Characterization of Arithmetical Equivalence of Number Fields by Galois Groups with Restricted Ramification

Mitsul TOHKAILIN and Manabu OZAKI

Kinki University and Waseda University

Abstract

We will give a characterization of arithmetical equivalence of number fields in terms of certain associated families of Galois groups with restricted ramification.

1. Introduction

The Dedekind zeta function $\zeta_{K}(s)$ is one of the most fundamental objects associated to a number field K. We believe that $\zeta_{K}(s)$ knows almost all the arithmetic properties of K. However, $\zeta_{K}(s)$ cannot identify completely the isomorphism class of the number field K in general; For number fields K and K^{\prime}, we say that K and K^{\prime} are arithmetically equivalent, denoting by $K \approx K^{\prime}$, if and only if the equality $\zeta_{K}(s)=\zeta_{K^{\prime}}(s)$ holds. Obviously, if $K \simeq K^{\prime}$ then $K \approx K^{\prime}$, but the converse does not hold in general. For example, $K=\mathbf{Q}(\sqrt[8]{3})$ and $K^{\prime}=\mathbf{Q}(\sqrt[8]{48})$ are arithmetically equivalent, but $K \not \not K^{\prime}$ (See [2], P. 86, (1, 9)).

Therefore it is a basic problem to determine when two number fields K and K^{\prime} are arithmetically equivalent. The aim of the present paper is to give a characterization of arithmetical equivalence of number fields in terms of certain associated Galois groups with restricted ramification. Such an attempt was first made by N. Adachi and K. Komatsu in [1]: For any number field F and prime number p, let $F_{\infty}(p)$ be the cyclotomic \mathbf{Z}_{p}-extension of $F\left(\zeta_{p}+\zeta_{p}^{-1}\right), \zeta_{p}$ being a primitive p-th root of unity, and denote by $X_{F_{\infty}(p),\{p\}}(p)$ the Galois group of the maximal abelian pro- p-extension over $F_{\infty}(p)$ unramified outside $p . X_{F_{\infty}(p),\{p\}}(p)$ has a natural $\Lambda_{p}:=\mathbf{Z}_{p}\left[\left[\operatorname{Gal}\left(\mathbf{Q}_{\infty}(p) / \mathbf{Q}\right)\right]\right]$-module structure as usual if $F \cap \mathbf{Q}_{\infty}(p)=\mathbf{Q}$, which holds for all but finitely many prime numbers p, via isomorphism $\operatorname{Gal}\left(F_{\infty}(p) / F\right) \simeq \operatorname{Gal}\left(\mathbf{Q}_{\infty}(p) / \mathbf{Q}\right)$ induced by the restriction.

THEOREM (Adachi-Komatsu [1]). Let K and K^{\prime} be totally real number fields. Then the followings are equivalent:

[^0](1) $K \approx K^{\prime}$,
(2) $X_{K_{\infty}(p),\{p\}}(p) \simeq X_{K_{\infty}^{\prime}(p),\{p\}}(p)$ as Λ_{p}-modules for all but finitely many prime numbers p.
It is not clear whether we can omit the assumption "totally real" in the above theorem, because the proof of " $(2) \Longrightarrow(1)$ " largely relies on the Iwasawa main conjecture for totally real number fields, which was established by A. Wiles.

Our main result gives a characterization of arithmetical equivalence of any number fields in terms of a family of rather "small" Galois groups with restricted ramification, which are finite abelian groups.

2. Main theorem

In what follows, we will fix an algebraic closure of \mathbf{Q} and regard any number fields and their algebraic extensions as subfields of it. For any set S of prime numbers and number field F, we denote by $M_{F, S}$ the maximal abelian extension over F unramified outside S, and let $X_{F, S}:=\operatorname{Gal}\left(M_{F, S} / F\right)$.

Our main result is the following:
ThEOREM 1. For number fields K and K^{\prime} of finite degree, the following three statements are equivalent :
(1) $K \approx K^{\prime}$,
(2) There exists a prime number l_{0} such that
(i) $l_{0} \nmid[N: \mathbf{Q}]$ for the minimal Galois extension N / \mathbf{Q} containing K and K^{\prime},
(ii) l_{0} does not divide the class numbers of K and K^{\prime},
(iii) l_{0} is unramified in K / \mathbf{Q} and K^{\prime} / \mathbf{Q},
(iv) $X_{K,\{p\}} / l_{0} \simeq X_{K^{\prime},\{p\}} / l_{0}$ for all but finitely many prime numbers p.
(3) Let N / \mathbf{Q} be the minimal Galois extension containing both of K and K^{\prime}. Then for any set S of prime numbers and prime number l satisfying $l \nmid[N: \mathbf{Q}]$, we have $X_{K, S}(l) \simeq X_{K^{\prime}, S}(l)$, where $X_{K, S}(l)$ and $X_{K^{\prime}, S}(l)$ denote the l-parts of $X_{K, S}$ and $X_{K^{\prime}, S}$, respectively.

3. Preliminary lemmas

In this section, we will give a collection of preliminary lemmas to prove Theorem 1.
The following lemma is well known:
Lemma 1. Let L / K be a finite extension of number fields and N / K a Galois extension containing L. Put $G=\operatorname{Gal}(N / K), H=\operatorname{Gal}(N / L)$. For any prime ideal \mathfrak{p} of K, we denote by $P_{\mathfrak{p}}$ the set of the prime ideals of L lying above \mathfrak{p}. Also, let \mathfrak{P} be a prime ideal of N lying above \mathfrak{p} and $G_{\mathfrak{P}}$ the decomposition subgroup group of G for \mathfrak{P}. Then the map

$$
\begin{array}{rlc}
H \backslash G / G_{\mathfrak{P}} & \longrightarrow & P_{\mathfrak{p}} \\
H \sigma G_{\mathfrak{P}} & \longmapsto \sigma \mathfrak{P} \cap L
\end{array}
$$

is a bijection. In the case where \mathfrak{p} is unramified in N / K, we find especially the number of the prime ideals of L lying over \mathfrak{p} depends only on the Frobenius class of \mathfrak{p} in G, namely, the conjugacy class of the Frobenius automorphism $\left[\frac{N / K}{\mathfrak{P}}\right]$ for \mathfrak{P}.

LEmma 2. For a prime power r, we denote by \mathbf{F}_{r} the finite field of order r. If a prime number l and a positive integer d satisfy $l \nmid d$ and $l \mid r-1$, then we have

$$
\left(\mathbf{F}_{r^{d}}^{\times}\right)^{l} \cap \mathbf{F}_{r}^{\times}=\left(\mathbf{F}_{r}^{\times}\right)^{l} .
$$

Proof. Because the inclusion $\left(\mathbf{F}_{r^{d}}^{\times}\right)^{l} \cap \mathbf{F}_{r}^{\times} \supseteq\left(\mathbf{F}_{r}^{\times}\right)^{l}$ clearly holds, it is enough to show that the converse inclusion $\left(\mathbf{F}_{r^{d}}^{\times}\right)^{l} \cap \mathbf{F}_{r}^{\times} \subseteq\left(\mathbf{F}_{r}^{\times}\right)^{l}$ holds. Assume that $x \in \mathbf{F}_{r^{d}}^{\times}$and $x^{l} \in \mathbf{F}_{r}^{\times}$. Then we have $\left(x^{r-1}\right)^{l}=x^{l(r-1)}=1$. Suppose that the order ord $\left(x^{r-1}\right)$ of $x^{r-1} \in \mathbf{F}_{r^{d}}^{\times}$is equal to l. Then it follows from $x^{(r-1) \cdot \frac{r^{d}-1}{r-1}}=x^{r^{d}-1}=1$ that $l \left\lvert\, \frac{r^{d}-1}{r-1}\right.$. However, this is impossible by $\frac{r^{d}-1}{r-1}=r^{d-1}+r^{d-2}+\cdots+r+1 \equiv d \not \equiv 0(\bmod l)$. Therefore we conclude that $x^{r-1}=1$, which implies $x \in \mathbf{F}_{r}$.

Lemma 3. Let G be a finite group and p a prime number with $p \nmid \# G$. Assume that two subgroups $H_{1}, H_{2} \subseteq G$ satisfy

$$
\mathbf{Q}_{p}[G] \underset{\mathbf{Q}_{p}\left[H_{1}\right]}{\otimes} \mathbf{Q}_{p} \simeq \mathbf{Q}_{p}[G] \underset{\mathbf{Q}_{p}\left[H_{2}\right]}{\otimes} \mathbf{Q}_{p} \text { (as } \mathbf{Q}_{p}[G] \text {-modules) }
$$

Here we regard $\mathbf{Q}_{p}[G]$ as a two-sided $\mathbf{Q}_{p}[G]$-module via the ring structure of it, and the action of G on $\mathbf{Q}_{p}[G] \underset{\mathbf{Q}_{p}\left[H_{i}\right]}{\otimes} \mathbf{Q}_{p}$ is defined by $\sigma(a \otimes b)=\sigma a \otimes b\left(a \in \mathbf{Q}_{p}[G], b \in \mathbf{Q}_{p}, \sigma \in\right.$ $G)$. Then for any $\mathbf{Z}_{p}[G]$-module M, we have

$$
M_{H_{1}} \simeq M_{H_{2}}\left(\text { as } \mathbf{Z}_{p} \text {-modules }\right)
$$

where $M_{H_{i}}=M / \sum_{\sigma \in H_{i}}(\sigma-1) M$ is the H_{i}-coinvariant of M.
Proof. We recall the following lemma from the theory of integral representations of finite groups to prove Lemma 3:

Lemma 4 ([2, p.626, (30, 16)]). Let G be a finite group and p a prime number with $p \nmid \# G$. For any finitely generated $\mathbf{Z}_{p}[G]$-modules A and B without non-trivial \mathbf{Z}_{p}-torsions, $A \underset{\mathbf{Z}_{p}}{\otimes} \mathbf{Q}_{p} \simeq B \underset{\mathbf{Z}_{p}}{\otimes} \mathbf{Q}_{p}$ as $\mathbf{Q}_{p}[G]$-modules implies $A \simeq B$ as $\mathbf{Z}_{p}[G]$-modules.

It follows from

$$
\left(\mathbf{Z}_{p}[G] \underset{\mathbf{Z}_{p}\left[H_{i}\right]}{\otimes} \mathbf{Z}_{p}\right) \underset{\mathbf{Z}_{p}}{\otimes} \mathbf{Q}_{p} \simeq \mathbf{Q}_{p}[G] \underset{\mathbf{Q}_{p}\left[H_{i}\right]}{\otimes} \mathbf{Q}_{p}\left(\text { as } \mathbf{Q}_{p}[G] \text {-modules }\right)(i=1,2),
$$

and our assumption

$$
\left.\mathbf{Q}_{p}[G] \underset{\mathbf{Q}_{p}\left[H_{1}\right]}{\otimes} \mathbf{Q}_{p} \simeq \mathbf{Q}_{p}[G] \underset{\mathbf{Q}_{p}\left[H_{2}\right]}{\otimes} \mathbf{Q}_{p} \text { (as } \mathbf{Q}_{p}[G] \text {-modules }\right),
$$

that

$$
\mathbf{Z}_{p}[G] \underset{\mathbf{Z}_{p}\left[H_{1}\right]}{\otimes} \mathbf{Z}_{p} \simeq \mathbf{Z}_{p}[G] \underset{\mathbf{Z}_{p}\left[H_{2}\right]}{\otimes} \mathbf{Z}_{p}\left(\text { as } \mathbf{Z}_{p}[G] \text {-modules }\right)
$$

by using Lemma 4 . Hence we obtain

$$
\begin{equation*}
M \underset{\mathbf{Z}_{p}[G]}{\otimes}\left(\mathbf{Z}_{p}[G] \underset{\mathbf{Z}_{p}\left[H_{1}\right]}{\otimes} \mathbf{Z}_{p}\right) \simeq M \underset{\mathbf{Z}_{p}[G]}{\otimes}\left(\mathbf{Z}_{p}[G] \underset{\mathbf{Z}_{p}\left[H_{2}\right]}{\otimes} \mathbf{Z}_{p}\right) \tag{1}
\end{equation*}
$$

as \mathbf{Z}_{p}-modules, where we define the right action of $\sigma \in G$ on $m \in M$ by $m \sigma:=\sigma^{-1} m$ to give a right $\mathbf{Z}_{p}[G]$-module structure to M.

On the other hand, by the associative law of tensor product, we have

$$
M \underset{\mathbf{Z}_{p}[G]}{\otimes}\left(\mathbf{Z}_{p}[G] \underset{\mathbf{Z}_{p}\left[H_{i}\right]}{\otimes} \mathbf{Z}_{p}\right) \simeq\left(M \underset{\mathbf{Z}_{p}[G]}{\otimes} \mathbf{Z}_{p}[G]\right) \underset{\mathbf{Z}_{p}\left[H_{i}\right]}{\otimes} \mathbf{Z}_{p} \simeq M \underset{\mathbf{Z}_{p}\left[H_{i}\right]}{\otimes} \mathbf{Z}_{p} \simeq M_{H_{i}}
$$

as \mathbf{Z}_{p}-modules for $i=1$, 2, where we regard $M \underset{\mathbf{Z}_{p}[G]}{\otimes} \mathbf{Z}_{p}[G]$ as a right H_{i}-module via ($m \otimes$ $\alpha) h:=m \otimes \alpha h$ for $m \in M, \alpha \in \mathbf{Z}_{p}[G], h \in H_{i}$. Therefore it follows from (1) that $M_{H_{1}} \simeq$ $M_{H_{2}}$ as \mathbf{Z}_{p}-modules.

The following is the key to derive the equivalence of the three statements in Theorem 1:
Lemma 5 [3, P. 77, (1.3)]. Let K and K^{\prime} be any number fields. Then the following three statements are equivalent:
(1) $K \approx K^{\prime}$
(2) For a prime number p, let g_{p} and g_{p}^{\prime} be the numbers of the prime divisors of K and K^{\prime} lying over p, respectively. Then $g_{p}=g_{p}^{\prime}$ for all but finitely many prime numbers p.
(3) For any Galois extension N / \mathbf{Q} containing K and K^{\prime}, put $G=\operatorname{Gal}(N / \mathbf{Q}), H=$ $\operatorname{Gal}(N / K), H^{\prime}=\operatorname{Gal}\left(N / K^{\prime}\right)$. Then $\mathbf{Q}[G] \underset{\mathbf{Q}[H]}{\otimes} \mathbf{Q} \simeq \mathbf{Q}[G] \underset{\mathbf{Q}\left[H^{\prime}\right]}{\otimes} \mathbf{Q}$ as $\mathbf{Q}[G]-$ modules.

LEmMA 6 ([4, p.41, Thm. 2.3.15]). Let G be a pro-finite group and $N \subseteq G$ a pro-p normal subgroup. Assume that the quotient group $Q=G / N$ has no non-trivial pro-psubgroups. Then the natural exact sequence

$$
1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1
$$

splits.

4. Proof of Theorem 1

Proof. First, we will derive statement (1) from statement (2).
Assume that the prime number l_{0} satisfies the condition given in statement (2) of the theorem. For a prime number q and $n \geq 0$, we write $K_{q^{n}}$ for the ray class field of modulo
$q^{n} \mathcal{O}_{K}$ over K, \mathcal{O}_{K} being the integer ring of K. Then $M_{K,\{q\}}=\bigcup_{n=1}^{\infty} K_{q^{n}}$, and $X_{K,\{q\}}=$ $\underset{n}{\lim _{n}} \operatorname{Gal}\left(K_{q^{n}} / K\right)$. We denote by $I_{K, q}$ the group of the fractional ideals of K which are prime to q, and we write $P_{K, q}$ for the group of the principal ideals contained in $I_{K, q}$. Also, we put $S_{K, q^{n}}=\left\{\alpha \mathcal{O}_{K} \mid \alpha \in K^{\times}, \alpha \equiv 1\left(\bmod q^{n}\right)\right\}$.

If we assume $q \neq l_{0}$, then, by using class field theory, we have

$$
\begin{equation*}
X_{K,\{q\}} / l_{0} \simeq \operatorname{Gal}\left(K_{q} / K\right) / l_{0} \simeq\left(I_{K, q} / S_{K, q}\right) / l_{0} \simeq\left(P_{K, q} / S_{K, q}\right) / l_{0} \tag{2}
\end{equation*}
$$

because $\operatorname{Gal}\left(K_{q^{n}} / K_{q}\right)$ is a q-group $\left(q \neq l_{0}\right)$ and the l_{0}-part of the class group of K, which is isomorphic to that of $I_{K, q} / P_{K, q}$, is trivial from our assumption. Thus we derive from the exact sequence

$$
\mathcal{O}_{K}^{\times} \longrightarrow\left(\mathcal{O}_{K} / q\right)^{\times} \longrightarrow P_{K, q} / S_{K, q} \longrightarrow 0
$$

and (2) the exact sequence

$$
\begin{equation*}
\mathcal{O}_{K}^{\times} \xrightarrow{\pi_{K, q}}\left(\mathcal{O}_{K} / q\right)^{\times} / l_{0} \longrightarrow X_{K,\{q\}} / l_{0} \longrightarrow 0 . \tag{3}
\end{equation*}
$$

Assume that the prime q is unramified in K / \mathbf{Q} and let $q \mathcal{O}_{K}=\mathfrak{q}_{1} \cdots \mathfrak{q}_{g_{q}}$ be the prime decomposition in K. Then it follows from the Chinese Remainder Theorem that

$$
\left(\mathcal{O}_{K} / q\right)^{\times} / l_{0} \simeq \bigoplus_{i=1}^{g_{q}}\left(\mathcal{O}_{K} / \mathfrak{q}_{i}\right)^{\times} / l_{0}
$$

If we further assume that $q \equiv 1\left(\bmod l_{0}\right)$, then

$$
\begin{equation*}
\left(\mathcal{O}_{K} / q\right)^{\times} / l_{0} \simeq \bigoplus_{i=1}^{g_{q}}\left(\mathcal{O}_{K} / \mathfrak{q}_{i}\right)^{\times} / l_{0} \simeq\left(\mathbf{Z} / l_{0}\right)^{\oplus g_{q}} \tag{4}
\end{equation*}
$$

Recall that N / \mathbf{Q} denotes the minimal Galois extension containing K and K^{\prime}. Put $L=N\left(\mu_{l_{0}},\left\{\sqrt[l_{0}]{\varepsilon} \mid \varepsilon \in \mathcal{O}_{N}^{\times}\right\}\right), G_{N}=\operatorname{Gal}(N / \mathbf{Q}), G_{N\left(\mu_{0}\right)}=\operatorname{Gal}\left(N\left(\mu_{l_{0}}\right) / \mathbf{Q}\right)$, and $G_{L}=\operatorname{Gal}(L / \mathbf{Q})$, where $\mu_{l_{0}}$ stands for the group of the l_{0}-th roots of unity. We note that [$\left.L: N\left(\mu_{l_{0}}\right)\right]=l_{0}^{e}$ for some $e \geq 0$, and that $\left[N\left(\mu_{l_{0}}\right): \mathbf{Q}\right]$ is prime to l_{0} from our assumption. For any Galois extension F / \mathbf{Q} and prime number q which is unramified in F, we set $C_{F / \mathbf{Q}}(q)=\left\{\left[\frac{F / \mathbf{Q}}{\mathfrak{q}}\right]|\mathfrak{q}| q\right.$ is a prime of $\left.F\right\}$, and for any group G and $\sigma \in G$, put $C(G, \sigma)=\left\{g \sigma g^{-1} \mid g \in G\right\}$.

In what follows, we will show that for any $\sigma \in G_{N}$ there exist infinitely many prime numbers q satisfying the following three conditions:
(a) $q \equiv 1\left(\bmod l_{0}\right)$,
(b) the prime q is unramified in L and $C_{N / \mathbf{Q}}(q)=C\left(G_{N}, \sigma\right)$,
(c) $\langle x\rangle \cap \operatorname{Gal}(L / N)=\{1\}$ for all $x \in C_{L / \mathbf{Q}}(q)$.

Since l_{0} is unramified in N / \mathbf{Q} from our assumption on l_{0}, we have $N \cap \mathbf{Q}\left(\mu_{l_{0}}\right)=\mathbf{Q}$ and the isomorphism

$$
\begin{array}{ccc}
G_{N\left(\mu_{0}\right)} & \simeq \quad G_{N} \times \operatorname{Gal}\left(\mathbf{Q}\left(\mu_{l_{0}}\right) / \mathbf{Q}\right) . \\
x & \mapsto & \left(\left.x\right|_{N},\left.x\right|_{\mathbf{Q}\left(\mu_{l_{0}}\right)}\right)
\end{array}
$$

We will identify $G_{N\left(\mu_{l_{0}}\right)}$ with $G_{N} \times \operatorname{Gal}\left(\mathbf{Q}\left(\mu_{l_{0}}\right) / \mathbf{Q}\right)$ via the above isomorphism. Let $\bar{\sigma} \in G_{L}$ be an automorphism such that $\left.\bar{\sigma}\right|_{N\left(\mu_{0}\right)}=(\sigma, 1)$. Because $l_{0} \nmid \# G_{N}$ by our assumption on l_{0}, there exists a positive integer d such that $d \equiv 1\left(\bmod \# G_{N}\right)$ and $d \equiv 0\left(\bmod l_{0}^{e}\right)$. Put $y=\bar{\sigma}^{d} \in G_{L}$. Then we see that $\left.y\right|_{N\left(\mu l_{0}\right)}=\left(\sigma^{d}, 1^{d}\right)=(\sigma, 1)=\left.\bar{\sigma}\right|_{N\left(\mu_{0}\right)}$ and $\left(\operatorname{ord} y, l_{0}\right)=$ 1 since $l_{0}^{e} \| \# G_{L}$. By the Chebotarev density theorem, there exist infinitely many prime numbers q such that q is unramified in L and $C_{L / \mathbf{Q}}(q)=C\left(G_{L}, y\right)$. We will show that this prime number q satisfies conditions (a), (b), and (c).

For any subset C of G_{L}, we put $\left.C\right|_{N}=\left\{\left.g\right|_{N} \in G_{N} \mid g \in C\right\}$. Then we have $C_{N / \mathbf{Q}}(q)=\left.C\left(G_{L}, y\right)\right|_{N}=C\left(G_{N},\left.y\right|_{N}\right)=C\left(G_{N}, \sigma\right)$, which implies that q satisfies (b). Since $C_{\mathbf{Q}\left(\mu_{l_{0}}\right) / \mathbf{Q}}(q)=\left.C_{L / \mathbf{Q}}(q)\right|_{\mathbf{Q}\left(\mu_{l_{0}}\right)}=\left.C\left(G_{L}, y\right)\right|_{\mathbf{Q}\left(\mu_{l_{0}}\right)}=1$, we see that $\left(\frac{\mathbf{Q}\left(\mu_{l_{0}}\right) / \mathbf{Q}}{q}\right)=1$, which implies that q satisfies (a). Finally, let $x \in C_{L / \mathbf{Q}}(q)$ and $g \in\langle x\rangle \cap \operatorname{Gal}(L / N)$ be any element. Since $x \in C_{L / \mathbf{Q}}(q)=C\left(G_{L}, y\right)$, we find that $x=z y z^{-1}$ for some $z \in G_{L}$. Then we obtain $g=\left(z y z^{-1}\right)^{m}$ for some $m \in \mathbf{Z}$. Because $\left.y\right|_{\mathbf{Q}\left(\mu_{l_{0}}\right)}=1$, we have $g\left|\mathbf{Q}\left(\mu_{l_{0}}\right)=\left(z y^{m} z^{-1}\right)\right|_{\mathbf{Q}\left(\mu_{l_{0}}\right)}=z\left|\mathbf{Q}\left(\mu_{l_{0}}\right) z^{-1}\right|_{\mathbf{Q}\left(\mu_{l_{0}}\right)}=1$. Hence we obtain $g \in \operatorname{Gal}(L / N) \cap \operatorname{Gal}\left(L / \mathbf{Q}\left(\mu_{l_{0}}\right)\right)=\operatorname{Gal}\left(L / N\left(\mu_{l_{0}}\right)\right)$. It follows from the facts ord $g=$ ord $\left(z y z^{-1}\right)^{m}=$ ord y^{m} and (ord $\left.y, l_{0}\right)=1$ that $\left(\right.$ ord $\left.g, l_{0}\right)=1$, which implies $g=1$ since $\operatorname{Gal}\left(L / N\left(\mu_{l_{0}}\right)\right)$ is an l_{0}-group. Hence we find that q satisfies (c). Thus we conclude that q satisfies conditions (a), (b) and (c).

Let p be any prime number which is unramified in N / \mathbf{Q}. By the above discussion, there exist infinitely many prime numbers q such that (a) $q \equiv 1\left(\bmod l_{0}\right)$, ($\left.\mathrm{b}^{\prime}\right) q$ is unramified in L and $C_{N / \mathbf{Q}}(q)=C_{N / \mathbf{Q}}(p)$, and (c) $\langle x\rangle \cap \operatorname{Gal}(L / N)=\{1\}$ for all $x \in C_{L / \mathbf{Q}}(q)$. Furthermore, by our assumption, we may assume that the prime number q satisfies condition (iv) of statement (2), that is, $X_{K,\{q\}} / l_{0} \simeq X_{K^{\prime},\{q\}} / l_{0}$. Condition (c) implies that all the prime ideals of N lying over q are completely decomposed in L / N. Hence, for any prime \mathfrak{q}_{K} of K lying over q and a prime \mathfrak{q}_{N} of N lying over \mathfrak{q}_{K}, we obtain the inclusion and the isomorphism

$$
\left(\mathcal{O}_{K} / \mathfrak{q}_{K}\right)^{\times} \hookrightarrow\left(\mathcal{O}_{N} / \mathfrak{q}_{N}\right)^{\times} \simeq\left(\mathcal{O}_{L} / \mathfrak{Q}\right)^{\times}
$$

for a prime \mathfrak{Q} of L lying over \mathfrak{q}_{N}. We see that $l_{0} \nmid\left[\mathcal{O}_{N} / \mathfrak{q}_{N}: \mathcal{O}_{K} / \mathfrak{q}_{K}\right]$ from our assumption on l_{0}. Since $\left(\varepsilon \bmod \mathfrak{q}_{K}\right) \in\left(\mathcal{O}_{K} / \mathfrak{q}_{K}\right)^{\times}$maps to $\left((\sqrt[l_{0}]{\varepsilon})^{l_{0}} \bmod \mathfrak{Q}\right) \in\left(\left(\mathcal{O}_{L} / \mathfrak{Q}\right)^{\times}\right)^{l_{0}}$ for any $\varepsilon \in \mathcal{O}_{K}^{\times}$, it follows from Lemma 2 that $\left(\varepsilon \bmod \mathfrak{q}_{K}\right) \in\left(\left(\mathcal{O}_{K} / \mathfrak{q}_{K}\right)^{\times}\right)^{l_{0}}$ for any $\varepsilon \in \mathcal{O}_{K}^{\times}$, which implies $\pi_{K, q}\left(\mathcal{O}_{K}^{\times}\right)=0$, where $\pi_{K, q}$ is the map defined in (3). Therefore we derive from
condition (a), (3) and (4) that

$$
X_{K,\{q\}} / l_{0} \simeq(\mathbf{Z} / l \mathbf{Z})^{\oplus g_{q}}
$$

where g_{q} is the number of primes of K lying over q. Similarly, we also have

$$
X_{K^{\prime},\{q\}} / l_{0} \simeq(\mathbf{Z} / l \mathbf{Z})^{\oplus g_{q}^{\prime}}
$$

where g_{q}^{\prime} is a number of primes of K^{\prime} lying over q. Therefore we see by using our assumption $X_{K,\{q\}} / l_{0} \simeq X_{K^{\prime},\{q\}} / l_{0}$ that $g_{q}=g_{q}^{\prime}$. On the other hand, it follows from property (b^{\prime}) of the prime q and Lemma 1 that $g_{p}=g_{q}$ and $g_{p}^{\prime}=g_{q}^{\prime}$. Thus we have shown that $g_{p}=g_{p}^{\prime}$ for any prime number p which is unramified in N / \mathbf{Q}. Therefore, by using Lemma $5((2) \Longrightarrow(1))$, we conclude $K \approx K^{\prime}$.

Next, we will derive statement (3) of the theorem assuming statement (1) holds.
Let l be any prime number which satisfies $l \nmid[N: \mathbf{Q}]$. Since $l \nmid[N: K]$ and $M_{K, S}(l) / K$ is a pro-l-extension, we see $N \cap M_{K, S}(l)=K$. Put $F=N M_{K, S}(l)$ and $H=\operatorname{Gal}(N / K)$. We will show that $\operatorname{Gal}(F / N) \simeq\left(X_{N, S}(l)\right)_{H}$, where we regard $X_{N, S}(l)$ as a $\operatorname{Gal}(N / \mathbf{Q})$ module via inner automorphism of $\operatorname{Gal}\left(M_{N, S}(l) / \mathbf{Q}\right)$ induced by an extension of each element of $\operatorname{Gal}(N / \mathbf{Q})$ to $\operatorname{Gal}\left(M_{N, S}(l) / \mathbf{Q}\right)$.

Let F^{\prime} be the intermediate field of $M_{N, S}(l) / N$ which satisfies $\operatorname{Gal}\left(F^{\prime} / N\right) \simeq\left(X_{N, S}(l)\right)_{H}$. It follows from Lemma 6 together with the fact that H acts trivially on $\operatorname{Gal}\left(F^{\prime} / N\right)$ that $\operatorname{Gal}\left(F^{\prime} / K\right)$ admits a direct product decomposition

$$
\operatorname{Gal}\left(F^{\prime} / K\right)=\operatorname{Gal}\left(F^{\prime} / N\right) \times \operatorname{Gal}\left(F^{\prime} / E\right)
$$

for some sub-Galois-extension E / K of F^{\prime} / K with $\operatorname{Gal}\left(F^{\prime} / E\right) \simeq H$ and $\operatorname{Gal}(E / K) \simeq$ $\operatorname{Gal}\left(F^{\prime} / N\right)$. Since $\operatorname{Gal}(E / K)$ is a pro- l abelian group and the order of $\operatorname{Gal}\left(F^{\prime} / E\right)$ is prime to l, we see that $E \subseteq M_{K, S}(l)$. Hence $F^{\prime}=N E \subseteq N M_{K, S}(l)=F$. Conversely, because $F \subseteq M_{N, S}(l)$ and the action of H on $\operatorname{Gal}(F / N)$ is trivial, we find that $F \subseteq F^{\prime}$. Thus we have shown $F=F^{\prime}$. Therefore we have

$$
\left(X_{N, S}(l)\right)_{H} \simeq \operatorname{Gal}(F / N) \simeq X_{K, S}(l)
$$

since $N \cap M_{K, S}(l)=K$. Similarly, we obtain

$$
\left(X_{N, S}(l)\right)_{H^{\prime}} \simeq X_{K^{\prime}, S}(l)
$$

for $H^{\prime}=\operatorname{Gal}\left(N / K^{\prime}\right)$. Then it follows from Lemma $5((1) \Longrightarrow(3))$ and Lemma 3 that

$$
X_{K, S}(l) \simeq\left(X_{N, S}(l)\right)_{H} \simeq\left(X_{N, S}(l)\right)_{H^{\prime}} \simeq X_{K^{\prime}, S}(l)
$$

Thus we have shown that statement (3) holds.
Finally, it is obvious that statement (3) implies statement (2). This completes the proof of Theorem 1.

References

[1] N. Adachi and K. Komatsu, The maximal p-extensions and zeta-functions of algebraic number fields, Mem. School Sci. Engrg. Waseda Univ. No. 51 (1987), 25-31.
[2] C. W. Curtis and I. Reiner, Methods of representation theory Vol. I, John Wiley \& Sons, Inc., New York (1990).
[3] N. Klingen, Arithmetical Similarities, Clarendon Press, Oxford (1998).
[4] L. Ribes and P. Zalesskir, Profinite Groups, A series of Modern surveys in Mathematics, vol. 40, Springer (1991).

Present Addresses:
Mitsul Tohkailin
Department of Mathematics,
Faculty of Science and Technology,
Kinki University,
3-4-1, Kowakae, Higashi-OsaKa, 577-8502 Japan.
e-mail: tohkailin@math.kindai.ac.jp
Manabu Ozaki
Department of Mathematics,
School of Fundamental Science and Engineering, WASEDA UniVERSITY,
3-4-1, Ohkubo, Shinjuku-ku, Tokyo, 169-8555 Japan.
e-mail: ozaki@waseda.jp

[^0]: Received April 24, 2012; revised September 26, 2012
 Mathematics Subject Classification: 11R42
 Key words and phrases: arithmetical equivalence
 This research was partially supported by JSPS, the Grant-in-Aid for Scientific Research (C) 21540030, and Waseda University, Grant for Special Research Projects 2012A-030.

