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Abstract. Let S be a Riemann surface containing at least two punctures z and z0. Let F (S) be the set of
pseudo-Anosov maps of S that are isotopic to the identity on S ∪ {z}. We show that for any f ∈ F (S) and any
twice punctured disk Δ enclosing z and z0, the pair (∂Δ, f (∂Δ)) fills S, where ∂Δ denotes the boundary of Δ. Fix

such a Δ, and denote by T (Δ) the set of twice punctured disks Δ′ on S enclosing z and z0 with the property that

(∂Δ, ∂Δ′) fills S. Let Δ0 ∈ T (Δ). We describe all possible pseudo-Anosov maps f in F (S) sending Δ to Δ0, and
classify elements of F (S) in terms of T (Δ). We also show that there are infinitely many elements fk ∈ F (S) with
fk(Δ) = Δ0 such that their dilatations λ(fk) → +∞ as k → +∞.

1. Introduction and statement of results

Let S be an analytically finite Riemann surface of type (p, n) with 3p+n > 3, where p is
the genus and n is the number of punctures of S. For any pseudo-Anosov map f : S → S, and
any simple closed geodesic a ⊂ S (with respect to a hyperbolic metric on S, of course), the set

S = {a, f (a), f 2(a), . . . } fills S in the sense that each closed geodesic on S intersects one
of the elements in S (see [6, 7]), where and below f i(a) denotes the geodesic representative
in the homotopy class of the image curve of a under f i . In [11] Masur–Minsky showed that
(a, f k(a)) fills S for all sufficiently large integers k.

Consider the case where 3p + n > 4 and n ≥ 1. Let z denote a puncture of S. Write

S̃ = S ∪ {z}. Let c ⊂ S be a simple closed geodesic. Then c can also be viewed as a curve

c̃ on S̃. Note that c̃ could be trivial, that is, c̃ could be homotopic to a puncture of S̃. If
this occurs, then c bounds a (topological) twice punctured disk on S enclosing z and another
puncture of S. See Fig. 1 (a) and (b) for examples of twice punctured disks. It is clear that no
such geodesic exists when n = 1. If n ≥ 2, there are infinitely many non-trivial geodesics on

S that are trivial on S̃. When c̃ is non-trivial, there is a unique geodesic representative in the
homotopy class of c̃. For simplicity, we call this geodesic representative c̃ also.
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Let F0(S) be the set consisting of mapping classes on S that fix z and are isotopic to the

identity on S̃ as z is filled in. Let F (S) be the subset of F0(S) consisting of pseudo-Anosov
elements. It was shown in [21] that for any f ∈ F (S), and any simple closed geodesic a with

ã being non-trivial on S̃, (a, f k(a)) fills S for all k ≥ 3. In this article, we consider the set
of geodesics that are boundaries of twice punctured disks, which is identified with the set of

geodesics b with b̃ being trivial on S̃.
Throughout the article we assume that S contains at least two punctures z and z0. We

first prove the following result.

THEOREM 1.1. With the above assumptions, let Δ be a twice punctured disk on S that
encloses z and z0. Then for any f ∈ F (S), (∂Δ, ∂f k(Δ)) fills S for all k ≥ 1.

The converse is not true. Let tc denote the positive Dehn twist along a simple closed
geodesic c. We know that there is a geodesic c and thus a Dehn twist tc such that both pairs
(∂Δ, c) and (∂Δ, tc(∂Δ)) fill S (See [16] for constructions). In Section 7, we will acquire

some spin maps tc ◦ t−1
c0

on S such that (∂Δ, tc ◦ t−1
c0

(∂Δ)) fill S. Theorem 1.1 can be extended
to the following corollary.

COROLLARY 1.1. Let α ⊂ S be a simple closed geodesic which bounds a planar

region Dα enclosing z and at least one more puncture of S̃. Then for every f ∈ F (S),
(α, f (α)) fills S.

Let Δ be a fixed twice punctured disk that encloses z and z0. Note that z0 is also a

puncture on S̃. Let T (Δ) be the set of twice punctured disks Δ0 enclosing z and z0 with
geodesic boundaries such that (∂Δ, ∂Δ0) fills S. There are infinitely many elements in T (Δ)

(see [18]).

THEOREM 1.2. Let S be as above. Then for any Δ0 ∈ T (Δ), there is F ∈ F0(S)

such that F(Δ) = Δ0. Furthermore, by suitably choosing ε = 1 or −1, the maps F ◦ tεk∂Δ are
pseudo-Anosov for any k > 0 and send Δ to Δ0.

It should be noted that in Theorem 1.2 we do not assume F is pseudo-Anosov, and only
assume that the image F(∂Δ) along with ∂Δ fills S (if F is pseudo-Anosov, the theorem was
proved in [22]).

For a general pseudo-Anosov map f and a Dehn twist tc for a simple geodesic c, Long–

Morton [12] proved that f ◦ tkc are pseudo-Anosov except for at most N(< ∞) consecutive
integer values of k. Fathi [6] showed that N ≤ 7, and later Boyer et al. [5] showed that
N ≤ 6. During the course of the proof of Theorem 1.2, we describe the condition which

guarantees that F ◦ tk∂Δ are pseudo-Anosov for all k > 0 or k < 0. Of course, our method is
different from those used in [5, 6, 12].

Let D denote the unit disk equipped with the hyperbolic metric 2 |dz| /(1 − |z|2), and let

� : D → S̃ denote the universal covering map with a covering group G which is isomorphic

to the fundamental group π1(S̃, z). It is well known [10] that for each Δ′ ∈ T (Δ), there



PSEUDO-ANOSOV MAPS AND FILLING GEODESICS 291

are parabolic elements T , T ′ ∈ G that correspond to t∂Δ and t∂Δ′ , respectively, under the
Bers isomorphism ϕ (see Section 2 for expositions). Note that Δ and Δ′ enclose the same
punctures z and z0. Hence T is conjugate to T ′ in G, which means that there is an element
h ∈ G that sends the fixed point of T to the fixed point of T ′. Let h∗ be the corresponding
element in F0(S). By combining Theorem 1.2 we can obtain the following corollary.

COROLLARY 1.2. Let Δ,Δ′ be any twice punctured disks enclosing z. Then there is
f ∈ F (S) sending Δ to Δ′ if and only if Δ′ ∈ T (Δ).

It is well known [2, 4] that F0(S) is isomorphic to π1(S̃, z) and that there is a bijection
between F (S) and the set of essential hyperbolic elements of G, where an element g ∈ G is
called an essential hyperbolic if it is hyperbolic and its axis axis(g) projects to a filling closed

geodesic γ̃ in the sense that γ̃ intersects every simple closed geodesic on S̃. Moreover, the set
of conjugacy classes of elements of F (S) in F0(S) is one-to-one correspondent with the set

of oriented primitive filling closed geodesics on S̃.
Two elements f, f ′ ∈ F (S) are said to be Δ-equivalent (denoted by f ∼ f ′) if f =

f ′ ◦ tk∂Δ for an integer k. It is obvious that “∼” is an equivalent relation. Our next result
gives a new characterization of equivalence classes of elements of F (S) by means of twice
punctured disks on S.

THEOREM 1.3. There is a bijection between F (S)/∼ and T (Δ).

In [9], Harvey introduced a complex C(S) of curves on S. A k-th dimensional simplex of
C(S) is a collection of k + 1 disjoint simple closed geodesics on S. In particular, the vertices
C0 of C(S) are collections of simple closed geodesics on S. We define the length of each edge
in C1 is one, and define the distance dC(a, b) between two vertices a, b ∈ C0 to be the least
number of edges in C1 joining a and b. By the definition, we know that dC(a, b) ≥ 3 if and
only if (a, b) fills S. Also, dC(a, b) = 1 if and only if a and b are disjoint. Thus, for any
Δ0,Δ1 ∈ T (Δ), dC(∂Δ0, ∂Δ1) > 1 and Theorem 1.1 says that dC(∂Δ, f (∂Δ)) ≥ 3 for any
f ∈ F (S).

In [23], we considered vertices a1, a2 ∈ C0 that are non-trivial and are homotopic to

each other on S̃, and proved that if dC(a1, a2) ≥ 3, there is a sequence fk ∈ F (S) such that
fk(a1) = a2 while their dilatations λ(fk) tend to infinity. Here we treat the case in which
a1, a2 ∈ T (Δ):

THEOREM 1.4. Let Δ be a twice punctured disk on S enclosing z and another punc-
ture z0 of S.

(1) For any Δ0 ∈ T (Δ), any large integer M , there are f ∈ F (S) such that f (Δ) =
Δ0 and λ(f ) > M .

(2) Let Δk ∈ T (Δ) be such that dC(∂Δ, ∂Δk) → +∞ as k → +∞. Then for any
elements fk : Δ → Δk of F (S), the sequence {λ(fk)} is unbounded.

This article is organized as follows. In Section 2, we collect background materials on z-
pointed mapping class group Modz

S . Some special elements in Modz
S and their combinations
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are investigated. In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.2. In
Section 5, we classify elements of F (S) in terms of T (Δ) and prove Theorem 1.3. In Section
6, we study the relationship between the path distance dC(∂Δ, ∂Δk) for any Δk ∈ T (Δ) and
the dilatation of any associated pseudo-Anosov maps obtained from Theorem 1.2, and prove
Theorem 1.4. In Section 7, we illustrate that for a filling pair (∂Δ, ∂Δ0) with ∂Δ0 = ∂f (Δ),
the maps f may not be pseudo-Anosov. We give some examples showing that f could stem
from parabolic or simple hyperbolic elements of G.

2. Background and some preliminary results

Let G be the covering group of a holomorphic universal covering map � : D → S̃. Then
G is a torsion free finitely generated Fuchsian group of the first kind. Elements of G are
either parabolic or hyperbolic and are isometric motions on D with respect to the hyperbolic
metric on D. Let Q(G) be the group of quasiconformal automorphisms w of D such that
wGw−1 = G. Two maps w,w0 ∈ Q(G) are said to be equivalent (denoted by w ∼ w0) if
w|S1 = w0|S1 . Denote by [w] the equivalence class of w. Thus the restriction [w]|S1 is well

defined and is a quasisymmetric map on the unit circle S1. By the Bers isomorphism theorem
[2], the quotient group Q(G)/ ∼ is isomorphic to the z-pointed mapping class group Modz

S

that consists of mapping classes f with f (z) = z.
According to the Nielsen–Thurston classification for surface homeomorphisms [14], ev-

ery non-periodic element of Modz
S is either reducible or pseudo-Anosov, where by a reducible

mapping class f we mean that there is a representative of the mapping class (also denoted by
f ) and a curve simplex

(2.1) Γ = {u1, . . . , us} , s ≥ 1 ,

such that f ({u1, . . . , us}) = {u1, . . . , us}; and by a pseudo-Anosov mapping class f we mean
that there is a representative (denoted by f also), a pair (F+,F−) of transverse measured
foliations and a real number λ > 1 such that f (F+) = λF+ and f (F−) = (1/λ)F−. The
number λ = λ(f ) is called the dilatation of f .

Let w ∈ Q(G) be such that [w] corresponds to f under the Bers isomorphism. As all
elements of Modz

S fix z, it is clear that there defines a group homomorphism of Modz
S onto

the ordinary mapping class group Mod(S̃) by sending every element f ∈ Modz
S to an element

of Mod(S̃) induced by a homeomorphism f̃ of S̃, where f̃ can also be obtained from the
projection of the map w via the universal covering map �.

In what follows, for each w ∈ Q(G), we denote by [w]∗ ∈ Modz
S the corresponding

element under the Bers isomorphism. In particular, as G is considered a normal subgroup of
Q(G)/ ∼, we use the symbol h∗, where h ∈ G, to denote the mapping class in Modz

S as well
as a homeomorphism representing h∗.

We proceed to investigate mapping classes h∗ for elements h ∈ G. Details can be found

in Kra [10]. In the case where h is parabolic, h∗ is the Dehn twist t∂Δ or its inverse t−1
∂Δ along
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∂Δ for a twice punctured disk Δ enclosing z, by which we mean a planar region on S that

contains the puncture z and another puncture of S̃. Fig. 1 (a) exhibits an “obvious” twice
punctured disk on a surface of type (2, 4), which encloses z and z0, while Fig. 1 (b) is a
highly complicated twice punctured disk on the same surface; it also encloses z and z0.

FIG. 1

Conversely, for any Dehn twist t∂Δ along the boundary ∂Δ of a twice punctured disk Δ

enclosing z, there exists a parabolic element h ∈ G such that h∗ = t∂Δ.
If h is simple hyperbolic; that is, its axis axis(h) ⊂ D projects to a simple closed geodesic

�(axis(h)) ⊂ S̃, then there is a pair of simple closed geodesics {c0, c} ⊂ S that bounds a z-

punctured cylinder, such that h∗ = tc0 ◦ t−1
c , and that �(axis(h)) = c̃ = c̃0, where we recall

that c̃ is the geodesic representative in the homotopy class of c if c is regarded as a curve on S̃.
Conversely, for any z-punctured cylinder P on S, there is a simple hyperbolic element h ∈ G

such that h∗ = tc0 ◦ t−1
c for {c0, c} = ∂P and axis(h) projects to �(axis(h)) = c̃ = c̃0.

If h is essential hyperbolic; that is, axis(h) projects to a filling closed geodesic �(axis(h))

on S̃, then h∗ is pseudo-Anosov and hence h∗ ∈ F (S). By Theorem 2 of [10], all elements
of F (S) can be obtained in this way.

Finally, if h ∈ G is non-simple and non-essential, i.e., �(axis(h)) is a non-filling self-

intersecting closed geodesic on S̃, then h∗ ∈ F0(S) is reducible by a maximal reduced curve
simplex (call it Γ also). Let P be the component of S\Γ that contains the puncture z. Then
by Theorem 2 of [10], we know that h∗|S\P is the identity and h∗|P is pseudo-Anosov. In
what follows P is called the pseudo-Anosov component for h∗.

We also need to explore some special elements in Q(G)/ ∼ that are different from

elements of G. Let u ⊂ S be a simple closed geodesic such that ũ ⊂ S̃ is also non-trivial. Let

{�−1(ũ)} be the collection of all geodesics û in D such that �(û) = ũ. Since ũ is simple, all

geodesics in {�−1(ũ)} are mutually disjoint.
Fix a geodesic û ∈ {�−1(ũ)} and fix a component U of D\û, there is a lift τû of the Dehn

twist tũ with respect to U . See [17, 19] for more information on the lift τû. It is known that
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τû ∈ Q(G) determines a maximal convex region Ωû in D\U with geodesic boundaries, and
that the restriction τû|Ωû

is the identity. By Lemma 3.2 of [17], we know that û (and hence U )
can be properly chosen so that [τû]∗ = tu. Therefore, the pair (û, U) completely determines
the geodesic u.

In fact, Ωû is a component of D\{�−1(ũ)} that takes û as a component of the boundary
∂Ωû. The complement of the closure of Ωû are the disjoint union of half-spaces in D, where
by a half-space we mean one of the components of a geodesic in {�−1(ũ)} which is disjoint

from Ωû. By our convention, a half-space D includes the open arc D ∩ S1. Note that the end-
points of this arc are the fixed points of a simple hyperbolic element of G. Let Uû denote the

collection of all half-spaces in D defined by the geodesics in {�−1(ũ)}. We see that Uû forms
a partially ordered set whose order is defined by inclusion. Each component in the comple-

ment of the closure of Ωû is called a maximal element of Uû. Observe that {�−1(ũ)} contains
infinitely many mutually disjoint geodesics and Ωû contains no geodesics in {�−1(ũ)}. Every

geodesic in {�−1(ũ)}, if not the boundary of any maximal element, is included in a maximal
element of Uû. As such, each maximal element contains infinitely many elements of Uû of
higher orders. Notice that the map τû leaves invariant each maximal element of Uû and sends
each element of Uû to an element of Uû with the same order. In what follows, the triple
(τû,Ωû,Uû) is called a configuration corresponding to the geodesic u.

LEMMA 2.1. Let h ∈ G. Then h sends every maximal element of Uû to a different

maximal element if and only if the fixed point(s) of h lies in Ωû ∩ S1.

PROOF. We only prove the case that h is parabolic (the hyperbolic case can be handled

similarly). Let x be the fixed point of h. If x ∈ Ωû ∩ S1, that is, x lies outside of all maximal

elements of Uû, then by construction, τû(x) = x. Since τû ∈ Q(G), τûhτ−1
û

is also a primitive

parabolic element of G with fixed point x. It follows that τûhτ−1
û

= h, i.e., τûh = hτû. Hence

for each maximal element U ∈ Uû, h(U) is also a maximal element. Conversely, if x ∈ U

for a maximal element U of Uû, then x lies outside of D\U . By examining the action of h on
D, h(D\U) is disjoint from D\U . Hence h(D\U) ⊂ U and thus U intersects h(U). It follows
from Lemma 4.3 of [19] that h(U) is not a maximal element of Uû. �

LEMMA 2.2. Let (τû,Ωû,Uû) be the configuration corresponding to u. Let x be the
parabolic fixed point of G that corresponds to a simple closed geodesic a = ∂Δ. Then the
geodesic u intersects a if and only if x is covered by a maximal element of Uû.

PROOF. If x lies outside of any maximal element of Uû, i.e., x ∈ Ωû ∩ S1, then
τû(x) = x. Let T ∈ G be the primitive parabolic element with the fixed point x. By the same
argument of Lemma 2.1, τûT = T τû. Via the Bers isomorphism, we obtain tu ◦ ta = ta ◦ tu,
which implies that u and a are disjoint. Conversely, if u is disjoint from a, then τû fixes x. So

x ∈ Ωû ∩ S1. �

From Lemma 2.2, we know that u is disjoint from ∂Δ if x stays outside of all maximal
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elements of Uû. Similar situation occurs when h is non-essential hyperbolic with axis axis(h).
In this case, there exists a simple closed geodesic v ⊂ S, with ṽ being non-trivial, such that v

is disjoint from the pseudo-Anosov component P of h∗. It follows from Lemma 2.1 that both

fixed points of h lie in Ωv̂ ∩ S1. As Ωv̂ is convex with geodesic boundary, it is clear that the
axis axis(h) of h lies outside of any maximal element of Uv̂ .

Let w ∈ Q(G) be such that [w]∗ ∈ Modz
S is a reducible mapping class by a reduced

curve simplex Γ as defined in (2.1). Note that if ũj is a non-trivial geodesic for some j ∈
{1, 2, . . . , s}, that is, uj , if viewed as a curve on S̃, is homotopic to neither a point nor a

puncture of S̃, then, as discussed earlier, there defines a configuration (τûj
,Ωûj

,Uûj
) that

corresponds to uj (in the sense that we can choose the lift ûj of ũj and the component U of
D\ûj on which the lift τûj

of tũj
is constructed). See the discussion above Lemma 2.1.

Note also that any two twice punctured disks, if both enclose z, must intersect. Since all
elements of Γ are disjoint, there is at most one geodesic u in Γ such that ũ is trivial.

LEMMA 2.3. With the above conditions:
(1) If there is a ui ∈ Γ with ũi being non-trivial such that [w]∗(ui) = ui , Then there

is w0 ∈ Q(G) with w0 ∼ w such that w0 sends every maximal element of Uûi
to a maximal

element of Uûi
.

(2) If there are ui, uj ∈ Γ , i �= j , such that [w]∗(ui) = uj , then ũi and ũj are non-
trivial and there is w0 ∈ Q(G) with w0 ∼ w such that w0 sends every maximal element of
Uûi

to a maximal element of Uûj
.

PROOF. (1) is proved in [19]. For (2), we notice that if Γ contains a geodesic u so that

ũ is trivial on S̃, then such a curve u is unique. This tells us that [w]∗(u) = u. In other words,
if [w]∗(ui) = uj for some ui, uj ∈ Γ with ui �= uj , then both ũi and ũj are non-trivial.
Thus the configurations (τûi

,Ωûi
,Uûi

) and (τûj
,Ωûj

,Uûj
), which correspond to ui and uj ,

respectively, are defined. The rest of the proof is similar to (1) which was given in [19]. �

More generally, we have

LEMMA 2.4. Assume that [w]∗ ∈ Modz
S is a reducible mapping class with the reduced

curve simplex (2.1). Also assume that each ũi , ui ∈ Γ , is non-trivial. Then for every maximal
element U1 ∈ Uû1

, wk(U1) ∪ U1 �= D for all integers k.

PROOF. Suppose that for an integer k0 and a maximal element U1 ∈ Uû1 , we have

wk0(U1) ∪ U1 = D. If s = 1, then [w]∗(u1) = u1. By Lemma 2.3 (1), w sends every
maximal element U1 ∈ Uû1

to a maximal element. Since all maximal elements of Uû1
are

disjoint and Ωû1
is not empty, we see that wk(U1) ∪ U1 �= D. Thus we assume that s ≥ 2

and that ([w]∗)k0 (u1) = u2, where u1, u2 ∈ Γ . Then tu2 = ([w]∗)k0 ◦ tu1 ◦ ([w]∗)−k0 , which

says that wk0τû1
w−k0 = τû2

. It follows that wk0(Uû1
) is the collection of half-spaces defined

by τû2
and that wk0(U1) ∈ Uû2

is a maximal element. Since wk0(U1) ∪ U1 = D, by Lemma
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4 of [15], we have [τû2][τû1] �= [τû1][τû2]. Thus tu1 ◦ tu2 �= tu2 ◦ tu1 . Hence u1 intersects u2,
contradicting that u1, u2 ∈ Γ . �

3. Proof of Theorem 1.1

For simplicity, write a = ∂Δ, b = f (∂Δ) and f = g∗ for some essential hyperbolic
element g ∈ G. Suppose that (a, b) does not fill S. There exists a simple closed geodesic u

such that

(3.1) tra ◦ t−s
b (u) = u

for all positive integers r and s.

Case 1. The geodesic ũ is trivial on S̃. In this case, u = ∂Δ1 for a twice punctured disk
Δ1 enclosing z. From Theorem 2 of [10] and Theorem 2 of [13], there are parabolic elements
h1, h2 ∈ G such that

(3.2) h∗
1 = ta and h∗

2 = tb .

Note that Δ1 is also a twice punctured disk enclosing z. There is a parabolic element T1 ∈ G

that corresponds to the Dehn twist t∂Δ1 , i.e., T ∗
1 = t∂Δ1 = tu. But we know that tb = tf (a) =

f ◦ ta ◦ f −1. Hence h2 = gh1g−1. From (3.1) (by setting r = s = 1) we obtain ta ◦ f ◦
t−1
a ◦ f −1(u) = u, which tells us that the commutator [h1, g] = h1gh−1

1 g−1 commutes with
T1. From Lemma 5.2 of [20], [h1, g] also fixes the fixed point of T , which says that [h1, g]
and T share a common fixed point. Clearly, [h1, g] is non-trivial (otherwise, h1 commutes
with g , a contradiction). Since G is discrete, by Theorem 5.1.2 of [1], [h1, g] cannot be
hyperbolic. But on the other hand, by Theorem 7.39.1 of Beardon [1], for a parabolic element
h1, and a hyperbolic element g , the commutator [h1, g] ∈ G is always hyperbolic. This is a
contradiction.

Case 2. The geodesic ũ is non-trivial on S̃. Note that ũ denotes the geodesic repre-

sentative on S̃ homotopic to u when u is viewed as a curve on S̃. As discussed in Section
2, we denote by (τû,Ωû,Uû) the configuration corresponding to u. The equality (3.1) yields
that

(
tra ◦ t−s

b

) ◦ tu = tu ◦ (
tra ◦ t−s

b

)
. It follows from (3.1) and Lemma 2.3 that both [h1, g]

and hr
1h

−s
2 send each maximal element of Uû to a maximal element. By the assumption, g is

an essential hyperbolic element of G whose axis axis(g) intersects one (and hence infinitely

many) of the preimages {�−1(ũ)}, say û0. Note that û0 could be the boundary of a maximal
element of Uû, but û0 could also be a boundary of an element of Uû of higher order. If the
later occurs, axis(g) is contained in a maximal element of Uû.

In each of the following cases we will show there is a maximal element U0 of Uû such

that hr
1h

−s
2 or its inverse hs

2h
−r
1 does not send U0 to a maximal element of Uû. But from (3.2),

(3.1) and Lemma 2.3, hr
1h

−s
2 and hs

2h
−r
1 send every maximal element of Uû to a maximal

element of Uû, which will lead to a contradiction.
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FIG. 2 FIG. 3

Subcase 1. The geodesic û0 is the boundary of a maximal element U ∈ Uû. In this
case, we may assume that û0 = û = ∂U and that U covers the repelling fixed point A of g ,
as shown in Fig. 2.

In the rest of the article we use (AC), for example, to denote the unoriented arc in

S1 connecting the two labeling points A and C without passing through any other labeling
points. Denote by U ′ ∈ Uû the other maximal element containing g(D\U). Then U ′ covers
the attracting fixed point B of g . Let x denote the fixed point of h1. Then g(x) is the fixed

point of h2 = gh1g−1. We assume that h1 points in the counterclockwise direction, and thus

h−1
2 points in the clockwise direction.

If x ∈ (CE), then g(x) ∈ (BE). As ũ is simple, for sufficiently large integers r and s,
h−s

2 (D\U ′) ∩ S1 ⊂ (EB), and thus hr
1h

−s
2 (D\U ′) ⊂ D\U ′. It follows from Lemma 4.3 of

[19] that hr
1h

−s
2 (U ′) is not a maximal element of Uû. This contradicts Lemma 2.3. The same

argument applies to the case of x ∈ (FD). If x ∈ (EB), then since B is the attracting fixed

point of g , g(x) ∈ (EB) is closer to B than x. For large r and s, h−s
2 (D\U ′) ∩ S1 ⊂ (xg(x))

is disjoint from D\U ′. It follows that hr
1h

−s
2 (D\U ′) is disjoint from D\U ′. Hence by Lemma

4.3 of [19], hr
1h

−s
2 and hence its inverse hs

2h
−r
1 does not send U ′ to any maximal element of

Uû. This again contradicts Lemma 2.3. The same is true when x ∈ (BF).
If x ∈ (CA), then since A is repelling fixed point of g , either g(x) ∈ (CA), or g(x) ∈

(CB). If g(x) ∈ (CA), then h−s
2 (D\U)∩ S1 ⊂ (g(x)x), and thus hr

1h
−s
2 (D\U) ⊂ (g(x)x). It

follows that D\U is disjoint from hr
1h

−s
2 (D\U). Hence by Lemma 4.3 of [19], hs

2h
−r
1 (U) is

not a maximal element of Uû. This contradicts Lemma 2.3. If g(x) ∈ (CE), then h−r
1 (D\U)∩

S1 ⊂ (CA) and thus hs
2h

−r
1 (D\U) ∩ S1 ⊂ (CE). We see that hs

2h
−r
1 (D\U) ⊂ D\U . This

implies U ⊂ hs
2h

−r
1 (U). In particular, U is not a maximal element of Uû. If g(x) ∈ (EB),

then hr
1h

−s
2 (U) ⊂ U . This is also impossible. The same argument applies to the case of

x ∈ (AD).
Subcase 2. The axis axis(g) is contained in a maximal element U ∈ Uû. See Fig. 3. If
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x ∈ (AC), then g(x) lies in (AC), (CD) or (BD). If g(x) is in (AC), g(x) is closer to C than
x. One sees that hs

2h
−r
1 (D\U) is disjoint from D\U for large r and s. So hs

2h
−r
1 and hence

hr
1h

−s
2 (U) is not a maximal element. If g(x) is in (CD), one checks that hr

1h
−s
2 (U) ⊂ U

for large r and s, and this would imply that hr
1h

−s
2 (U) is not a maximal element. If g(x) is

in (BD), hs
2h

−r
1 (D\U) is disjoint from D\U for large r and s, which says that U is not a

maximal element of Uû.
If x ∈ (BD) (resp. x ∈ (AB)), then since B is the attracting fixed point of g , g(x) ∈

(BD) (resp. g(x) ∈ (AB)) is closer to B than x. As one can see, hr
1h

−s
2 (D\U) is disjoint

from D\U . It follows that hr
1h

−s
2 (U) is not a maximal element of Uû. Finally, if x ∈ (CD),

then g(x) ∈ (BD). For large r and s, hs
2h

−r
1 (U) ⊂ U . This tells us that hs

2h
−r
1 (U) is not a

maximal element of Uû.
This case-by-case argument finishes the proof of Theorem 1.1. �

PROOF OF COROLLARY 1.1: Let z, z1, . . . , zk denote all the punctures contained in
Dα . Let Λα be the corresponding path connecting z, z1, . . . , zk in this order. Let Λ′

α be
the sub-path of Λα connecting z and z1. Let Δα be a fattening of Λ′

α . Then Δα is a twice

punctured disk enclosing z. From Theorem 1.1, (∂Δα, f k(∂Δα)) fills S for all k ≥ 1. It

is clear that (∂Δα, f (∂Δα)) fills S̃ if and only if (Λ′
α, f (Λ′

α)) fills S. Since Λ′
α ⊂ Λα and

f (∂Δα) = ∂f (Δα), we see that (Λα, f (Λα)) fills S̃. From the construction, Dα is a fattening
of Λα . We conclude that (α, f (α)) fills S, as asserted. �

4. Proof of Theorem 1.2

By the assumption, we know that Δ and Δ0 enclose the same punctures z and z0 and that

(∂Δ, ∂Δ0) fills S. As ∂Δ and ∂Δ0 are loops around the same puncture z0 of S̃ as z is filled
in, it is clear that the primitive parabolic elements T and T0 of G corresponding to ∂Δ and
∂Δ0 are conjugate to each other in G. It follows that there is an element h ∈ G sending the
fixed point x of T to the fixed point x0 of T0. As such, F = h∗ sends ∂Δ to ∂Δ0. Of course,

F ∈ F0(S). We need to prove that F ◦ t−k
∂Δ are pseudo-Anosov for either all k > 0 or all

k < 0.
If h is essential hyperbolic, then F is pseudo-Anosov. Hence F ∈ F (S) and by Lemma

3.1 of [22], we conclude that F ◦ t−k
∂Δ are pseudo-Anosov for all k ≥ 0 or k ≤ 0.

If h is parabolic, then by Theorem 2 of [10, 13], F = tc or t−1
c , where c is a simple closed

geodesic that is also trivial on S̃, i.e., c = ∂Δ′ for some twice punctured disk Δ′ enclosing z.
Assume that F = tc. By the definition, ∂Δ0 = tc(∂Δ). We see that

(4.1) tc ◦ t∂Δ ◦ t−1
c = t∂Δ0 .

Since (∂Δ, ∂Δ0) fills S, from (4.1), c intersects ∂Δ. We claim that (∂Δ, c) also fills S. In
fact, the geodesic tc(∂Δ) = ∂Δ0 is homotopic to a closed curve that stays in an arbitrary
small neighborhood N of ∂Δ ∪ c. If (∂Δ, c) does not fill S, then there is a non-trivial loop
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e that is disjoint from ∂Δ ∪ c. So e is also disjoint from N if N is made to be sufficiently
small. It follows that e is disjoint from both ∂Δ and ∂Δ0, contradicting that (∂Δ, ∂Δ0) fills
S.

Hence by Thurston’s theorem [14], tc ◦ t−k
∂Δ for all k > 0 are pseudo-Anosov maps. Note

also that both c and ∂Δ are trivial on S̃ (that is, they are freely homotopic to a puncture of S̃)

and tc ◦ t−k
∂Δ(∂Δ) = tc(∂Δ) = ∂Δ0, we see that tc ◦ t−k

∂Δ ∈ F (S) sends ∂Δ to ∂Δ0.
It remains to consider the case where h is non-essential hyperbolic and non-parabolic

element of G. Recall that h possesses the property that (∂Δ, h∗(∂Δ)) fills S. Our aim is to

show that h∗ ◦ t−k
∂Δ is pseudo-Anosov for either all k > 0 or all k < 0.

Suppose that for some k > 0 and some k < 0, there is a system Γ (which depends on k

and is defined as in (2.1)) such that

h∗ ◦ t−k
∂Δ ({u1, . . . , us}) = {u1, . . . , us} .

This tells us that

(4.2)
(
h∗ ◦ t−k

∂Δ

)
◦ (

tu1 ◦ · · · ◦ tus

) = (
tu1 ◦ · · · ◦ tus

) ◦
(
h∗ ◦ t−k

∂Δ

)
.

There are two cases to consider.
Case 1. All ũi , ui ∈ Γ , are non-trivial. Our first claim is that there is at least one

u = ui ∈ Γ , say, such that u intersects ∂Δ. Suppose to the contrary. That is, all ui are disjoint
from ∂Δ. Hence tu1 ◦ · · · ◦ tus commutes with t∂Δ. From (4.2) we see that h∗ commutes with
tu1 ◦ · · · ◦ tus and thus that

(
h∗ ◦ t−k

∂Δ ◦ (h∗)−1
)

◦ (
tu1 ◦ · · · ◦ tus

) = (
tu1 ◦ · · · ◦ tus

) ◦
(
h∗ ◦ t−k

∂Δ ◦ (h∗)−1
)

.

On the other hand, since (∂Δ, ∂Δ0) fills S, every ui must intersect ∂Δ0. This implies

t−k
∂Δ0

◦ (
tu1 ◦ · · · ◦ tus

) �= (
tu1 ◦ · · · ◦ tus

) ◦ t−k
∂Δ0

.

But t−k
∂Δ0

= h∗ ◦ t−k
∂Δ ◦ (h∗)−1. We see that

(
h∗ ◦ t−k

∂Δ ◦ (h∗)−1
)

◦ (
tu1 ◦ · · · ◦ tus

) �= (
tu1 ◦ · · · ◦ tus

) ◦
(
h∗ ◦ t−k

∂Δ ◦ (h∗)−1
)

.

This is absurd. We conclude that there is a geodesic u ∈ Γ such that u intersects ∂Δ. Note

that h∗ ◦ t−k
∂Δ ∈ F0(S).

Our next claim is that for any integer m,

(4.3)
(
h∗ ◦ t−k

∂Δ

)m

(u) = u .

This assertion was implicitly proved in [10]. For completeness, however, the proof of (4.3)

is included as follows. Since h∗ ◦ t−k
∂Δ ∈ F0(S), we let h1 ∈ G be such that h∗

1 = h∗ ◦ t−k
∂Δ .

From Theorem 2 of [13] and Theorem 2 of [10], we know that if h1 is parabolic, then h∗
1 is
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represented by a power of a Dehn twist tc for a simple closed geodesic c on Ṡ. In this case,
h∗

1(ui) = ui for each ui ∈ Γ . If h1 is simple hyperbolic, then h∗
1 is represented by a power of

a spin map t−1
α ◦ tβ , where {α, β} forms the boundary of an z-punctured cylinder on S. In this

case, we also see that h∗
1(ui) = ui for each ui ∈ Γ . If h1 is non-simple and non-essential,

then by Theorem 2 of [10], there is a unique pseudo-Anosov component P ⊂ S for h∗
1 that

contains z. As it turns out, any curve ui in Γ cannot meet P in a non-trivial way, which means
that all ui ∈ Γ stays outside of P . It follows that h∗

1(ui) = ui . Finally, if h1 is essential
hyperbolic, then by Theorem 2 of [10] again, h∗

1 is pseudo-Anosov. By the assumption, this
case does not occur. We thus conclude that (4.3) holds for every u ∈ Γ .

Now let (τû,Ωû,Uû) be the configuration corresponding to u. From Lemma 2.2, there
exists a maximal element U ∈ Uû that covers x. Recall that x is the fixed point of the
parabolic element T ∈ G that corresponds to ∂Δ. If the axis axis(h) is disjoint from U (Fig.

4), then for any k �= 0, hT −k(D\U) ⊂ D\U . Hence
(
hT −k

)m
(D\U) ⊂ D\U . That is,(

hT −k
)m

(U) is not a maximal element of Uû. This contradicts Lemma 2.3.

Consider the case where axis(h) crosses U . Let U ′ ∈ Uû be the other maximal element
intersecting axis(h) (Lemma 2.1 of [21]). See Fig. 5. If the attracting fixed point of h is in U ,
that is, A is the attracting fixed point of h, then T −k(D\U) ⊂ U and thus hT −k(D\U) ⊂ U ,
which says hT −k(U) ∪ U = D, contradicting Lemma 2.4.

Now we assume that the attracting fixed point of h is in U ′. In this case, U covers the
repelling fixed point of h, denoted by A. Recall that the motion T points in the counterclock-
wise direction (as shown in Fig. 5). Now the relative position between x and A determines
whether we choose k > 0 or k < 0. We assume without loss of generality that x is on the left
side of A, as shown also in Fig. 5. By examining the action of T −k for any k < 0, we find

that the motion of T −k (for any k < 0) and h have the same relative motion direction. It turns
out that

T −k(D\U) ∩ S1 ⊂ (Cx) .

Since A is the repelling fixed point of h, hT −k(D\U) lies in either (i) U , or (ii) U ′, or

FIG. 4 FIG. 5
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(iii) D\ (
U ∪ U ′). Notice that (i) implies that hT −k(U) ∪ U = D, which would con-

tradict Lemma 2.4. (ii) implies that
(
hT −k

)i
(U ′) ⊂ U ′ for all i > 0, which says that

(
hT −k

)i
(U ′) are never maximal elements of Uû. If (iii) holds, then one easily checks that for

all i > 0,
(
hT −k

)i
(D\U) ⊂ D\ (

U ∪ U ′). That is, U ∪ U ′ ⊂ (
hT −k

)i
(U). In other words,

(
hT −k

)i
(U) never becomes a maximal element of Uû. From Lemma 2.3, we see that (4.3)

never occurs.

REMARK. In the case where k > 0, we observe that T −k(D\U) could possibly cover
the repelling fixed point A of h. If this occurs, then hT −k(D\U) ⊂ D\U ′ and there is no

guarantee that hT −k(U) �= U,U ′. Thus no contradiction can be found. Nevertheless, the
above argument tells us that for all sufficiently large positive integers k, hT −k(U) are not
maximal elements of Uû, which will lead to that hT −k ∈ F (S) for sufficiently large k.

Case 2. There is one u ∈ Γ such that ũ is trivial. In this case, u = ∂Δ′ for some twice
punctured disk enclosing z and u is the only one element in Γ with ũ being trivial. We have

(4.4) h∗ ◦ t−k
∂Δ(u) = u .

Let y ∈ S1 be the fixed point of the parabolic element corresponding to u. (4.4) then yields

(4.5) hT −k(y) = y .

This means that hT −k is also a parabolic element. Write Tu = hT −k . From (4.5), we have

T ∗
u = tu or t−1

u . Assume that T ∗
u = tu (the case where T ∗

u = t−1
u can be handled similarly and

is omitted). Then

(4.6) h = TuT
k , or h∗ = tu ◦ tk∂Δ .

Now consider the pair (∂Δ, u). It is clear that (∂Δ, u) does not fill S. Otherwise, by Thurston

[14], tu ◦ tk∂Δ for each k < 0 would be a pseudo-Anosov map. It follows from (4.6) that
h∗ is pseudo-Anosov. Hence by Theorem 2 of [10], h is an essential hyperbolic element,
contradicting the hypothesis.

We also know that u must intersect ∂Δ. Since (∂Δ, u) does not fill S, there is a simple
closed geodesic v disjoint from ∂Δ ∪ u. The geodesic ∂Δ0 = h∗(∂Δ) is homotopic to the

image curve tu ◦ tk∂Δ(∂Δ) = tu(∂Δ) that is defined in a neighborhood N of ∂Δ ∪ u, where
N is chosen to be so small that v is disjoint from N . We conclude that v does not intersect
∂Δ ∪ ∂Δ0. That is, (∂Δ, ∂Δ0) does not fill S. This contradicts the hypothesis.

We conclude that h∗◦ t−k
∂Δ , which sends ∂Δ to ∂Δ0, is pseudo-Anosov for either all k > 0

or all k < 0. This completes the proof of Theorem 1.2. �

PROOF OF COROLLARY 1.2: Let {z, z0} and {z, z′} denote the punctures in Δ and Δ′,
respectively. Suppose that such an f exists and that z0 �= z′. As f projects to a map f̃ on

S̃, it is obvious that f fixes the puncture z and so f̃ (z0) = z′, contradicting the fact that f̃ is
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isotopic to the identity on S̃. From Theorem 1.1, f (∂Δ) = ∂Δ′ and (∂Δ, ∂Δ′) fills S. Hence
Δ′ ∈ T (Δ).

Conversely, if Δ′ ∈ T (Δ), then by Theorem 1.2, there is an element f ∈ F (S) sending
Δ to Δ′, as claimed. �

5. A classification of elements of F (S) in terms of T (Δ)

To prove Theorem 1.3, we need the following lemma.

LEMMA 5.1. Let F : S → S be obtained from Theorem 1.2. Then every element

F (S) that sends ∂Δ to ∂Δ0 is of the form F ◦ t−k
∂Δ for some integer k.

PROOF. Let f ∈ F (S) be such that f (∂Δ) = ∂Δ0. Note that F0(S) is the kernel of

the group homomorphism of Modz
S onto Mod(S̃). There is an essential hyperbolic element

g ∈ G so that g∗ = f . Also, as mentioned earlier, the parabolic elements T and T0 of G that
correspond to ∂Δ and ∂Δ0 are conjugate to each other. Hence there is an element F ∈ F0(S)

sending ∂Δ to ∂Δ0. Recall that F = h∗ for some element h ∈ G.

Observe that h(x) = x0 is the fixed point of T0 = hT h−1. On the other hand, since

f (∂Δ) = ∂Δ0, f ◦ t∂Δ ◦ f −1 = t∂Δ0 . It follows that gT g−1 = T0, which implies g(x) is the

fixed point of T0. But T0 is parabolic, it has unique fixed point x0 on S1. We conclude that

g(x) = h(x) or g−1h(x) = x. If g = h, then h is essential hyperbolic and thus F is pseudo-

Anosov. Otherwise, g−1h is non-trivial. Since T is parabolic, it also has a unique fixed point
x on S1. Hence g−1h and T share the same fixed point x. In particular, g−1h cannot be

hyperbolic (otherwise, G would not be discrete) and the only possibility is that g−1h is also

parabolic (if it is non-trivial) and so there is an integer k such that g−1h = T k or g = hT −k .

That is, f = h∗ ◦ t−k
∂Δ . �

PROOF OF THEOREM 1.3: Let f ∈ F (S). By Theorem 1.1, (∂Δ, ∂f (Δ)) fills S. Note

that f is isotopic to the identity on S̃, Δ and f (Δ) both enclose z and z0. Thus f (Δ) ∈ T (Δ).

Since f ◦ tk∂Δ(∂Δ) = f (∂Δ) for any k, we obtain a map ω : F (S)/∼→ T (Δ).
Conversely, let Δ0 ∈ T (Δ). Then by the definition of T (Δ), (∂Δ0, ∂Δ) fills S. By

Theorem 1.2, there is F ∈ F0(S) such that F(∂Δ) = ∂Δ0. Let χ(Δ0) be the Δ-equivalence

class of F ◦ tk∂Δ. By Theorem 1.2, F ◦ tk∂Δ are pseudo-Anosov for either all k > 0 or k < 0.
We thus obtain the map χ : T (Δ) → F (S)/∼.

We claim that χ ◦ ω = id (which says that ω is injective). Indeed, for any f ∈ F (S), let
[f ]Δ denote the Δ-equivalence class of f in F (S)/ ∼. By Theorem 1.1, (∂Δ, f (∂Δ)) fills

S. By Theorem 1.2, there is F sending Δ to f (Δ). From Lemma 5.1, f = F ◦ tk∂Δ for some
k, which says that χ ◦ ω(f ) is Δ-equivalent to f . It follows that χ ◦ ω = id.

Finally, we prove that ω ◦ χ = id (which says that ω is surjective). Let Δ0 ∈ T (Δ).
Then (∂Δ, ∂Δ0) fills S. By Theorem 1.2 again, there is F ∈ F0(S) such that F(Δ) = Δ0 and

that f := F ◦ tk∂Δ are pseudo-Anosov for all k > 0 or k < 0. This implies that [f ]Δ = χ(Δ0).
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But since f ◦ tk∂Δ(∂Δ) = ∂Δ0 for any k, we have ω ◦ χ(Δ0) = Δ0, and thus ω ◦ χ = id, as
claimed. �

6. Distances between elements of T (Δ) and dilatations of associated pseudo-
Anosov maps

PROOF OF THEOREM 1.4: (1) From Theorem 1.3, we know that there is f ∈ F (S)

such that f (Δ) = Δ0. By Theorem 1.2, f ◦ tk∂Δ are pseudo-Anosov for either k > 0 or k < 0.

We assume that k > 0. It is clear that for all k > 0, f ◦ tk∂Δ(Δ) = Δ0. We need to show that

λ(f ◦ tk∂Δ) → +∞ as k → +∞.

Note that f ◦ tk∂Δ ∈ F (S) for any k. Let γ, γk denote the filling closed geodesics on

S̃ corresponding to f and f ◦ tk∂Δ, and let iγ and iγk denote the number of self-intersection
points of γ and γk , respectively. Assume that z ∈ γ . As Δ determines a path Λ joining z and

z0, Δ in turn determines a parabolic element δ ∈ π1(S̃, z) around z0.
By the same argument of Theorem 1.1 of [22], the curve concatenation δk · γ is freely

homotopic to γk, where we note that γk is a filling closed geodesic. The associated homotopy
is denoted by δk · γ ∼ γk . Observe that the k-th power of δ repeats δ k times. During the

deformation δk · γ ∼ γk , a new set Ik of self-intersection points of δ4 emerges. Fig. 6 below
illustrates this process.

Fig. 6 (a) shows the multi-curve δ4 as a portion in the curve concatenation δ4 · γ . As

we see, the multiplicity of δ is 4. Fig. 6 (b) shows what δ4 looks like as a portion of γ4,
after the deformation δ4 · γ ∼ γ4 is performed. We see that the set of self-intersection points
I4 = {p1, p2, p3} emerges.

We observe that any two points in Ik cannot cancel each other, while since iγ is finite,
only finite number of points in Ik could possibly cancel some existing self-intersection points
of γ . But note that the cardinality of Ik tends to +∞ as k → +∞, we conclude that iγk →

FIG. 6
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+∞ as k → +∞. Since f ◦ tk∂Δ ∈ F (S), from the argument of Theorem 1.1 of [22], we

obtain λ(f ◦ tk∂Δ) → +∞ as k → +∞. Since f ∼ f ◦ tk∂Δ and f ◦ tk∂Δ(Δ) = Δ0 for any k,
we are done. The proof of (2) is the same as that of Theorem 1.3 in [23]. �

7. Examples

In [16] we constructed an example demonstrating that for any twice punctured disk Δ

that encloses z and z0, there are parabolic elements h ∈ G such that (∂Δ, h∗(∂Δ)) fills S. In
the example below, we present a simple hyperbolic element h ∈ G such that (∂Δ, h∗(∂Δ))

fills S and h∗(∂Δ) ∈ T (Δ).
Note that Δ is a twice punctured disk on S enclosing z; its deformation retract Λ is a

path connecting z and another puncture z1, say. The following constructions are suggested by
the referee’s comments on [18]. The surface S can be thought of as a surface with p handles
H1, . . . , Hp and n + 1 punctures z, z1, . . . , zn, where each handle is a copy of the handle H

drawn in Fig. 7.

FIG. 7

H has two boundary components {∂D, ∂D′}. Let γ, δ be two curves on H that are not
homotopic to each other and fill H . Let {s, t} and {u, v} are endpoints of γ and δ, respectively.

We remove from the sphere S2 p pairs of small disks (Di,D
′
i ) and z, z1, . . . , zn. Then

the surface S can be restored from attaching p handles along the boundary components ∂Di
∼=

∂D and ∂D′
i
∼= ∂D′ for i = 1, 2, . . . , p.

FIG. 8

Without loss of generality, we let Λ (the deformation retract of Δ) be the path described
as follows. Connect z and s1, followed by γ on H1, then connect t1 and s2, and followed by
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γ on H2, and so forth. After p steps, we connect tp and z1 by a path σ that is away from all
other punctures. Fig. 8 shows a path Λ in the case of p = 4.

FIG. 9

Now we proceed to acquire a simple closed geodesic C as follows. Choose a point z′
that is near to z, connect z′ and v1, followed by the inverse δ−1 of δ on H1, then connect u1

and v2, followed by δ−1 on H2, then connect u2 and v3, and so forth (see Fig. 10). After p

steps, we draw a path σ0 connecting up to a point z′
1 that is near to the puncture z1 in such a

way that S2\{σ, σ0} are n − 1 once punctured disks each of which contains only one puncture
in {z2, z3, . . . , zn}. See Fig. 9.

Finally, we connect z′
1 and z′ (the point we begin with) by a path away from all holes

Di,D
′
i and all punctures z, z1, . . . , zn. Fig. 10 shows an example for such a simple closed

curve C in a surface of genus p = 4. We thus obtain a simple closed curve C on S so that the
graph C∪Λ fills S, i.e., S\C ∪Λ consists of polygons and possibly once punctured polygons.

FIG. 10

Let C0 ⊂ S be another simple closed curve so that {C,C0} are boundary components of
a punctured cylinder P with puncture z. Clearly, {C,C0} ∪ Λ fills S. There exists a simple

hyperbolic element h ∈ G so that h∗ = tC0 ◦ t−1
C . Note also that Δ can be restored from Λ by

a fattening process. We see that ∂P ∪ ∂Δ fills S. Let Δ0 = h∗(Δ).

PROPOSITION 7.1. The pair (∂Δ, ∂Δ0) fills S.
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PROOF. Assume that (∂Δ, ∂Δ0) does not fill S. There is a geodesic u ⊂ S such

that t∂Δ0 ◦ t−1
∂Δ(u) = u. Let T ∈ G be the parabolic element corresponding to t∂Δ. If ũ

is trivial, then the commutator [h, T ] = hT h−1T −1 fixes a parabolic fixed point of G, so
[h, T ] = hT h−1T −1 is parabolic (otherwise G would not be discrete). This contradicts that
[h, T ] is hyperbolic.

If ũ is non-trivial, by Lemma 2.3, [h, T ] sends every maximal element U ∈ Uû to a
maximal element. On the other hand, we know from the hypothesis that u is disjoint from

∂Δ. By Lemma 2.2, the fixed point x of T must lie in Ωû ∩ S1. Since {C,C0} ∪ Λ fills S and
u is disjoint from ∂Δ, u must intersect {C,C0}. By Lemma 2.1, axis(h) crosses a maximal
element U ∈ Uû. Let U ′ ∈ Uû be the other maximal element intersecting axis(h) (by Lemma
2.1 of [21]).

We are thus in the situation of Fig. 2 (with axis(g) being replaced by axis(h)). Since
x /∈ (

U ∪ U ′)∩S1, x ∈ (CE)∪(FD). Let us assume that x ∈ (CE). By examining the action

of the commutator [h, T ] on U ′, we find that [h, T ](U ′) ⊂ U ′, which says that [h, T ](U ′) is
not a maximal element of Uû. This is a contradiction. �
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