(z) := q1/24
∞∏

n=1

(1 − qn)

and consider the eta quotient (Jacobi’s product expansion of the theta function)

ϑ(z) := η(2z)5

η(z)2η(4z)2
=

∑
n∈Z

qn2
.

Let p1 and p2 be prime numbers satisfying the condition (1.1). We note that the following eta
quotients

ϑ(z)ϑ(p1p2z) =
∑

x,y∈Z

qx2+p1p2y
2
, ϑ(p1z)ϑ(p2z) =

∑
x,y∈Z

qp1x
2+p2y

2

1We are grateful to Masanari Kida and the referee for kindly telling us the references [Ar] and [Wat], by which
this list of 21 pairs is proved to be complete.
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belong to M1
(
Γ0(4p1p2),

(−p1p2·
))

on which the operator T (m) acts by (4.1). For an integer
n ≥ 0, we set

a1
n := #{(x, y) ∈ Z2 | x2 + p1p2y

2 = n} ,

a2
n := #{(x, y) ∈ Z2 | p1x

2 + p2y
2 = n} ,

a{p1,p2}(n) := 1
2 (a1

4n − a2
4n) .

THEOREM A1. Notations being as above, assume that the class number of k =
Q(

√−p1p2) is 4. Then we have

Θχ (z) = 1

2
(ϑ(z)ϑ(p1p2z) − ϑ(p1z)ϑ(p2z))|T (4) ,

and

aχ (n) = a{p1,p2}(n) .

PROOF. We note by the assumption that the ideal class group Hk of k is a cyclic group
of order 4:

Hk = {C0, C1, C2, C3} , Ci = (C1)
i (0 ≤ i ≤ 3) .

Since ϑ(z)ϑ(p1p2z) = ∑
x,y∈Z qx2+p1p2y

2 = ∑∞
n=0 a1

nq
n, we have

(ϑ(z)ϑ(p1p2z))|T (4) =
∞∑

n=0

a1
4nq

n by (4.1)

=
∑

x,y∈Z
x2+p1p2y

2≡0 mod 4

q(x2+p1p2y
2)/4

=
∑

x,y∈Z
x≡y mod 2

q(x2+p1p2y
2)/4

=
∑

α∈Ok

qNk/Q(α)

=
∑

x,y∈Z

qQ0(x,y)

= 2θ(C0, z) by (4.2) .

Similarly, since ϑ(p1z)ϑ(p2z) = ∑
x,y∈Z qp1x

2+p2y
2 = ∑∞

n=0 a2
nq

n, we have

(ϑ(p1z)ϑ(p2z))|T (4) =
∞∑

n=0

a2
4nq

n by (4.1)
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=
∑

x,y∈Z
p1x

2+p2y2≡0 mod 4

q(p1x
2+p2y

2)/4

=
∑

x,y∈Z
x≡y mod 2

q(p1x
2+p2y

2)/4

=
∑

x,y∈Z
x≡y mod 2

q((p1x)2+p1p2y
2)/4p1

=
∑
α∈p1

qNk/Q(α)/Np1 .

Here p1 = {(p1x + y
√−p1p2)/2 | x ≡ y mod 2} is the prime ideal of Ok lying over p1.

Since [p1] has the order 2 in Hk by Corollary 1.7, (3), [p1] = C2 and so the above series is
nothing but 2θ(C2, z) by (4.2).

Since χ(C0) = 1,χ(C1) = ±√−1,χ(C2) = −1 and χ(C3) = ∓√−1, by Proposition
3.4 and (4.2), we have

Θχ (z) = 1

2
(ϑ(z)ϑ(p1p2z) − ϑ(p1z)ϑ(p2z))|T (4) .

Comparing the Fourier coefficients of both sides, we have

aχ (n) = 1

2
(a1

4n − a2
4n)

= a{p1,p2}(n) . �

By Theorem A1 together with Corollary 4.7 and Theorem 4.8, we get the following

COROLLARY A2. Let p1, p2 and p3 be prime numbers satisfying the condition (1.8)

and assume that the class number of Q(
√−p1p2) is 4. Then we have

[−p1, p2, p3] = 1

2
a{p1,p2}(p3)

=
{

1 if there are integers x, y satisfying x2 + p1p2y
2 = 4p3 ,

−1 otherwise.

Further, we assume that the class number of Q(
√−p1p3) is 4. Then we have

a{p1,p2}(p3) = a{p1,p3}(p2) .
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