Токуо J. Матн. Vol. 36, No. 2, 2013

Characterization of Arithmetical Equivalence of Number Fields by Galois Groups with Restricted Ramification

Mitsul TOHKAILIN and Manabu OZAKI

Kinki University and Waseda University

Abstract. We will give a characterization of arithmetical equivalence of number fields in terms of certain associated families of Galois groups with restricted ramification.

1. Introduction

The Dedekind zeta function $\zeta_K(s)$ is one of the most fundamental objects associated to a number field *K*. We believe that $\zeta_K(s)$ knows almost all the arithmetic properties of *K*. However, $\zeta_K(s)$ cannot identify completely the isomorphism class of the number field *K* in general; For number fields *K* and *K'*, we say that *K* and *K'* are *arithmetically equivalent*, denoting by $K \approx K'$, if and only if the equality $\zeta_K(s) = \zeta_{K'}(s)$ holds. Obviously, if $K \simeq K'$ then $K \approx K'$, but the converse does not hold in general. For example, $K = \mathbf{Q}(\sqrt[8]{3})$ and $K' = \mathbf{Q}(\sqrt[8]{48})$ are arithmetically equivalent, but $K \simeq K'$ (See [2], P. 86, (1, 9)).

Therefore it is a basic problem to determine when two number fields K and K' are arithmetically equivalent. The aim of the present paper is to give a characterization of arithmetical equivalence of number fields in terms of certain associated Galois groups with restricted ramification. Such an attempt was first made by N. Adachi and K. Komatsu in [1]: For any number field F and prime number p, let $F_{\infty}(p)$ be the cyclotomic \mathbb{Z}_p -extension of $F(\zeta_p + \zeta_p^{-1}), \zeta_p$ being a primitive p-th root of unity, and denote by $X_{F_{\infty}(p), \{p\}}(p)$ the Galois group of the maximal abelian pro-p-extension over $F_{\infty}(p)$ unramified outside p. $X_{F_{\infty}(p), \{p\}}(p)$ has a natural $A_p := \mathbb{Z}_p[[\operatorname{Gal}(\mathbb{Q}_{\infty}(p)/\mathbb{Q})]]$ -module structure as usual if $F \cap \mathbb{Q}_{\infty}(p) = \mathbb{Q}$, which holds for all but finitely many prime numbers p, via isomorphism $\operatorname{Gal}(F_{\infty}(p)/F) \simeq \operatorname{Gal}(\mathbb{Q}_{\infty}(p)/\mathbb{Q})$ induced by the restriction.

THEOREM (Adachi-Komatsu [1]). Let K and K' be totally real number fields. Then the followings are equivalent:

Received April 24, 2012; revised September 26, 2012

Mathematics Subject Classification: 11R42

Key words and phrases: arithmetical equivalence

This research was partially supported by JSPS, the Grant-in-Aid for Scientific Research (C) 21540030, and Waseda University, Grant for Special Research Projects 2012A-030.

MITSUL TOHKAILIN AND MANABU OZAKI

- (1) $K \approx K'$,
- (2) $X_{K_{\infty}(p),\{p\}}(p) \simeq X_{K'_{\infty}(p),\{p\}}(p)$ as Λ_p -modules for all but finitely many prime numbers p.

It is not clear whether we can omit the assumption "totally real" in the above theorem, because the proof of "(2) \implies (1)" largely relies on the Iwasawa main conjecture for totally real number fields, which was established by A. Wiles.

Our main result gives a characterization of arithmetical equivalence of any number fields in terms of a family of rather "small" Galois groups with restricted ramification, which are finite abelian groups.

2. Main theorem

In what follows, we will fix an algebraic closure of \mathbf{Q} and regard any number fields and their algebraic extensions as subfields of it. For any set *S* of prime numbers and number field *F*, we denote by $M_{F,S}$ the maximal abelian extension over *F* unramified outside *S*, and let $X_{F,S} := \text{Gal}(M_{F,S}/F)$.

Our main result is the following:

THEOREM 1. For number fields K and K' of finite degree, the following three statements are equivalent:

- (1) $K \approx K'$,
- (2) There exists a prime number l_0 such that
- (i) $l_0 \nmid [N : \mathbf{Q}]$ for the minimal Galois extension N/\mathbf{Q} containing K and K',
- (ii) l_0 does not divide the class numbers of K and K',
- (iii) l_0 is unramified in K/\mathbf{Q} and K'/\mathbf{Q} ,
- (iv) $X_{K,\{p\}}/l_0 \simeq X_{K',\{p\}}/l_0$ for all but finitely many prime numbers p.
- (3) Let N/\mathbf{Q} be the minimal Galois extension containing both of K and K'. Then for any set S of prime numbers and prime number l satisfying $l \nmid [N : \mathbf{Q}]$, we have $X_{K,S}(l) \simeq X_{K',S}(l)$, where $X_{K,S}(l)$ and $X_{K',S}(l)$ denote the l-parts of $X_{K,S}$ and $X_{K',S}$, respectively.

3. Preliminary lemmas

In this section, we will give a collection of preliminary lemmas to prove Theorem 1. The following lemma is well known:

LEMMA 1. Let L/K be a finite extension of number fields and N/K a Galois extension containing L. Put G = Gal(N/K), H = Gal(N/L). For any prime ideal \mathfrak{p} of K, we denote by $P_{\mathfrak{p}}$ the set of the prime ideals of L lying above \mathfrak{p} . Also, let \mathfrak{P} be a prime ideal of N lying above \mathfrak{p} and $G_{\mathfrak{P}}$ the decomposition subgroup group of G for \mathfrak{P} . Then the map

$$\begin{array}{cccc} H \setminus G/G_{\mathfrak{P}} & \longrightarrow & P_{\mathfrak{p}} \\ H \sigma G_{\mathfrak{P}} & \longmapsto & \sigma \mathfrak{P} \cap L \end{array}$$

is a bijection. In the case where \mathfrak{p} is unramified in N/K, we find especially the number of the prime ideals of L lying over \mathfrak{p} depends only on the Frobenius class of \mathfrak{p} in G, namely, the conjugacy class of the Frobenius automorphism $\left\lceil \frac{N/K}{\mathfrak{P}} \right\rceil$ for \mathfrak{P} .

LEMMA 2. For a prime power r, we denote by \mathbf{F}_r the finite field of order r. If a prime number l and a positive integer d satisfy $l \nmid d$ and $l \mid r - 1$, then we have

$$(\mathbf{F}_{r^d}^{\times})^l \cap \mathbf{F}_r^{\times} = (\mathbf{F}_r^{\times})^l.$$

PROOF. Because the inclusion $(\mathbf{F}_{rd}^{\times})^l \cap \mathbf{F}_r^{\times} \supseteq (\mathbf{F}_r^{\times})^l$ clearly holds, it is enough to show that the converse inclusion $(\mathbf{F}_{rd}^{\times})^l \cap \mathbf{F}_r^{\times} \subseteq (\mathbf{F}_r^{\times})^l$ holds. Assume that $x \in \mathbf{F}_{rd}^{\times}$ and $x^l \in \mathbf{F}_r^{\times}$. Then we have $(x^{r-1})^l = x^{l(r-1)} = 1$. Suppose that the order $\operatorname{ord}(x^{r-1})$ of $x^{r-1} \in \mathbf{F}_{rd}^{\times}$ is equal to l. Then it follows from $x^{(r-1) \cdot \frac{r^d-1}{r-1}} = x^{r^d-1} = 1$ that $l \mid \frac{r^d-1}{r-1}$. However, this is impossible by $\frac{r^d-1}{r-1} = r^{d-1} + r^{d-2} + \cdots + r + 1 \equiv d \neq 0 \pmod{l}$. Therefore we conclude that $x^{r-1} = 1$, which implies $x \in \mathbf{F}_r$.

LEMMA 3. Let G be a finite group and p a prime number with $p \nmid \#G$. Assume that two subgroups $H_1, H_2 \subseteq G$ satisfy

$$\mathbf{Q}_p[G] \underset{\mathbf{Q}_p[H_1]}{\otimes} \mathbf{Q}_p \simeq \mathbf{Q}_p[G] \underset{\mathbf{Q}_p[H_2]}{\otimes} \mathbf{Q}_p \text{ (as } \mathbf{Q}_p[G]\text{-modules) }.$$

Here we regard $\mathbf{Q}_p[G]$ as a two-sided $\mathbf{Q}_p[G]$ -module via the ring structure of it, and the action of G on $\mathbf{Q}_p[G] \underset{\mathbf{Q}_p[H_i]}{\otimes} \mathbf{Q}_p$ is defined by $\sigma(a \otimes b) = \sigma a \otimes b$ ($a \in \mathbf{Q}_p[G]$, $b \in \mathbf{Q}_p$, $\sigma \in G$). Then for any $\mathbf{Z}_p[G]$ -module M, we have

 $M_{H_1} \simeq M_{H_2}$ (as \mathbb{Z}_p -modules),

where $M_{H_i} = M / \sum_{\sigma \in H_i} (\sigma - 1)M$ is the H_i -coinvariant of M.

PROOF. We recall the following lemma from the theory of integral representations of finite groups to prove Lemma 3:

LEMMA 4 ([2, p.626, (30, 16)]). Let G be a finite group and p a prime number with $p \nmid \#G$. For any finitely generated $\mathbb{Z}_p[G]$ -modules A and B without non-trivial \mathbb{Z}_p -torsions, $A \bigotimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq B \bigotimes_{\mathbb{Z}_p} \mathbb{Q}_p$ as $\mathbb{Q}_p[G]$ -modules implies $A \simeq B$ as $\mathbb{Z}_p[G]$ -modules.

It follows from

$$(\mathbf{Z}_p[G] \underset{\mathbf{Z}_p[H_i]}{\otimes} \mathbf{Z}_p) \underset{\mathbf{Z}_p}{\otimes} \mathbf{Q}_p \simeq \mathbf{Q}_p[G] \underset{\mathbf{Q}_p[H_i]}{\otimes} \mathbf{Q}_p \text{ (as } \mathbf{Q}_p[G]\text{-modules) } (i = 1, 2),$$

and our assumption

$$\mathbf{Q}_p[G] \bigotimes_{\mathbf{Q}_p[H_1]} \mathbf{Q}_p \simeq \mathbf{Q}_p[G] \bigotimes_{\mathbf{Q}_p[H_2]} \mathbf{Q}_p \text{ (as } \mathbf{Q}_p[G]\text{-modules)}$$

MITSUL TOHKAILIN AND MANABU OZAKI

that

$$\mathbf{Z}_p[G] \underset{\mathbf{Z}_p[H_1]}{\otimes} \mathbf{Z}_p \simeq \mathbf{Z}_p[G] \underset{\mathbf{Z}_p[H_2]}{\otimes} \mathbf{Z}_p \text{ (as } \mathbf{Z}_p[G]\text{-modules)}$$

by using Lemma 4. Hence we obtain

$$M \underset{\mathbf{Z}_{p}[G]}{\otimes} (\mathbf{Z}_{p}[G] \underset{\mathbf{Z}_{p}[H_{1}]}{\otimes} \mathbf{Z}_{p}) \simeq M \underset{\mathbf{Z}_{p}[G]}{\otimes} (\mathbf{Z}_{p}[G] \underset{\mathbf{Z}_{p}[H_{2}]}{\otimes} \mathbf{Z}_{p})$$
(1)

as \mathbb{Z}_p -modules, where we define the right action of $\sigma \in G$ on $m \in M$ by $m\sigma := \sigma^{-1}m$ to give a right $\mathbb{Z}_p[G]$ -module structure to M.

On the other hand, by the associative law of tensor product, we have

$$M \underset{\mathbf{Z}_p[G]}{\otimes} (\mathbf{Z}_p[G] \underset{\mathbf{Z}_p[H_i]}{\otimes} \mathbf{Z}_p) \simeq (M \underset{\mathbf{Z}_p[G]}{\otimes} \mathbf{Z}_p[G]) \underset{\mathbf{Z}_p[H_i]}{\otimes} \mathbf{Z}_p \simeq M \underset{\mathbf{Z}_p[H_i]}{\otimes} \mathbf{Z}_p \simeq M_{H_i}$$

as \mathbb{Z}_p -modules for i = 1, 2, where we regard $M \bigotimes_{\mathbb{Z}_p[G]} \mathbb{Z}_p[G]$ as a right H_i -module via $(m \otimes \alpha)h := m \otimes \alpha h$ for $m \in M, \alpha \in \mathbb{Z}_p[G], h \in H_i$. Therefore it follows from (1) that $M_{H_1} \simeq M_{H_2}$ as \mathbb{Z}_p -modules.

The following is the key to derive the equivalence of the three statements in Theorem 1:

LEMMA 5 [3, P. 77, (1.3)]. Let K and K' be any number fields. Then the following three statements are equivalent:

- (1) $K \approx K'$
- (2) For a prime number p, let g_p and g'_p be the numbers of the prime divisors of K and K' lying over p, respectively. Then $g_p = g'_p$ for all but finitely many prime numbers p.
- (3) For any Galois extension N/\mathbf{Q} containing K and K', put $G = \operatorname{Gal}(N/\mathbf{Q})$, $H = \operatorname{Gal}(N/K)$, $H' = \operatorname{Gal}(N/K')$. Then $\mathbf{Q}[G] \underset{\mathbf{Q}[H]}{\otimes} \mathbf{Q} \simeq \mathbf{Q}[G] \underset{\mathbf{Q}[H']}{\otimes} \mathbf{Q}$ as $\mathbf{Q}[G]$ -modules.

LEMMA 6 ([4, p.41, Thm. 2.3.15]). Let G be a pro-finite group and $N \subseteq G$ a pro-p normal subgroup. Assume that the quotient group Q = G/N has no non-trivial pro-psubgroups. Then the natural exact sequence

$$1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$$

splits.

4. Proof of Theorem 1

PROOF. First, we will derive statement (1) from statement (2).

Assume that the prime number l_0 satisfies the condition given in statement (2) of the theorem. For a prime number q and $n \ge 0$, we write K_{q^n} for the ray class field of modulo

 $q^n \mathcal{O}_K$ over K, \mathcal{O}_K being the integer ring of K. Then $M_{K,\{q\}} = \bigcup_{n=1}^{\infty} K_{q^n}$, and $X_{K,\{q\}} = \lim_{k \to \infty} \operatorname{Gal}(K_{q^n}/K)$. We denote by $I_{K,q}$ the group of the fractional ideals of K which are prime to q, and we write $P_{K,q}$ for the group of the principal ideals contained in $I_{K,q}$. Also, we put $S_{K,q^n} = \{\alpha \mathcal{O}_K | \alpha \in K^{\times}, \alpha \equiv 1 \pmod{q^n}\}.$

If we assume $q \neq l_0$, then, by using class field theory, we have

$$X_{K,\{q\}}/l_0 \simeq \text{Gal}(K_q/K)/l_0 \simeq (I_{K,q}/S_{K,q})/l_0 \simeq (P_{K,q}/S_{K,q})/l_0$$
(2)

351

because $\operatorname{Gal}(K_{q^n}/K_q)$ is a q-group $(q \neq l_0)$ and the l_0 -part of the class group of K, which is isomorphic to that of $I_{K,q}/P_{K,q}$, is trivial from our assumption. Thus we derive from the exact sequence

$$\mathcal{O}_K^{\times} \longrightarrow (\mathcal{O}_K/q)^{\times} \longrightarrow P_{K,q}/S_{K,q} \longrightarrow 0$$

and (2) the exact sequence

$$\mathcal{O}_K^{\times} \xrightarrow{\pi_{K,q}} (\mathcal{O}_K/q)^{\times}/l_0 \longrightarrow X_{K,\{q\}}/l_0 \longrightarrow 0.$$
(3)

Assume that the prime q is unramified in K/\mathbf{Q} and let $q\mathcal{O}_K = \mathfrak{q}_1 \cdots \mathfrak{q}_{g_q}$ be the prime decomposition in K. Then it follows from the Chinese Remainder Theorem that

$$(\mathcal{O}_K/q)^{\times}/l_0 \simeq \bigoplus_{i=1}^{g_q} (\mathcal{O}_K/\mathfrak{q}_i)^{\times}/l_0$$

If we further assume that $q \equiv 1 \pmod{l_0}$, then

$$(\mathcal{O}_K/q)^{\times}/l_0 \simeq \bigoplus_{i=1}^{g_q} (\mathcal{O}_K/\mathfrak{q}_i)^{\times}/l_0 \simeq (\mathbf{Z}/l_0)^{\oplus g_q} \,. \tag{4}$$

Recall that N/\mathbf{Q} denotes the minimal Galois extension containing K and K'. Put $L = N(\mu_{l_0}, \{ \sqrt[l]{\varphi} | \varepsilon \in \mathcal{O}_N^{\times} \}), G_N = \operatorname{Gal}(N/\mathbf{Q}), G_{N(\mu_{l_0})} = \operatorname{Gal}(N(\mu_{l_0})/\mathbf{Q}), \text{ and } G_L = \operatorname{Gal}(L/\mathbf{Q}), \text{ where } \mu_{l_0} \text{ stands for the group of the } l_0\text{-th roots of unity. We note that } [L : N(\mu_{l_0})] = l_0^e \text{ for some } e \ge 0, \text{ and that } [N(\mu_{l_0}) : \mathbf{Q}] \text{ is prime to } l_0 \text{ from our assumption. For any Galois extension } F/\mathbf{Q} \text{ and prime number } q \text{ which is unramified in } F, \text{ we set } C_{F/\mathbf{Q}}(q) = \left\{ \left[\frac{F/\mathbf{Q}}{q} \right] | q | q \text{ is a prime of } F \right\}, \text{ and for any group } G \text{ and } \sigma \in G, \text{ put } C(G, \sigma) = \{ g\sigma g^{-1} | g \in G \}.$

In what follows, we will show that for any $\sigma \in G_N$ there exist infinitely many prime numbers q satisfying the following three conditions:

- (a) $q \equiv 1 \pmod{l_0}$,
- (b) the prime q is unramified in L and $C_{N/\mathbb{Q}}(q) = C(G_N, \sigma)$,
- (c) $\langle x \rangle \cap \text{Gal}(L/N) = \{1\} \text{ for all } x \in C_{L/\mathbb{Q}}(q).$

Since l_0 is unramified in N/\mathbf{Q} from our assumption on l_0 , we have $N \cap \mathbf{Q}(\mu_{l_0}) = \mathbf{Q}$ and the isomorphism

$$\begin{array}{rcl} G_{N(\mu_{l_0})} &\simeq & G_N \times \operatorname{Gal}(\mathbf{Q}(\mu_{l_0})/\mathbf{Q}) \\ x &\mapsto & \left(x \mid_N, x \mid_{\mathbf{Q}(\mu_{l_0})}\right) \end{array}$$

We will identify $G_{N(\mu_{l_0})}$ with $G_N \times \text{Gal}(\mathbf{Q}(\mu_{l_0})/\mathbf{Q})$ via the above isomorphism. Let $\bar{\sigma} \in G_L$ be an automorphism such that $\bar{\sigma} \mid_{N(\mu_{l_0})} = (\sigma, 1)$. Because $l_0 \nmid \#G_N$ by our assumption on l_0 , there exists a positive integer d such that $d \equiv 1 \pmod{\#G_N}$ and $d \equiv 0 \pmod{l_0^e}$. Put $y = \bar{\sigma}^d \in G_L$. Then we see that $y|_{N(\mu_{l_0})} = (\sigma^d, 1^d) = (\sigma, 1) = \bar{\sigma}|_{N(\mu_{l_0})}$ and $(\text{ord } y, l_0) =$ 1 since $l_0^e \parallel \#G_L$. By the Chebotarev density theorem, there exist infinitely many prime numbers q such that q is unramified in L and $C_{L/\mathbf{Q}}(q) = C(G_L, y)$. We will show that this prime number q satisfies conditions (a), (b), and (c).

For any subset C of G_L , we put $C|_N = \{g|_N \in G_N | g \in C\}$. Then we have $C_{N/\mathbb{Q}}(q) = C(G_L, y)|_N = C(G_N, y|_N) = C(G_N, \sigma)$, which implies that q satisfies (b). Since $C_{\mathbb{Q}(\mu_{l_0})/\mathbb{Q}}(q) = C_{L/\mathbb{Q}}(q)|_{\mathbb{Q}(\mu_{l_0})} = C(G_L, y)|_{\mathbb{Q}(\mu_{l_0})} = 1$, we see that $\left(\frac{\mathbb{Q}(\mu_{l_0})/\mathbb{Q}}{q}\right) = 1$, which implies that q satisfies (a). Finally, let $x \in C_{L/\mathbb{Q}}(q)$ and $g \in \langle x \rangle \cap \text{Gal}(L/N)$ be any element. Since $x \in C_{L/\mathbb{Q}}(q) = C(G_L, y)$, we find that $x = zyz^{-1}$ for some $z \in G_L$. Then we obtain $g = (zyz^{-1})^m$ for some $m \in \mathbb{Z}$. Because $y|_{\mathbb{Q}(\mu_{l_0})} = 1$, we have $g|_{\mathbb{Q}(\mu_{l_0})} = (zy^m z^{-1})|_{\mathbb{Q}(\mu_{l_0})} = z|_{\mathbb{Q}(\mu_{l_0})} z^{-1}|_{\mathbb{Q}(\mu_{l_0})} = 1$. Hence we obtain $g \in \text{Gal}(L/N) \cap \text{Gal}(L/\mathbb{Q}(\mu_{l_0})) = \text{Gal}(L/N(\mu_{l_0}))$. It follows from the facts ord g =ord $(zyz^{-1})^m =$ ord y^m and (ord $y, l_0) = 1$ that (ord $g, l_0) = 1$, which implies g = 1 since $\text{Gal}(L/N(\mu_{l_0}))$ is an l_0 -group. Hence we find that q satisfies (c). Thus we conclude that q satisfies conditions (a), (b) and (c).

Let *p* be any prime number which is unramified in N/\mathbf{Q} . By the above discussion, there exist infinitely many prime numbers *q* such that (a) $q \equiv 1 \pmod{l_0}$, (b') *q* is unramified in *L* and $C_{N/\mathbf{Q}}(q) = C_{N/\mathbf{Q}}(p)$, and (c) $\langle x \rangle \cap \text{Gal}(L/N) = \{1\}$ for all $x \in C_{L/\mathbf{Q}}(q)$. Furthermore, by our assumption, we may assume that the prime number *q* satisfies condition (iv) of statement (2), that is, $X_{K,\{q\}}/l_0 \simeq X_{K',\{q\}}/l_0$. Condition (c) implies that all the prime ideals of *N* lying over *q* are completely decomposed in L/N. Hence, for any prime \mathfrak{q}_K of *K* lying over *q* and a prime \mathfrak{q}_N of *N* lying over \mathfrak{q}_K , we obtain the inclusion and the isomorphism

$$(\mathcal{O}_K/\mathfrak{q}_K)^{\times} \hookrightarrow (\mathcal{O}_N/\mathfrak{q}_N)^{\times} \simeq (\mathcal{O}_L/\mathfrak{Q})^{\times}$$

for a prime \mathfrak{Q} of *L* lying over \mathfrak{q}_N . We see that $l_0 \nmid [\mathcal{O}_N/\mathfrak{q}_N : \mathcal{O}_K/\mathfrak{q}_K]$ from our assumption on l_0 . Since $(\varepsilon \mod \mathfrak{q}_K) \in (\mathcal{O}_K/\mathfrak{q}_K)^{\times}$ maps to $((\sqrt[l]{\psi}\varepsilon)^{l_0} \mod \mathfrak{Q}) \in ((\mathcal{O}_L/\mathfrak{Q})^{\times})^{l_0}$ for any $\varepsilon \in \mathcal{O}_K^{\times}$, it follows from Lemma 2 that $(\varepsilon \mod \mathfrak{q}_K) \in ((\mathcal{O}_K/\mathfrak{q}_K)^{\times})^{l_0}$ for any $\varepsilon \in \mathcal{O}_K^{\times}$, which implies $\pi_{K,q}(\mathcal{O}_K^{\times}) = 0$, where $\pi_{K,q}$ is the map defined in (3). Therefore we derive from

condition (a), (3) and (4) that

$$X_{K,\{q\}}/l_0 \simeq (\mathbf{Z}/l\mathbf{Z})^{\oplus g_q}$$
,

where g_q is the number of primes of K lying over q. Similarly, we also have

$$X_{K',\{q\}}/l_0 \simeq (\mathbf{Z}/l\mathbf{Z})^{\oplus g'_q}$$
,

where g'_q is a number of primes of K' lying over q. Therefore we see by using our assumption $X_{K,\{q\}}/l_0 \simeq X_{K',\{q\}}/l_0$ that $g_q = g'_q$. On the other hand, it follows from property (b') of the prime q and Lemma 1 that $g_p = g_q$ and $g'_p = g'_q$. Thus we have shown that $g_p = g'_p$ for any prime number p which is unramified in N/\mathbf{Q} . Therefore, by using Lemma 5 ((2) \Longrightarrow (1)), we conclude $K \approx K'$.

Next, we will derive statement (3) of the theorem assuming statement (1) holds.

Let *l* be any prime number which satisfies $l \nmid [N : \mathbf{Q}]$. Since $l \nmid [N : K]$ and $M_{K,S}(l)/K$ is a pro-*l*-extension, we see $N \cap M_{K,S}(l) = K$. Put $F = NM_{K,S}(l)$ and H = Gal(N/K). We will show that $\text{Gal}(F/N) \simeq (X_{N,S}(l))_H$, where we regard $X_{N,S}(l)$ as a $\text{Gal}(N/\mathbf{Q})$ module via inner automorphism of $\text{Gal}(M_{N,S}(l)/\mathbf{Q})$ induced by an extension of each element of $\text{Gal}(N/\mathbf{Q})$ to $\text{Gal}(M_{N,S}(l)/\mathbf{Q})$.

Let F' be the intermediate field of $M_{N,S}(l)/N$ which satisfies $\operatorname{Gal}(F'/N) \simeq (X_{N,S}(l))_H$. It follows from Lemma 6 together with the fact that H acts trivially on $\operatorname{Gal}(F'/N)$ that $\operatorname{Gal}(F'/K)$ admits a direct product decomposition

$$\operatorname{Gal}(F'/K) = \operatorname{Gal}(F'/N) \times \operatorname{Gal}(F'/E)$$

for some sub-Galois-extension E/K of F'/K with $\operatorname{Gal}(F'/E) \simeq H$ and $\operatorname{Gal}(E/K) \simeq$ $\operatorname{Gal}(F'/N)$. Since $\operatorname{Gal}(E/K)$ is a pro-*l* abelian group and the order of $\operatorname{Gal}(F'/E)$ is prime to *l*, we see that $E \subseteq M_{K,S}(l)$. Hence $F' = NE \subseteq NM_{K,S}(l) = F$. Conversely, because $F \subseteq M_{N,S}(l)$ and the action of *H* on $\operatorname{Gal}(F/N)$ is trivial, we find that $F \subseteq F'$. Thus we have shown F = F'. Therefore we have

$$(X_{N,S}(l))_H \simeq \operatorname{Gal}(F/N) \simeq X_{K,S}(l)$$
,

since $N \cap M_{K,S}(l) = K$. Similarly, we obtain

$$(X_{N,S}(l))_{H'} \simeq X_{K',S}(l)$$

for H' = Gal(N/K'). Then it follows from Lemma 5 ((1) \Longrightarrow (3)) and Lemma 3 that

$$X_{K,S}(l) \simeq (X_{N,S}(l))_H \simeq (X_{N,S}(l))_{H'} \simeq X_{K',S}(l) \,.$$

Thus we have shown that statement (3) holds.

Finally, it is obvious that statement (3) implies statement (2). This completes the proof of Theorem 1. $\hfill \Box$

MITSUL TOHKAILIN AND MANABU OZAKI

References

- N. ADACHI and K. KOMATSU, The maximal *p*-extensions and zeta-functions of algebraic number fields, Mem. School Sci. Engrg. Waseda Univ. No. **51** (1987), 25–31.
- [2] C. W. CURTIS and I. REINER, *Methods of representation theory Vol. I*, John Wiley & Sons, Inc., New York (1990).
- [3] N. KLINGEN, Arithmetical Similarities, Clarendon Press, Oxford (1998).
- [4] L. RIBES and P. ZALESSKII, Profinite Groups, A series of Modern surveys in Mathematics, vol. 40, Springer (1991).

Present Addresses: MITSUL TOHKAILIN DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KINKI UNIVERSITY, 3–4–1, KOWAKAE, HIGASHI-OSAKA, 577–8502 JAPAN. *e-mail*: tohkailin@math.kindai.ac.jp

MANABU OZAKI DEPARTMENT OF MATHEMATICS, SCHOOL OF FUNDAMENTAL SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, 3–4–1, OHKUBO, SHINJUKU-KU, TOKYO, 169–8555 JAPAN. *e-mail*: ozaki@waseda.jp