Токуо J. Матн. Vol. 36, No. 1, 2013

On Convergents of Certain Values of Hyperbolic Functions Formed from Diophantine Equations

Tuangrat CHAICHANA, Takao KOMATSU and Vichian LAOHAKOSOL

Chulalongkorn University, Hirosaki University and Kasetsart University

(Communicated by M. Tsuzuki)

Abstract. Let $\xi = \sqrt{v/u} \tanh(uv)^{-1/2}$, where *u* and *v* are positive integers, and let $\eta = |h(\xi)|$, where *h*(*t*) is a non-constant rational function with algebraic coefficients. We compute upper and lower bounds for the approximation of certain values η of hyperbolic functions by rationals x/y such that *x* and *y* satisfy Diophantine equations. We show that there are infinitely many coprime integers *x* and *y* such that $|y\eta - x| \ll \log \log y/\log y$ and a Diophantine equation holds simultaneously relating *x* and *y* and some integer *z*. Conversely, all positive integers *x* and *y* with $y \ge c_0$ solving the Diophantine equation satisfy $|y\eta - x| \gg \log \log y/\log y$.

1. Introduction and the basic theorem

 $\alpha = [a_0; a_1, a_2, ...]$ denotes the regular (or simple) continued fraction expansion of a real α , where

$$\begin{aligned} \alpha &= a_0 + 1/\alpha_1 \,, \quad a_0 &= \lfloor \alpha \rfloor \,, \\ \alpha_n &= a_n + 1/\alpha_{n+1} \,, \quad a_n &= \lfloor \alpha_n \rfloor \quad (n \ge 1) \,. \end{aligned}$$

Assume that the continued fraction expansion of a real ξ is quasi-periodic of the form

$$[a_0; a_1, \dots, a_n, \overline{g_1(k), \dots, g_s(k)}]_{k=1}^{\infty}$$

= $[a_0; a_1, \dots, a_n, g_1(1), \dots, g_s(1), g_1(2), \dots, g_s(2), g_1(3), \dots], (1)$

where a_0 is an integer, a_1, \ldots, a_n are positive integers, g_1, \ldots, g_s are positive integer-valued functions for $k = 1, 2, \ldots$. If every $g_i(k)$ $(i = 1, 2, \ldots, s)$ is a polynomial and at least one of them is not constant, (1) is called *Hurwitz continued fraction* ([16, Viertes Kapitel]). If every $g_i(k)$ $(i = 1, 2, \ldots, s)$ is exponential and at least one of them is not constant, (1) is called *Tasoev continued fraction* (see e.g. [11, 17]).

We have the following properties.

Received January 27, 2012; revised April 18, 2012

Mathematics Subject Classification: 11D09, 11D25, 11J04, 11J70

Key words and phrases: hyperbolic functions, Hurwitz continued fractions, Diophantine equations

LEMMA 1. For all positive integers n, let p_n and q_n be the n-th partial numerator and denominator of the continued fraction of ξ . We have

- 1. $q_{(n-1)s+\ell} = g_{\ell}(n)q_{(n-1)s+\ell-1} + q_{(n-1)s+\ell-2}$ ($\ell = 1, 2, ..., s$).
- 2. For each $\ell \in \{1, 2, \dots, s-1\}$, there exists $\varepsilon > 0$ such that

$$\frac{1}{(g_{\ell+1}(n)+\varepsilon)q_{(n-1)s+\ell}^2} < \left|\xi - \frac{p_{(n-1)s+\ell}}{q_{(n-1)s+\ell}}\right| < \frac{1}{g_{\ell+1}(n)q_{(n-1)s+\ell}^2}$$

Moreover,

$$\frac{1}{(g_1(n+1)+\varepsilon)q_{ns}^2} < \left|\xi - \frac{p_{ns}}{q_{ns}}\right| < \frac{1}{g_1(n+1)q_{ns}^2}.$$

PROOF. Recall that the denominator of the convergents of the continued fraction of ξ are defined recursively by

$$q_m = a_m q_{m-1} + q_{m-2}$$

where $q_{-1} = 0$, $q_0 = 1$ and a_m is the *m*-th partial quotient of (1). It is easily verified by induction that, for all positive integers *n* and for all $\ell \in \{1, 2, ..., s\}$, we have

$$a_{(n-1)s+\ell} = g_\ell(n) \,,$$

from which the first part holds.

The second part follows immediately from the fact that

$$\frac{1}{(a_{m+1}+1/\alpha_{m+2}+q_{m-1}/q_m)q_m^2} = \left|\xi - \frac{p_m}{q_m}\right| = \frac{1}{(\alpha_{m+1}q_m+q_{m-1})q_m} < \frac{1}{a_{m+1}q_m^2} \cdot \frac{1}{(a_{m+1}q_m+q_{m-1})q_m} < \frac{1}{a_{m+1}q_m^2} \cdot \frac{1}{\alpha_{m+1}q_m^2} \cdot \frac{$$

Let $h : \bar{\mathbf{Q}} \to \mathbf{R}$ be a non-constant rational function which is in the class $C^1[0 + \delta, 1]$, where δ is an arbitrary small positive number. In particular, we choose a rational function hsuch that for each $p, q(> 0) \in \mathbf{Z}$ the function h takes the form

$$h\left(\frac{p}{q}\right) = \frac{h_1(p,q)}{h_2(p,q)}$$

where $h_1, h_2 \in \mathbb{Z}[p, q]$. Assume that there is a polynomial P, whose coefficients are in Z, such that

$$P(h_1, h_2, h_3(h_1, h_2)) = 0.$$
⁽²⁾

By the mean value theorem, there exists $t \in (p/q, \xi)$ if $p/q < \xi$; $t \in (\xi, p/q)$ if $\xi < p/q$

such that

$$\left|h(\xi) - h\left(\frac{p}{q}\right)\right| = |h'(t)| \left|\xi - \frac{p}{q}\right|.$$

We apply Lemma 1 to the above equation and obtain:

LEMMA 2. Let $n \in \mathbf{N}$.

1. For each $\ell = 1, 2, ..., s - 1$, there exist $\varepsilon > 0$ and a constant t such that

$$\frac{|h'(t)|}{(g_{\ell+1}(n)+\varepsilon)q_{(n-1)s+\ell}^2} < \left|h(\xi) - h\left(\frac{p_{(n-1)s+\ell}}{q_{(n-1)s+\ell}}\right)\right| < \frac{|h'(t)|}{g_{\ell+1}(n)q_{(n-1)s+\ell}^2}.$$

2. For $\ell = s$, there exist $\varepsilon := \varepsilon(s, n) > 0$ and a constant t such that

$$\frac{|h'(t)|}{(g_1(n+1)+\varepsilon)q_{ns}^2} < \left|h(\xi) - h\left(\frac{p_{ns}}{q_{ns}}\right)\right| < \frac{|h'(t)|}{g_1(n+1)q_{ns}^2}$$

Putting the above information together, we have:

THEOREM 1. Let $\xi \in \mathbf{R}$ whose continued fraction expansion is given by (1). Then, 1. for each $\ell = 1, 2, ..., s - 1$, there exist $\varepsilon > 0$ and a constant t such that

$$\left|\frac{|h'(t)|}{(g_{\ell+1}(n)+\varepsilon)\,q_{(n-1)s+\ell}^2} < \left|h(\xi) - h\left(\frac{p_{(n-1)s+\ell}}{q_{(n-1)s+\ell}}\right)\right| < \frac{|h'(t)|}{g_{\ell+1}(n)q_{(n-1)s+\ell}^2}$$

2. *for* $\ell = s$ *, there exist* $\varepsilon > 0$ *and a constant t such that*

$$\frac{|h'(t)|}{(g_1(n+1)+\varepsilon)\,q_{ns}^2} < \left|h(\xi) - h\left(\frac{p_{ns}}{q_{ns}}\right)\right| < \frac{|h'(t)|}{g_1(n+1)q_{ns}^2}$$

for all the points (p_m, q_m) from the *m*-th convergents p_m/q_m of (1) lying on the curve (2).

2. Hyperbolic tangent functions

Let p_n/q_n denote the *n*-th convergent of the number

$$\xi := \sqrt{\frac{v}{u}} \tanh\left(\frac{1}{\sqrt{uv}}\right) = [0; \overline{(4k-3)u, (4k-1)v}]_{k=1}^{\infty},$$

where u and v are positive integers.

By applying [7, Corollary 1], the following identities hold for $n \ge 2$.

$$(4n-5)q_{2n} - ((4n-1)(4n-3)(4n-5)uv + (8n-6))q_{2n-2} + (4n-1)q_{2n-4} = 0,$$

$$(4n-3)q_{2n+1} - ((4n+1)(4n-1)(4n-3)uv + (8n-2))q_{2n-1} + (4n+1)q_{2n-3} = 0.$$

The same identities also hold for p_{2n} 's and p_{2n+1} 's instead of q_{2n} 's and q_{2n+1} 's. Then, for $n \ge 1$ there exist $\varepsilon_1, \varepsilon_2 > 0$ such that

$$\frac{1}{\left((4n+1)u+\varepsilon_1\right)q_{2n}^2} < \left|\xi - \frac{p_{2n}}{q_{2n}}\right| < \frac{1}{(4n+1)uq_{2n}^2},\tag{3}$$

$$\frac{1}{\left((4n-1)v+\varepsilon_2\right)q_{2n-1}^2} < \left|\xi - \frac{p_{2n-1}}{q_{2n-1}}\right| < \frac{1}{(4n-1)vq_{2n-1}^2}.$$
(4)

Let h(x) be a function defined in the previous section. Then we have the following, which shall be proven in the next section. The case where ξ is replaced by $e^{1/s}$ is proven in [8, Theorem 3].

LEMMA 3. For any of $(P_n, Q_n) = (p_{2n}, q_{2n})$ and $(P_n, Q_n) = (p_{2n-1}, q_{2n-1})$, the inequalities

$$C_1 \frac{\log \log Q_n}{Q_n^2 \log Q_n} \le \left| h(\xi) - h\left(\frac{P_n}{Q_n}\right) \right| \le C_2 \frac{\log \log Q_n}{Q_n^2 \log Q_n} \quad (n \ge 3),$$

hold, where C_1 and C_2 are effectively computable positive constants depending only on u, v and the function h.

It has long been known, see e.g. [16, p. 124], that the exponential value $e^{1/s}$ has a quasiperiodic continued fraction expansion of the form $[1; s - 1, 1, 1, \overline{s(2k - 1) - 1, 1, 1}]_{k \ge 2}$. Using this particular explicit form and the concept of leaping convergents, very good rational approximations of several numbers related to $e^{1/s}$, such as $\sinh(1/s)$, $\cosh(1/s)$ and $\tanh(1/s)$, have been obtained in 2007 by Elsner, Komatsu and Shiokawa ([8]). The authors have remarkably shown that by choosing appropriate rational functions h, such approximations can be made to involve values of rationals satisfying certain diophantine equations. In 2009, Elsner-Komatsu-Shiokawa ([9]) gave more results dealing with hyperbolic and trigonometric functions which can be approximated by rationals satisfying more diophantine equations.

Various values $h(e^{1/s})$ of hyperbolic and trigonometric functions approximated by rationals x/y such that x and y satisfy Diophantine equations are obtained in [8] and [9], based upon the ideas in [5], [6] and [12]. It is also mentioned without giving any proof in the last section of [9] that similar results would be established even if $e^{1/s}$ is replaced by $h(\tan(1/s))$. We shall show that the similar results are established even if $e^{1/s}$ is replaced by $\sqrt{v/u} \tanh(uv)^{-1/2}$. Namely, we shall show the following results.

THEOREM 2. Let

$$\eta := \frac{1}{2\sqrt{uv}} \left((u-v) \coth \frac{2}{\sqrt{uv}} + (u+v) \operatorname{cosech} \frac{2}{\sqrt{uv}} \right) \,.$$

In addition, assume that $u \ge v$. Then there are infinitely many triples (x, y, z) of integers

satisfying simultaneously

$$|y\eta - x| < C_3 \frac{\log \log y}{\log y}$$
 and $x^2 + y^2 = z^2$.

Conversely, for given integers x, y with $x^2 + y^2 = z^2$, we have the inequality

$$|y\eta - x| > C_4 \frac{\log \log y}{\log y} \,.$$

THEOREM 3. Let

$$\eta_2 := \frac{1}{2\sqrt{uv}} \left((u+v) \coth \frac{2}{\sqrt{uv}} + (u-v) \operatorname{cosech} \frac{2}{\sqrt{uv}} \right) \,.$$

In addition, assume that $u \ge v$. Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$|y\eta_2 - x| < C_5 \frac{\log \log y}{\log y}$$
 and $x^2 - y^2 = z^2$.

Conversely, for given integers x, y with $x^2 - y^2 = z^2$, we have the inequality

$$|y\eta_2 - x| > C_6 \frac{\log \log y}{\log y}.$$

THEOREM 4. Let

$$\eta_3 := \frac{(u-v)\cosh\frac{2}{\sqrt{uv}} + (u+v)}{(u+v)\cosh\frac{2}{\sqrt{uv}} + (u-v)}.$$

In addition, assume that $u \ge v$. Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$|y\eta_3 - x| < C_7 \frac{\log \log y}{\log y}$$
 and $y^2 - x^2 = z^2$.

Conversely, for given integers x, y with $y^2 - x^2 = z^2$, we have the inequality

$$|y\eta_3 - x| > C_8 \frac{\log \log y}{\log y} \,.$$

3. Proof of Lemma 3

We need the following lemma in order to prove Lemma 3.

LEMMA 4. For $n \ge 1$

$$n^{2n-1}u^n v^{n-1} < q_{2n-1} < (2n-1)^{2n-1}u^n v^{n-1},$$
(5)

$$n^{2n}(uv)^n < q_{2n} < (2n)^{2n}(uv)^n .$$
(6)

PROOF. By [14, Corollary1], for n = 1, 2, ... we have

$$q_{2n-1} = \sum_{k=0}^{n-1} \binom{2n+2k}{4k+2} \binom{4k+2}{2k+1} \frac{(2k+1)!}{2^{2k+1}} u^{k+1} v^k,$$
$$q_{2n} = \sum_{k=0}^n \binom{2n+2k}{4k} \binom{4k}{2k} \frac{(2k)!}{2^{2k}} (uv)^k.$$

By using the recurrence relation $q_n = a_n q_{n-1} + q_{n-2}$ $(n \ge 2)$ together with $a_{2n-1} = (4n-3)u$ and $a_{2n} = (4n-1)v$ $(n \ge 1)$, we get both identities by induction.

PROOF OF LEMMA 3. First, let $(P_n, Q_n) = (p_{2n}, q_{2n})$. By (6) for a positive constant D_1 depending only on u and v

$$2n \log n < \log q_{2n} < 2n \log 2n + n \log uv$$
$$< D_1 n \log 2n \quad (n \ge 1).$$

So, for a positive constant D_2

$$\log \log q_{2n} < \log(D_1 n \log 2n) < D_2 \log n \quad (n \ge 2).$$

Thus, for $n \ge 2$

$$n < \frac{\log q_{2n}}{2\log n} < \frac{D_2 \log q_{2n}}{2\log \log q_{2n}}$$

or

$$\frac{1}{n} > \frac{D_3 \log \log q_{2n}}{\log q_{2n}} \quad (D_3 := 2/D_2).$$
(7)

Conversely,

$$\log 2n < \log(2n\log n) < \log\log q_{2n} \quad (n \ge 3).$$

Hence,

$$n > \frac{\log q_{2n}}{D_1 \log 2n} > \frac{\log q_{2n}}{D_1 \log \log q_{2n}}$$

or

$$\frac{1}{n} < \frac{D_1 \log \log q_{2n}}{\log q_{2n}} \quad (n \ge 3) \,. \tag{8}$$

Now, for every positive integer *n* there exists a real number *t* satisfying simultaneously

$$\left|h(\xi) - h\left(\frac{p_{2n}}{q_{2n}}\right)\right| = \left|h'(t)\right| \left|\xi - \frac{p_{2n}}{q_{2n}}\right|$$

and

$$t_1 := \frac{p_2}{q_2} \le \frac{p_{2n}}{q_{2n}} < t < t_2 := \xi$$

By the hypotheses on the function h, the choice of δ and the transcendence of ξ , the positive numbers

$$D_6 := \min_{t_1 \le t \le t_2} |h'(t)|$$
 and $D_7 := \max_{t_1 \le t \le t_2} |h'(t)|$

exist. By Theorem 1 with (3) we have

$$\frac{D_6}{((4n+1)u+\varepsilon_1)q_{2n}^2} < \left|h(\xi) - h\left(\frac{p_{2n}}{q_{2n}}\right)\right| < \frac{D_7}{(4n+1)uq_{2n}^2}.$$
(9)

Therefore, together with (7) and (8) we get

$$\frac{D_4 D_6 \log \log q_{2n}}{q_{2n}^2 \log q_{2n}} < \left| h(\xi) - h\left(\frac{p_{2n}}{q_{2n}}\right) \right| < \frac{D_5 D_7 \log \log q_{2n}}{q_{2n}^2 \log q_{2n}} \quad (n \ge 3)$$

Thus, if we put $C_1 = D_4 D_6$ and $C_2 = D_5 D_7$, the proof of the lemma is completed.

Next, let $(P_n, Q_n) = (p_{2n-1}, q_{2n-1})$. By (5) together with (4) for positive constants D'_4 and D'_5

$$\frac{D_4' \log \log q_{2n-1}}{q_{2n-1}^2 \log q_{2n-1}} < \left| \xi - \frac{p_{2n-1}}{q_{2n-1}} \right| < \frac{D_5' \log \log q_{2n-1}}{q_{2n-1}^2 \log q_{2n-1}} \,.$$

The rest of the parts are also similar and omitted.

We need an auxiliary Lemma in order to Prove Theorem 2. The case where ξ is replaced by $e^{1/s}$ is proven in [9, Lemma 2.1]. The method of proving the following Lemma is similar to the one in [9, Lemma 2.1], so the proof is omitted.

LEMMA 5. Let $h(t) \in \overline{\mathbf{Q}}(t) \setminus \mathbf{Q}$. Then there exists a closed interval $I = [\xi - \delta, \xi + \delta]$ such that for any coprime integers p and $q \geq 3$ the following holds.

$$\frac{p}{q} \in I \quad implies \quad \left| h(\xi) - h\left(\frac{p}{q}\right) \right| > C \frac{\log \log q}{q^2 \log q} \,,$$

where δ and *C* are positive constants depending only on *u*, *v* and the function *h*.

Let

246

$$h(t) := \frac{1}{2} \left(t - \frac{1}{t} \right) \quad (0 < t \le \xi < 1) \,.$$

Notice that h(t) is monotonically increasing for 0 < t < 1 and $h \in C^{(1)}(0, \infty)$. Then

$$h'(t) = \frac{1}{2} + \frac{1}{2t^2}, \quad 1 \le h'(t) \le \frac{1}{2} \left(1 + \frac{1}{t_1^2} \right) \quad (t_1 \le t \le t_2 < 1).$$

Put $x_n := Q_n^2 - P_n^2$, $y_n := 2P_nQ_n$. Notice that $P_n < Q_n$, so that x_n and y_n are always positive. Thus, $x_n^2 + y_n^2 = (P_n^2 + Q_n^2)^2 = z_n^2$. Furthermore,

$$h(\xi) = -\eta, \quad h\left(\frac{P_n}{Q_n}\right) = \frac{P_n^2 - Q_n^2}{2P_nQ_n} = -\frac{x_n}{y_n}$$

By $t_1Q_n^2 < P_nQ_n = y_n/2 \le t_2Q_n^2$, we get $t_1Q_n \le P_n \le t_2Q_n$. So, $Q_n \le 2P_nQ_n = y_n$, implying log log $Q_n \le \log \log y_n$. On the other hand, by $2t_2 \le Q_n$, we have

$$\log y_n \le \log 2t_2 + 2\log Q_n < 3\log Q_n \,$$

yielding $\log Q_n > (1/3) \log y_n$.

Applying Lemma 3, we have

$$\eta - \frac{x_n}{y_n} \bigg| = \bigg| h(\xi) - h\left(\frac{P_n}{Q_n}\right) \bigg|$$
$$\leq C_2 \frac{\log \log Q_n}{Q_n^2 \log Q_n}$$
$$< C_2 \frac{\log \log y_n}{(y_n/2t_2)(1/3) \log y_n}$$

Setting $C_3 := 6t_2C_2$ and $(x, y) = (x_n, y_n)$, we get the upper bound in Theorem 2.

Conversely, by Lemma 5, there exists a closed interval $I = [\xi - \delta, \xi + \delta] \subset [0, 1]$ such that for any positive integers $p, q \ge 3$, $p/q \in I$ the inequality

$$\left|h(\xi) - h\left(\frac{p}{q}\right)\right| > C\frac{\log\log q}{q^2\log q}$$

holds. Let positive integers x, $y \ge 3$, z be given such that $x^2 + y^2 = z^2$. Since $h((0, 1)) = \mathbf{R}_{<0}$, x/y takes every positive rational number. We have

$$x = q^2 - p^2 (> 0), \quad y = 2pq, \quad z = p^2 + q^2$$

and h(p/q) = -x/y. If $p/q = h^{-1}(-x/y) \in I$, then

$$\left|\eta - \frac{x}{y}\right| > C \frac{\log \log q}{q^2 \log q}$$

If $p/q \in I = [\xi - \delta, \xi + \delta]$, then $(\xi - \delta)q . Since <math>y = 2pq > 2(\xi - \delta)q^2$ and $y < 2(\xi + \delta)q^2$, there exists a positive constant D_4 such that

$$\begin{split} \frac{\log \log q}{q^2 \log q} &> \frac{\log((1/2)\log(y/2(\xi+\delta)))}{(y/4(\xi-\delta))\log(y/2(\xi-\delta))} \\ &> D_4 \frac{\log \log y}{y\log y} \quad (y \geq 3) \,. \end{split}$$

Setting $C_4 = D_4 C$, we get the lower bound in Theorem 2.

5. Sketch of the proofs of Theorems 3 and 4

In order to prove Theorem 3, let

$$h(t) = \frac{1}{2} \left(t + \frac{1}{t} \right) \quad (0 < t < 1) \,.$$

Notice that h(t) is monotonically decreasing for 0 < t < 1 and $h \in C^{(1)}(0, \infty)$. Then

$$h(\xi) = \eta_2$$
 and $h\left(\frac{p}{q}\right) = \frac{p^2 + q^2}{2pq}$.

Put $x = p^2 + q^2$, y = 2pq and $z = q^2 - p^2$ with 0 . Then <math>x > y > 0 and z > 0. Since

$$0 < t_1 \le \frac{p}{q} \le t_2 < 1$$
,

we get

$$2t_1q^2 \le y = 2pq \le 2t_2q^2,$$

yielding the desired evaluations.

In order to prove Theorem 4, let

$$h(t) = \frac{t^2 - 1}{t^2 + 1} \quad (0 < t < 1).$$

Notice that h(t) is monotonically increasing for 0 < t < 1 and $h \in C^{(1)}(0, \infty)$. Then

$$h(\xi) = -\eta_3$$
 and $h\left(\frac{p}{q}\right) = \frac{p^2 - q^2}{p^2 + q^2}$.

Put $x = q^2 - p^2$, $y = p^2 + q^2$ and z = 2pq with 0 . Then <math>0 < x < y and z > 0. Since

$$0 < t_1 \le \frac{p}{q} \le t_2 < 1$$
,

we get

$$(t_1^2 + 1)q^2 \le y = 2pq \le (t_2^2 + 1)q^2$$
,

yielding the desired evaluations.

6. More applications

As seen in [9, Section 5], if we apply the results to various functions connected with some suitable Diophantine equations, then we can obtain more results.

THEOREM 5. Let u and v be integers with $u \ge v > 0$. Let

$$\eta_4 := \frac{(u-v)\cosh\frac{2}{\sqrt{uv}} + 2\sqrt{uv}\sinh\frac{2}{\sqrt{uv}} + (u+v)}{(u-v)\cosh\frac{2}{\sqrt{uv}} - 2\sqrt{uv}\sinh\frac{2}{\sqrt{uv}} + (u+v)} \quad and \quad h(t) = \frac{t^2 - 2t - 1}{t^2 + 2t - 1}.$$

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$|y\eta_4 - x| < C_9 \frac{\log \log y}{\log y}$$
 and $x^2 + y^2 = 2z^2$.

Conversely, for given positive integers x, $y(\ge 3)$ with y > x, $h^{-1}(x/y) > \sqrt{2} - 1$ and $x^2 + y^2 = 2z^2$, we have the inequality

$$|y\eta_4 - x| > C_{10} \frac{\log \log y}{\log y} \,.$$

REMARK. If $h(t) = (t^2 + 2t - 1)/(t^2 - 2t - 1)$, then

$$\eta_4 := \frac{(u-v)\cosh\frac{2}{\sqrt{uv}} - 2\sqrt{uv}\sinh\frac{2}{\sqrt{uv}} + (u+v)}{(u-v)\cosh\frac{2}{\sqrt{uv}} + 2\sqrt{uv}\sinh\frac{2}{\sqrt{uv}} + (u+v)}.$$

THEOREM 6. Let u and v be integers with $u \ge v > 0$. Let

$$\eta_5 := \frac{\left((u-v)\cosh\frac{2}{\sqrt{uv}} + (u+v)\right)^2 - 4uv\sinh^2\frac{2}{\sqrt{uv}}}{4\sqrt{uv}\sinh\frac{2}{\sqrt{uv}}\left((u-v)\cosh\frac{2}{\sqrt{uv}} + (u+v)\right)} \quad and \quad h(t) = \frac{(t^2-1)^2 - 4t^2}{4t(t^2-1)}.$$

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$|y\eta_5 - x| < C_{11} \frac{\sqrt{y} \log \log y}{\log y}$$
 and $x^2 + y^2 = z^4$.

Conversely, for given positive integers x, $y \ge 3$ with $x^2 + y^2 = z^4$, we have the inequality

$$|y\eta_5 - x| > C_{12} \frac{\sqrt{y} \log \log y}{\log y}$$

THEOREM 7. Let u and v be integers with $u \ge v > 0$. Let

$$\eta_6 := \frac{(u-v)\cosh\frac{2}{\sqrt{uv}} + (u+v)}{2\sqrt{uv}\sinh\frac{2}{\sqrt{uv}} + u\left(\cosh\frac{2}{\sqrt{uv}} + 1\right)} \quad and \quad h(t) = \frac{t^2 - 1}{2t + 1}.$$

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$|y\eta_6 - x| < C_{13} \frac{\log \log y}{\log y}$$
 and $x^2 + xy + y^2 = z^2$.

Conversely, for given positive integers x, $y(\ge 3)$ with $x^2 + xy + y^2 = z^2$, we have the inequality

$$|y\eta_6 - x| > C_{14} \frac{\log \log y}{\log y}.$$

THEOREM 8. Let u and v be integers with $u \ge v > 0$. Let

$$\eta_7 := \frac{\left((u+v)\cosh\frac{2}{\sqrt{uv}} + (u-v)\right)\left((u-v)\cosh\frac{2}{\sqrt{uv}} + (u+v)\right)}{4uv\sinh^2\frac{2}{\sqrt{uv}}}$$

and

$$h(t) = \frac{1}{4} \left(t^2 - \frac{1}{t^2} \right) \,.$$

Then there are infinitely many triples (x, y, z, w) of integers satisfying simultaneously

$$|y\eta_7 - x| < C_{15} \frac{\sqrt{y} \log \log y}{\log y}$$
 and $x^2 + y^2 = z^4 - w^2$.

Conversely, for given positive integers x, $y \ge 3$, z and w with $x^2 + y^2 = z^4 - w^2$, if we assume that $x = q^4 - p^4$, $y = 4p^2q^2$, $z = p^2 + q^2$ and $w = 2pq(q^2 - p^2)$ (p and q are positive integer with p < q), then we have the inequality

$$|y\eta_7 - x| > C_{16} \frac{\sqrt{y} \log \log y}{\log y} \,.$$

SKETCH OF THE PROOF OF THEOREM 5. The proof is similar to [9, Section 5]. The diophantine equation is due to [2, p.353, Corollary 6.3.14], [9, Lemma 3.2], [15, p.13]. Notice that

$$h(\xi) = \eta_4$$
 and $h\left(\frac{p}{q}\right) = \frac{x}{y} = \frac{p^2 - q^2 - 2pq}{p^2 - q^2 + 2pq}$

up to an exchange of x and y, and $z = p^2 + q^2$. h(t) is monotonically increasing for $0 < t < \sqrt{2} - 1$ and $t > \sqrt{2} - 1$, and $h \in C^{(1)}(0, \sqrt{2} - 1)$, $h \in C^{(1)}(\sqrt{2} - 1, \infty)$. h(t) > 0 for $0 < t < \sqrt{2} - 1$, h(t) < 0 for $\sqrt{2} - 1 < t < \sqrt{2} + 1$.

SKETCH OF THE PROOF OF THEOREM 6. The diophantine equation is due to [3, p.466], [4, p.256], [9, Lemma 3.1]. Notice that

$$h(\xi) = -\eta_5$$
 and $h\left(\frac{p}{q}\right) = -\frac{x}{y} = -\frac{p^4 - 6p^2q^2 + q^4}{4pq(q^2 - p^2)}$

up to an exchange of x and y, and $z = p^2 + q^2$. h(t) is monotonically increasing for 0 < t < 1and $h \in C^{(1)}(0, 1)$. h(t) < 0 for $0 < t < \sqrt{2} - 1$, h(t) > 0 for $\sqrt{2} - 1 < t < 1$.

SKETCH OF THE PROOF OF THEOREM 7. The diophantine equation is due to [4, p.406], [9, Lemma 3.4]. Notice that

$$h(\xi) = -\eta_6$$
 and $h\left(\frac{p}{q}\right) = -\frac{x}{y} = -\frac{q^2 - p^2}{2pq + q^2}$

up to an exchange of x and y, and $z = p^2 + pq + q^2$. h(t) is monotonically increasing for t > -1/2 and $h \in C^{(1)}(-1/2, \infty)$. h(t) < 0 for 0 < t < 1.

SKETCH OF THE PROOF OF THEOREM 8. The diophantine equation is due to [4, p.260], [9, Lemma 3.5]. Notice that

$$h(\xi) = -\eta_7$$
 and $h\left(\frac{p}{q}\right) = -\frac{x}{y} = -\frac{q^4 - p^4}{4p^2q^2}$

up to an exchange of x and y, and $z = p^2 + q^2$ and $w = 2pq(q^2 - p^2)$. h(t) is monotonically increasing for t > 0 and $h \in C^{(1)}(0, \infty)$. h(t) < 0 for 0 < t < 1.

7. Irrationality of numbers

Hurwitz's criterion on irrationality states that a real number α is irrational if and only if there are infinitely many rational numbers p/q, written in lowest terms, such that

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2} \,.$$

Under the view of this criterion, one cannot decide if the numbers η , η_i (i = 2, 3, ..., 7) in this paper are irrational or not. The speed of the convergence is not so rapid since

$$\frac{\log y}{\log \log y} \ll \sqrt{y} < y \,.$$

ACKNOWLEDGMENT. The second author was supported in part by the Grant-in-Aid for Scientific research (C) (No. 22540005), the Japan Society for the Promotion of Science.

CONVERGENTS OF CERTAIN VALUES OF HYPERBOLIC FUNCTIONS

References

- [1] E. B. BURGER and A. M. PILLAI, On Diophantine approximation along algebraic curves, Proc. Amer. Math. Soc. 136 (2008), 11–19.
- [2] H. COHEN, Number Theory, vol. I: Tools and Diophantine Equations, Springer, 2007.
- [3] H. COHEN, Number Theory, vol. II: Analytic and Modern Tools, Springer, 2007.
- [4] L. E. DICKSON, *History of the theory of numbers*, vol. 2, Dover Publications, 2005.
- [5] C. ELSNER, On arithmetic properties of the convergents of Euler's number, Colloq. Math. 79 (1999), 133–145.
- [6] C. ELSNER, On rational approximations by Pythagorean numbers, Fibonacci Quart. 41 (2003), 98–104.
- [7] C. ELSNER and T. KOMATSU, A recurrence formula for leaping convergents of non-regular continued fractions, Linear Algebra Appl. 428 (2008), 824–833.
- [8] C. ELSNER, T. KOMATSU and I. SHIOKAWA, Approximation of values of hypergeometric functions by restricted rationals, J. Théorie des Nombres de Bordeaux 19 (2007), 387–399.
- [9] C. ELSNER, T. KOMATSU and I. SHIOKAWA, On convergents formed from Diophantine equations, Glasnik Mat. 44 (2009), 267–284.
- [10] C. GEORGIKOPOULOS, Rational integral solutions of the equations $x^3 + 4y^3 = z^2$ and $x^3 + 2y^3 = z^2$, Bull. Soc. Math. Gréce **24** (1948), 13–19.
- [11] T. KOMATSU, On Tasoev's continued fractions, Math. Proc. Cambridge Philos. Soc. 134 (2003), 1–12.
- [12] T. KOMATSU, Arithmetical properties of the leaping convergents of $e^{1/s}$, Tokyo J. Math. 27 (2004), 1–12.
- [13] T. KOMATSU, Hurwitz and Tasoev continued fractions, Monatsh. Math. 145 (2005), 47-60.
- [14] T. KOMATSU, Leaping convergents of Hurwitz continued fractions, in Diophantine Analysis and related fields (DARF 2007/2008), AIP Conf. Proc. 976, Amer. Inst. Phys., Melville, NY, 2008, pp.130–143.
- [15] L. J. MORDELL, Diophantine equations, Academic Press, London and New York, 1969.
- [16] O. PERRON, *Die Lehre von den Kettenbrüchen*, Chelsea, New York, 1950.
- B. G. TASOEV, Rational approximations to certain numbers (Russian), Mat. Zametki 67 (2000), 931–937; English transl. in Math. Notes 67 (2000), 786–791.

Present Addresses: TUANGRAT CHAICHANA DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHULALONGKORN UNIVERSITY, BANGKOK 10330, THAILAND. *e-mail*: t_chaichana@hotmail.com

TAKAO KOMATSU GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, HIROSAKI UNIVERSITY, HIROSAKI, 036–8561 JAPAN. *e-mail*: komatsu@cc.hirosaki-u.ac.jp

VICHIAN LAOHAKOSOL DEPARTMENT OF MATHEMATICS, KASETSART UNIVERSITY, BANGKOK 10900, THAILAND. *e-mail:* fscivil@ku.ac.th