On Convergents of Certain Values of Hyperbolic Functions Formed from Diophantine Equations

Tuangrat CHAICHANA, Takao KOMATSU and Vichian LAOHAKOSOL

Chulalongkorn University, Hirosaki University and Kasetsart University

(Communicated by M. Tsuzuki)

Abstract

Let $\xi=\sqrt{v / u} \tanh (u v)^{-1 / 2}$, where u and v are positive integers, and let $\eta=|h(\xi)|$, where $h(t)$ is a non-constant rational function with algebraic coefficients. We compute upper and lower bounds for the approximation of certain values η of hyperbolic functions by rationals x / y such that x and y satisfy Diophantine equations. We show that there are infinitely many coprime integers x and y such that $|y \eta-x| \ll \log \log y / \log y$ and a Diophantine equation holds simultaneously relating x and y and some integer z. Conversely, all positive integers x and y with $y \geq c_{0}$ solving the Diophantine equation satisfy $|y \eta-x| \gg \log \log y / \log y$.

1. Introduction and the basic theorem

$\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ denotes the regular (or simple) continued fraction expansion of a real α, where

$$
\begin{aligned}
\alpha & =a_{0}+1 / \alpha_{1}, \quad a_{0}=\lfloor\alpha\rfloor, \\
\alpha_{n} & =a_{n}+1 / \alpha_{n+1}, \quad a_{n}=\left\lfloor\alpha_{n}\right\rfloor \quad(n \geq 1) .
\end{aligned}
$$

Assume that the continued fraction expansion of a real ξ is quasi-periodic of the form

$$
\begin{align*}
& {\left[a_{0} ; a_{1}, \ldots, a_{n}, \bar{g}_{1}(k), \ldots, g_{s}(k)\right]_{k=1}^{\infty}} \\
& \quad=\left[a_{0} ; a_{1}, \ldots, a_{n}, g_{1}(1), \ldots, g_{s}(1), g_{1}(2), \ldots, g_{s}(2), g_{1}(3), \ldots\right] \tag{1}
\end{align*}
$$

where a_{0} is an integer, a_{1}, \ldots, a_{n} are positive integers, g_{1}, \ldots, g_{s} are positive integer-valued functions for $k=1,2, \ldots$. If every $g_{i}(k)(i=1,2, \ldots, s)$ is a polynomial and at least one of them is not constant, (1) is called Hurwitz continued fraction ([16, Viertes Kapitel]). If every $g_{i}(k)(i=1,2, \ldots, s)$ is exponential and at least one of them is not constant, (1) is called Tasoev continued fraction (see e.g. [11, 17]).

We have the following properties.

Lemma 1. For all positive integers n, let p_{n} and q_{n} be the n-th partial numerator and denominator of the continued fraction of ξ. We have

1. $q_{(n-1) s+\ell}=g_{\ell}(n) q_{(n-1) s+\ell-1}+q_{(n-1) s+\ell-2}(\ell=1,2, \ldots, s)$.
2. For each $\ell \in\{1,2, \ldots, s-1\}$, there exists $\varepsilon>0$ such that

$$
\frac{1}{\left(g_{\ell+1}(n)+\varepsilon\right) q_{(n-1) s+\ell}^{2}}<\left|\xi-\frac{p_{(n-1) s+\ell}}{q_{(n-1) s+\ell}}\right|<\frac{1}{g_{\ell+1}(n) q_{(n-1) s+\ell}^{2}}
$$

Moreover,

$$
\frac{1}{\left(g_{1}(n+1)+\varepsilon\right) q_{n s}^{2}}<\left|\xi-\frac{p_{n s}}{q_{n s}}\right|<\frac{1}{g_{1}(n+1) q_{n s}^{2}}
$$

Proof. Recall that the denominator of the convergents of the continued fraction of ξ are defined recursively by

$$
q_{m}=a_{m} q_{m-1}+q_{m-2}
$$

where $q_{-1}=0, q_{0}=1$ and a_{m} is the m-th partial quotient of (1). It is easily verified by induction that, for all positive integers n and for all $\ell \in\{1,2, \ldots, s\}$, we have

$$
a_{(n-1) s+\ell}=g_{\ell}(n),
$$

from which the first part holds.
The second part follows immediately from the fact that

$$
\begin{aligned}
\frac{1}{\left(a_{m+1}+1 / \alpha_{m+2}+q_{m-1} / q_{m}\right) q_{m}^{2}}=\left|\xi-\frac{p_{m}}{q_{m}}\right|= & \frac{1}{\left(\alpha_{m+1} q_{m}+q_{m-1}\right) q_{m}} \\
& <\frac{1}{\left(a_{m+1} q_{m}+q_{m-1}\right) q_{m}}<\frac{1}{a_{m+1} q_{m}^{2}}
\end{aligned}
$$

Let $h: \overline{\mathbf{Q}} \rightarrow \mathbf{R}$ be a non-constant rational function which is in the class $C^{1}[0+\delta, 1]$, where δ is an arbitrary small positive number. In particular, we choose a rational function h such that for each $p, q(>0) \in \mathbf{Z}$ the function h takes the form

$$
h\left(\frac{p}{q}\right)=\frac{h_{1}(p, q)}{h_{2}(p, q)}
$$

where $h_{1}, h_{2} \in \mathbf{Z}[p, q]$. Assume that there is a polynomial P, whose coefficients are in \mathbf{Z}, such that

$$
\begin{equation*}
P\left(h_{1}, h_{2}, h_{3}\left(h_{1}, h_{2}\right)\right)=0 . \tag{2}
\end{equation*}
$$

By the mean value theorem, there exists $t \in(p / q, \xi)$ if $p / q<\xi ; t \in(\xi, p / q)$ if $\xi<p / q$
such that

$$
\left|h(\xi)-h\left(\frac{p}{q}\right)\right|=\left|h^{\prime}(t)\right|\left|\xi-\frac{p}{q}\right| .
$$

We apply Lemma 1 to the above equation and obtain:
Lemma 2. Let $n \in \mathbf{N}$.

1. For each $\ell=1,2, \ldots, s-1$, there exist $\varepsilon>0$ and a constant t such that

$$
\frac{\left|h^{\prime}(t)\right|}{\left(g_{\ell+1}(n)+\varepsilon\right) q_{(n-1) s+\ell}^{2}}<\left|h(\xi)-h\left(\frac{p_{(n-1) s+\ell}}{q_{(n-1) s+\ell}}\right)\right|<\frac{\left|h^{\prime}(t)\right|}{g_{\ell+1}(n) q_{(n-1) s+\ell}^{2}} .
$$

2. For $\ell=s$, there exist $\varepsilon:=\varepsilon(s, n)>0$ and a constant t such that

$$
\frac{\left|h^{\prime}(t)\right|}{\left(g_{1}(n+1)+\varepsilon\right) q_{n s}^{2}}<\left|h(\xi)-h\left(\frac{p_{n s}}{q_{n s}}\right)\right|<\frac{\left|h^{\prime}(t)\right|}{g_{1}(n+1) q_{n s}^{2}} .
$$

Putting the above information together, we have:
THEOREM 1. Let $\xi \in \mathbf{R}$ whose continued fraction expansion is given by (1). Then,

1. for each $\ell=1,2, \ldots, s-1$, there exist $\varepsilon>0$ and a constant t such that

$$
\frac{\left|h^{\prime}(t)\right|}{\left(g_{\ell+1}(n)+\varepsilon\right) q_{(n-1) s+\ell}^{2}}<\left|h(\xi)-h\left(\frac{p_{(n-1) s+\ell}}{q_{(n-1) s+\ell}}\right)\right|<\frac{\left|h^{\prime}(t)\right|}{g_{\ell+1}(n) q_{(n-1) s+\ell}^{2}}
$$

2. for $\ell=s$, there exist $\varepsilon>0$ and a constant t such that

$$
\frac{\left|h^{\prime}(t)\right|}{\left(g_{1}(n+1)+\varepsilon\right) q_{n s}^{2}}<\left|h(\xi)-h\left(\frac{p_{n s}}{q_{n s}}\right)\right|<\frac{\left|h^{\prime}(t)\right|}{g_{1}(n+1) q_{n s}^{2}}
$$

for all the points $\left(p_{m}, q_{m}\right)$ from the m-th convergents p_{m} / q_{m} of (1) lying on the curve (2).

2. Hyperbolic tangent functions

Let p_{n} / q_{n} denote the n-th convergent of the number

$$
\xi:=\sqrt{\frac{v}{u}} \tanh \left(\frac{1}{\sqrt{u v}}\right)=[0 ; \overline{(4 k-3) u,(4 k-1) v}]_{k=1}^{\infty}
$$

where u and v are positive integers.
By applying [7, Corollary 1], the following identities hold for $n \geq 2$.

$$
\begin{aligned}
& (4 n-5) q_{2 n}-((4 n-1)(4 n-3)(4 n-5) u v+(8 n-6)) q_{2 n-2}+(4 n-1) q_{2 n-4}=0 \\
& (4 n-3) q_{2 n+1}-((4 n+1)(4 n-1)(4 n-3) u v+(8 n-2)) q_{2 n-1}+(4 n+1) q_{2 n-3}=0
\end{aligned}
$$

The same identities also hold for $p_{2 n}$'s and $p_{2 n+1}$'s instead of $q_{2 n}$'s and $q_{2 n+1}$'s. Then, for $n \geq 1$ there exist $\varepsilon_{1}, \varepsilon_{2}>0$ such that

$$
\begin{gather*}
\frac{1}{\left((4 n+1) u+\varepsilon_{1}\right) q_{2 n}^{2}}<\left|\xi-\frac{p_{2 n}}{q_{2 n}}\right|<\frac{1}{(4 n+1) u q_{2 n}^{2}}, \tag{3}\\
\frac{1}{\left((4 n-1) v+\varepsilon_{2}\right) q_{2 n-1}^{2}}<\left|\xi-\frac{p_{2 n-1}}{q_{2 n-1}}\right|<\frac{1}{(4 n-1) v q_{2 n-1}^{2}} . \tag{4}
\end{gather*}
$$

Let $h(x)$ be a function defined in the previous section. Then we have the following, which shall be proven in the next section. The case where ξ is replaced by $e^{1 / s}$ is proven in [8, Theorem 3].

LEMMA 3. For any of $\left(P_{n}, Q_{n}\right)=\left(p_{2 n}, q_{2 n}\right)$ and $\left(P_{n}, Q_{n}\right)=\left(p_{2 n-1}, q_{2 n-1}\right)$, the inequalities

$$
C_{1} \frac{\log \log Q_{n}}{Q_{n}^{2} \log Q_{n}} \leq\left|h(\xi)-h\left(\frac{P_{n}}{Q_{n}}\right)\right| \leq C_{2} \frac{\log \log Q_{n}}{Q_{n}^{2} \log Q_{n}} \quad(n \geq 3)
$$

hold, where C_{1} and C_{2} are effectively computable positive constants depending only on u, v and the function h.

It has long been known, see e.g. [16, p. 124], that the exponential value $e^{1 / s}$ has a quasiperiodic continued fraction expansion of the form $[1 ; s-1,1,1, \overline{s(2 k-1)-1,1,1}]_{k \geq 2}$. Using this particular explicit form and the concept of leaping convergents, very good rational approximations of several numbers related to $e^{1 / s}$, such as $\sinh (1 / s), \cosh (1 / s)$ and $\tanh (1 / s)$, have been obtained in 2007 by Elsner, Komatsu and Shiokawa ([8]). The authors have remarkably shown that by choosing appropriate rational functions h, such approximations can be made to involve values of rationals satisfying certain diophantine equations. In 2009, Elsner-Komatsu-Shiokawa ([9]) gave more results dealing with hyperbolic and trigonometric functions which can be approximated by rationals satisfying more diophantine equations.

Various values $h\left(e^{1 / s}\right)$ of hyperbolic and trigonometric functions approximated by rationals x / y such that x and y satisfy Diophantine equations are obtained in [8] and [9], based upon the ideas in [5], [6] and [12]. It is also mentioned without giving any proof in the last section of [9] that similar results would be established even if $e^{1 / s}$ is replaced by $h(\tan (1 / s))$. We shall show that the similar results are established even if $e^{1 / s}$ is replaced by $\sqrt{v / u} \tanh (u v)^{-1 / 2}$. Namely, we shall show the following results.

Theorem 2. Let

$$
\eta:=\frac{1}{2 \sqrt{u v}}\left((u-v) \operatorname{coth} \frac{2}{\sqrt{u v}}+(u+v) \operatorname{cosech} \frac{2}{\sqrt{u v}}\right) .
$$

In addition, assume that $u \geq v$. Then there are infinitely many triples (x, y, z) of integers
satisfying simultaneously

$$
|y \eta-x|<C_{3} \frac{\log \log y}{\log y} \text { and } x^{2}+y^{2}=z^{2}
$$

Conversely, for given integers x, y with $x^{2}+y^{2}=z^{2}$, we have the inequality

$$
|y \eta-x|>C_{4} \frac{\log \log y}{\log y}
$$

THEOREM 3. Let

$$
\eta_{2}:=\frac{1}{2 \sqrt{u v}}\left((u+v) \operatorname{coth} \frac{2}{\sqrt{u v}}+(u-v) \operatorname{cosech} \frac{2}{\sqrt{u v}}\right) .
$$

In addition, assume that $u \geq v$. Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$
\left|y \eta_{2}-x\right|<C_{5} \frac{\log \log y}{\log y} \quad \text { and } \quad x^{2}-y^{2}=z^{2}
$$

Conversely, for given integers x, y with $x^{2}-y^{2}=z^{2}$, we have the inequality

$$
\left|y \eta_{2}-x\right|>C_{6} \frac{\log \log y}{\log y}
$$

TheOrem 4. Let

$$
\eta_{3}:=\frac{(u-v) \cosh \frac{2}{\sqrt{u v}}+(u+v)}{(u+v) \cosh \frac{2}{\sqrt{u v}}+(u-v)} .
$$

In addition, assume that $u \geq v$. Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$
\left|y \eta_{3}-x\right|<C_{7} \frac{\log \log y}{\log y} \quad \text { and } \quad y^{2}-x^{2}=z^{2}
$$

Conversely, for given integers x, y with $y^{2}-x^{2}=z^{2}$, we have the inequality

$$
\left|y \eta_{3}-x\right|>C_{8} \frac{\log \log y}{\log y}
$$

3. Proof of Lemma 3

We need the following lemma in order to prove Lemma 3.

LEmma 4. For $n \geq 1$

$$
\begin{align*}
n^{2 n-1} u^{n} v^{n-1} & <q_{2 n-1}<(2 n-1)^{2 n-1} u^{n} v^{n-1}, \tag{5}\\
n^{2 n}(u v)^{n} & <q_{2 n}<(2 n)^{2 n}(u v)^{n} . \tag{6}
\end{align*}
$$

Proof. By [14, Corollary 1], for $n=1,2, \ldots$ we have

$$
\begin{aligned}
q_{2 n-1} & =\sum_{k=0}^{n-1}\binom{2 n+2 k}{4 k+2}\binom{4 k+2}{2 k+1} \frac{(2 k+1)!}{2^{2 k+1}} u^{k+1} v^{k}, \\
q_{2 n} & =\sum_{k=0}^{n}\binom{2 n+2 k}{4 k}\binom{4 k}{2 k} \frac{(2 k)!}{2^{2 k}}(u v)^{k} .
\end{aligned}
$$

By using the recurrence relation $q_{n}=a_{n} q_{n-1}+q_{n-2}(n \geq 2)$ together with $a_{2 n-1}=(4 n-3) u$ and $a_{2 n}=(4 n-1) v(n \geq 1)$, we get both identities by induction.

Proof of Lemma 3. First, let $\left(P_{n}, Q_{n}\right)=\left(p_{2 n}, q_{2 n}\right)$. By (6) for a positive constant D_{1} depending only on u and v

$$
\begin{aligned}
2 n \log n<\log q_{2 n} & <2 n \log 2 n+n \log u v \\
& <D_{1} n \log 2 n \quad(n \geq 1) .
\end{aligned}
$$

So, for a positive constant D_{2}

$$
\log \log q_{2 n}<\log \left(D_{1} n \log 2 n\right)<D_{2} \log n \quad(n \geq 2)
$$

Thus, for $n \geq 2$

$$
n<\frac{\log q_{2 n}}{2 \log n}<\frac{D_{2} \log q_{2 n}}{2 \log \log q_{2 n}}
$$

or

$$
\begin{equation*}
\frac{1}{n}>\frac{D_{3} \log \log q_{2 n}}{\log q_{2 n}} \quad\left(D_{3}:=2 / D_{2}\right) \tag{7}
\end{equation*}
$$

Conversely,

$$
\log 2 n<\log (2 n \log n)<\log \log q_{2 n} \quad(n \geq 3) .
$$

Hence,

$$
n>\frac{\log q_{2 n}}{D_{1} \log 2 n}>\frac{\log q_{2 n}}{D_{1} \log \log q_{2 n}}
$$

or

$$
\begin{equation*}
\frac{1}{n}<\frac{D_{1} \log \log q_{2 n}}{\log q_{2 n}} \quad(n \geq 3) \tag{8}
\end{equation*}
$$

Now, for every positive integer n there exists a real number t satisfying simultaneously

$$
\left|h(\xi)-h\left(\frac{p_{2 n}}{q_{2 n}}\right)\right|=\left|h^{\prime}(t)\right|\left|\xi-\frac{p_{2 n}}{q_{2 n}}\right|
$$

and

$$
t_{1}:=\frac{p_{2}}{q_{2}} \leq \frac{p_{2 n}}{q_{2 n}}<t<t_{2}:=\xi
$$

By the hypotheses on the function h, the choice of δ and the transcendence of ξ, the positive numbers

$$
D_{6}:=\min _{t_{1} \leq t \leq t_{2}}\left|h^{\prime}(t)\right| \quad \text { and } \quad D_{7}:=\max _{t_{1} \leq t \leq t_{2}}\left|h^{\prime}(t)\right|
$$

exist. By Theorem 1 with (3) we have

$$
\begin{equation*}
\frac{D_{6}}{\left((4 n+1) u+\varepsilon_{1}\right) q_{2 n}^{2}}<\left|h(\xi)-h\left(\frac{p_{2 n}}{q_{2 n}}\right)\right|<\frac{D_{7}}{(4 n+1) u q_{2 n}^{2}} \tag{9}
\end{equation*}
$$

Therefore, together with (7) and (8) we get

$$
\frac{D_{4} D_{6} \log \log q_{2 n}}{q_{2 n}^{2} \log q_{2 n}}<\left|h(\xi)-h\left(\frac{p_{2 n}}{q_{2 n}}\right)\right|<\frac{D_{5} D_{7} \log \log q_{2 n}}{q_{2 n}^{2} \log q_{2 n}} \quad(n \geq 3)
$$

Thus, if we put $C_{1}=D_{4} D_{6}$ and $C_{2}=D_{5} D_{7}$, the proof of the lemma is completed.
Next, let $\left(P_{n}, Q_{n}\right)=\left(p_{2 n-1}, q_{2 n-1}\right)$. By (5) together with (4) for positive constants D_{4}^{\prime} and D_{5}^{\prime}

$$
\frac{D_{4}^{\prime} \log \log q_{2 n-1}}{q_{2 n-1}^{2} \log q_{2 n-1}}<\left|\xi-\frac{p_{2 n-1}}{q_{2 n-1}}\right|<\frac{D_{5}^{\prime} \log \log q_{2 n-1}}{q_{2 n-1}^{2} \log q_{2 n-1}}
$$

The rest of the parts are also similar and omitted.

4. Proof of Theorem 2

We need an auxiliary Lemma in order to Prove Theorem 2. The case where ξ is replaced by $e^{1 / s}$ is proven in [9, Lemma 2.1]. The method of proving the following Lemma is similar to the one in [9, Lemma 2.1], so the proof is omitted.

Lemma 5. Let $h(t) \in \overline{\mathbf{Q}}(t) \backslash \mathbf{Q}$. Then there exists a closed interval $I=[\xi-\delta, \xi+\delta]$ such that for any coprime integers p and $q(\geq 3)$ the following holds.

$$
\frac{p}{q} \in I \quad \text { implies } \quad\left|h(\xi)-h\left(\frac{p}{q}\right)\right|>C \frac{\log \log q}{q^{2} \log q}
$$

where δ and C are positive constants depending only on u, v and the function h.

Let

$$
h(t):=\frac{1}{2}\left(t-\frac{1}{t}\right) \quad(0<t \leq \xi<1)
$$

Notice that $h(t)$ is monotonically increasing for $0<t<1$ and $h \in C^{(1)}(0, \infty)$. Then

$$
h^{\prime}(t)=\frac{1}{2}+\frac{1}{2 t^{2}}, \quad 1 \leq h^{\prime}(t) \leq \frac{1}{2}\left(1+\frac{1}{t_{1}^{2}}\right) \quad\left(t_{1} \leq t \leq t_{2}<1\right) .
$$

Put $x_{n}:=Q_{n}^{2}-P_{n}^{2}, y_{n}:=2 P_{n} Q_{n}$. Notice that $P_{n}<Q_{n}$, so that x_{n} and y_{n} are always positive. Thus, $x_{n}^{2}+y_{n}^{2}=\left(P_{n}^{2}+Q_{n}^{2}\right)^{2}=z_{n}^{2}$. Furthermore,

$$
h(\xi)=-\eta, \quad h\left(\frac{P_{n}}{Q_{n}}\right)=\frac{P_{n}^{2}-Q_{n}^{2}}{2 P_{n} Q_{n}}=-\frac{x_{n}}{y_{n}} .
$$

By $t_{1} Q_{n}^{2}<P_{n} Q_{n}=y_{n} / 2 \leq t_{2} Q_{n}^{2}$, we get $t_{1} Q_{n} \leq P_{n} \leq t_{2} Q_{n}$. So, $Q_{n} \leq 2 P_{n} Q_{n}=y_{n}$, implying $\log \log Q_{n} \leq \log \log y_{n}$. On the other hand, by $2 t_{2} \leq Q_{n}$, we have

$$
\log y_{n} \leq \log 2 t_{2}+2 \log Q_{n}<3 \log Q_{n}
$$

yielding $\log Q_{n}>(1 / 3) \log y_{n}$.
Applying Lemma 3, we have

$$
\begin{aligned}
\left|\eta-\frac{x_{n}}{y_{n}}\right| & =\left|h(\xi)-h\left(\frac{P_{n}}{Q_{n}}\right)\right| \\
& \leq C_{2} \frac{\log \log Q_{n}}{Q_{n}^{2} \log Q_{n}} \\
& <C_{2} \frac{\log \log y_{n}}{\left(y_{n} / 2 t_{2}\right)(1 / 3) \log y_{n}} .
\end{aligned}
$$

Setting $C_{3}:=6 t_{2} C_{2}$ and $(x, y)=\left(x_{n}, y_{n}\right)$, we get the upper bound in Theorem 2.
Conversely, by Lemma 5, there exists a closed interval $I=[\xi-\delta, \xi+\delta] \subset[0,1]$ such that for any positive integers $p, q(\geq 3), p / q \in I$ the inequality

$$
\left|h(\xi)-h\left(\frac{p}{q}\right)\right|>C \frac{\log \log q}{q^{2} \log q}
$$

holds. Let positive integers $x, y(\geq 3), z$ be given such that $x^{2}+y^{2}=z^{2}$. Since $h((0,1))=$ $\mathbf{R}_{<0}, x / y$ takes every positive rational number. We have

$$
x=q^{2}-p^{2}(>0), \quad y=2 p q, \quad z=p^{2}+q^{2}
$$

and $h(p / q)=-x / y$. If $p / q=h^{-1}(-x / y) \in I$, then

$$
\left|\eta-\frac{x}{y}\right|>C \frac{\log \log q}{q^{2} \log q}
$$

If $p / q \in I=[\xi-\delta, \xi+\delta]$, then $(\xi-\delta) q<p<(\xi+\delta) q$. Since $y=2 p q>2(\xi-\delta) q^{2}$ and $y<2(\xi+\delta) q^{2}$, there exists a positive constant D_{4} such that

$$
\begin{aligned}
\frac{\log \log q}{q^{2} \log q} & >\frac{\log ((1 / 2) \log (y / 2(\xi+\delta)))}{(y / 4(\xi-\delta)) \log (y / 2(\xi-\delta))} \\
& >D_{4} \frac{\log \log y}{y \log y} \quad(y \geq 3)
\end{aligned}
$$

Setting $C_{4}=D_{4} C$, we get the lower bound in Theorem 2 .

5. Sketch of the proofs of Theorems 3 and 4

In order to prove Theorem 3, let

$$
h(t)=\frac{1}{2}\left(t+\frac{1}{t}\right) \quad(0<t<1) .
$$

Notice that $h(t)$ is monotonically decreasing for $0<t<1$ and $h \in C^{(1)}(0, \infty)$. Then

$$
h(\xi)=\eta_{2} \quad \text { and } \quad h\left(\frac{p}{q}\right)=\frac{p^{2}+q^{2}}{2 p q}
$$

Put $x=p^{2}+q^{2}, y=2 p q$ and $z=q^{2}-p^{2}$ with $0<p<q$. Then $x>y>0$ and $z>0$.
Since

$$
0<t_{1} \leq \frac{p}{q} \leq t_{2}<1
$$

we get

$$
2 t_{1} q^{2} \leq y=2 p q \leq 2 t_{2} q^{2}
$$

yielding the desired evaluations.
In order to prove Theorem 4, let

$$
h(t)=\frac{t^{2}-1}{t^{2}+1} \quad(0<t<1)
$$

Notice that $h(t)$ is monotonically increasing for $0<t<1$ and $h \in C^{(1)}(0, \infty)$. Then

$$
h(\xi)=-\eta_{3} \quad \text { and } \quad h\left(\frac{p}{q}\right)=\frac{p^{2}-q^{2}}{p^{2}+q^{2}} .
$$

Put $x=q^{2}-p^{2}, y=p^{2}+q^{2}$ and $z=2 p q$ with $0<p<q$. Then $0<x<y$ and $z>0$.
Since

$$
0<t_{1} \leq \frac{p}{q} \leq t_{2}<1
$$

we get

$$
\left(t_{1}^{2}+1\right) q^{2} \leq y=2 p q \leq\left(t_{2}^{2}+1\right) q^{2}
$$

yielding the desired evaluations.

6. More applications

As seen in [9, Section 5], if we apply the results to various functions connected with some suitable Diophantine equations, then we can obtain more results.

THEOREM 5. Let u and v be integers with $u \geq v>0$. Let

$$
\eta_{4}:=\frac{(u-v) \cosh \frac{2}{\sqrt{u v}}+2 \sqrt{u v} \sinh \frac{2}{\sqrt{u v}}+(u+v)}{(u-v) \cosh \frac{2}{\sqrt{u v}}-2 \sqrt{u v} \sinh \frac{2}{\sqrt{u v}}+(u+v)} \quad \text { and } \quad h(t)=\frac{t^{2}-2 t-1}{t^{2}+2 t-1} .
$$

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$
\left|y \eta_{4}-x\right|<C_{9} \frac{\log \log y}{\log y} \quad \text { and } \quad x^{2}+y^{2}=2 z^{2}
$$

Conversely, for given positive integers $x, y(\geq 3)$ with $y>x, h^{-1}(x / y)>\sqrt{2}-1$ and $x^{2}+y^{2}=2 z^{2}$, we have the inequality

$$
\left|y \eta_{4}-x\right|>C_{10} \frac{\log \log y}{\log y}
$$

REMARK. If $h(t)=\left(t^{2}+2 t-1\right) /\left(t^{2}-2 t-1\right)$, then

$$
\eta_{4}:=\frac{(u-v) \cosh \frac{2}{\sqrt{u v}}-2 \sqrt{u v} \sinh \frac{2}{\sqrt{u v}}+(u+v)}{(u-v) \cosh \frac{2}{\sqrt{u v}}+2 \sqrt{u v} \sinh \frac{2}{\sqrt{u v}}+(u+v)} .
$$

THEOREM 6. Let u and v be integers with $u \geq v>0$. Let

$$
\eta_{5}:=\frac{\left((u-v) \cosh \frac{2}{\sqrt{u v}}+(u+v)\right)^{2}-4 u v \sinh ^{2} \frac{2}{\sqrt{u v}}}{4 \sqrt{u v} \sinh \frac{2}{\sqrt{u v}}\left((u-v) \cosh \frac{2}{\sqrt{u v}}+(u+v)\right)} \quad \text { and } \quad h(t)=\frac{\left(t^{2}-1\right)^{2}-4 t^{2}}{4 t\left(t^{2}-1\right)} .
$$

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$
\left|y \eta_{5}-x\right|<C_{11} \frac{\sqrt{y} \log \log y}{\log y} \quad \text { and } \quad x^{2}+y^{2}=z^{4}
$$

Conversely, for given positive integers $x, y(\geq 3)$ with $x^{2}+y^{2}=z^{4}$, we have the inequality

$$
\left|y \eta_{5}-x\right|>C_{12} \frac{\sqrt{y} \log \log y}{\log y}
$$

THEOREM 7. Let u and v be integers with $u \geq v>0$. Let

$$
\eta_{6}:=\frac{(u-v) \cosh \frac{2}{\sqrt{u v}}+(u+v)}{2 \sqrt{u v} \sinh \frac{2}{\sqrt{u v}}+u\left(\cosh \frac{2}{\sqrt{u v}}+1\right)} \quad \text { and } \quad h(t)=\frac{t^{2}-1}{2 t+1} .
$$

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

$$
\left|y \eta_{6}-x\right|<C_{13} \frac{\log \log y}{\log y} \quad \text { and } \quad x^{2}+x y+y^{2}=z^{2}
$$

Conversely, for given positive integers $x, y(\geq 3)$ with $x^{2}+x y+y^{2}=z^{2}$, we have the inequality

$$
\left|y \eta_{6}-x\right|>C_{14} \frac{\log \log y}{\log y}
$$

THEOREM 8. Let u and v be integers with $u \geq v>0$. Let

$$
\eta_{7}:=\frac{\left((u+v) \cosh \frac{2}{\sqrt{u v}}+(u-v)\right)\left((u-v) \cosh \frac{2}{\sqrt{u v}}+(u+v)\right)}{4 u v \sinh ^{2} \frac{2}{\sqrt{u v}}}
$$

and

$$
h(t)=\frac{1}{4}\left(t^{2}-\frac{1}{t^{2}}\right)
$$

Then there are infinitely many triples (x, y, z, w) of integers satisfying simultaneously

$$
\left|y \eta_{7}-x\right|<C_{15} \frac{\sqrt{y} \log \log y}{\log y} \text { and } x^{2}+y^{2}=z^{4}-w^{2}
$$

Conversely, for given positive integers $x, y(\geq 3), z$ and w with $x^{2}+y^{2}=z^{4}-w^{2}$, if we assume that $x=q^{4}-p^{4}, y=4 p^{2} q^{2}, z=p^{2}+q^{2}$ and $w=2 p q\left(q^{2}-p^{2}\right)(p$ and q are positive integer with $p<q$), then we have the inequality

$$
\left|y \eta_{7}-x\right|>C_{16} \frac{\sqrt{y} \log \log y}{\log y} .
$$

Sketch of the proof of Theorem 5. The proof is similar to [9, Section 5]. The diophantine equation is due to [2, p.353, Corollary 6.3.14], [9, Lemma 3.2], [15, p.13]. Notice that

$$
h(\xi)=\eta_{4} \quad \text { and } \quad h\left(\frac{p}{q}\right)=\frac{x}{y}=\frac{p^{2}-q^{2}-2 p q}{p^{2}-q^{2}+2 p q}
$$

up to an exchange of x and y, and $z=p^{2}+q^{2} . h(t)$ is monotonically increasing for $0<$ $t<\sqrt{2}-1$ and $t>\sqrt{2}-1$, and $h \in C^{(1)}(0, \sqrt{2}-1), h \in C^{(1)}(\sqrt{2}-1, \infty) . h(t)>0$ for $0<t<\sqrt{2}-1, h(t)<0$ for $\sqrt{2}-1<t<\sqrt{2}+1$.

Sketch of the proof of Theorem 6. The diophantine equation is due to [3, p.466], [4, p.256], [9, Lemma 3.1]. Notice that

$$
h(\xi)=-\eta_{5} \quad \text { and } \quad h\left(\frac{p}{q}\right)=-\frac{x}{y}=-\frac{p^{4}-6 p^{2} q^{2}+q^{4}}{4 p q\left(q^{2}-p^{2}\right)}
$$

up to an exchange of x and y, and $z=p^{2}+q^{2} . h(t)$ is monotonically increasing for $0<t<1$ and $h \in C^{(1)}(0,1) . h(t)<0$ for $0<t<\sqrt{2}-1, h(t)>0$ for $\sqrt{2}-1<t<1$.

Sketch of the proof of Theorem 7. The diophantine equation is due to [4, p.406], [9, Lemma 3.4]. Notice that

$$
h(\xi)=-\eta_{6} \quad \text { and } \quad h\left(\frac{p}{q}\right)=-\frac{x}{y}=-\frac{q^{2}-p^{2}}{2 p q+q^{2}}
$$

up to an exchange of x and y, and $z=p^{2}+p q+q^{2} . h(t)$ is monotonically increasing for $t>-1 / 2$ and $h \in C^{(1)}(-1 / 2, \infty) . h(t)<0$ for $0<t<1$.

Sketch of the proof of Theorem 8. The diophantine equation is due to [4, p.260], [9, Lemma 3.5]. Notice that

$$
h(\xi)=-\eta_{7} \quad \text { and } \quad h\left(\frac{p}{q}\right)=-\frac{x}{y}=-\frac{q^{4}-p^{4}}{4 p^{2} q^{2}}
$$

up to an exchange of x and y, and $z=p^{2}+q^{2}$ and $w=2 p q\left(q^{2}-p^{2}\right)$. $h(t)$ is monotonically increasing for $t>0$ and $h \in C^{(1)}(0, \infty) . h(t)<0$ for $0<t<1$.

7. Irrationality of numbers

Hurwitz's criterion on irrationality states that a real number α is irrational if and only if there are infinitely many rational numbers p / q, written in lowest terms, such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

Under the view of this criterion, one cannot decide if the numbers $\eta, \eta_{i}(i=2,3, \ldots, 7)$ in this paper are irrational or not. The speed of the convergence is not so rapid since

$$
\frac{\log y}{\log \log y} \ll \sqrt{y}<y
$$

Acknowledgment. The second author was supported in part by the Grant-in-Aid for Scientific research (C) (No. 22540005), the Japan Society for the Promotion of Science.

References

[1] E. B. Burger and A. M. Pillai, On Diophantine approximation along algebraic curves, Proc. Amer. Math. Soc. 136 (2008), 11-19.
[2] H. COHEN, Number Theory, vol. I: Tools and Diophantine Equations, Springer, 2007.
[3] H. Cohen, Number Theory, vol. II: Analytic and Modern Tools, Springer, 2007.
[4] L. E. Dickson, History of the theory of numbers, vol. 2, Dover Publications, 2005.
[5] C. ElSner, On arithmetic properties of the convergents of Euler's number, Colloq. Math. 79 (1999), 133-145.
[6] C. Elsner, On rational approximations by Pythagorean numbers, Fibonacci Quart. 41 (2003), 98-104.
[7] C. Elsner and T. Komatsu, A recurrence formula for leaping convergents of non-regular continued fractions, Linear Algebra Appl. 428 (2008), 824-833.
[8] C. Elsner, T. Komatsu and I. Shiokawa, Approximation of values of hypergeometric functions by restricted rationals, J. Théorie des Nombres de Bordeaux 19 (2007), 387-399.
[9] C. ElSner, T. Komatsu and I. Shiokawa, On convergents formed from Diophantine equations, Glasnik Mat. 44 (2009), 267-284.
[10] C. Georgikopoulos, Rational integral solutions of the equations $x^{3}+4 y^{3}=z^{2}$ and $x^{3}+2 y^{3}=z^{2}$, Bull. Soc. Math. Gréce 24 (1948), 13-19.
[11] T. Komatsu, On Tasoev's continued fractions, Math. Proc. Cambridge Philos. Soc. 134 (2003), 1-12.
[12] T. Komatsu, Arithmetical properties of the leaping convergents of $e^{1 / s}$, Tokyo J. Math. 27 (2004), 1-12.
[13] T. Komatsu, Hurwitz and Tasoev continued fractions, Monatsh. Math. 145 (2005), 47-60.
[14] T. Komatsu, Leaping convergents of Hurwitz continued fractions, in Diophantine Analysis and related fields (DARF 2007/2008), AIP Conf. Proc. 976, Amer. Inst. Phys., Melville, NY, 2008, pp.130-143.
[15] L. J. Mordell, Diophantine equations, Academic Press, London and New York, 1969.
[16] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea, New York, 1950.
[17] B. G. Tasoev, Rational approximations to certain numbers (Russian), Mat. Zametki 67 (2000), 931-937; English transl. in Math. Notes 67 (2000), 786-791.

Present Addresses:

Tuangrat Chaichana
Department of Mathematics, Faculty of Science,
Chulalong orn University,
Bangkok 10330, Thailand.
e-mail: t_chaichana@hotmail.com
Takao Komatsu
Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561 Japan. e-mail: komatsu@cc.hirosaki-u.ac.jp
Vichian Laohakosol
Department of Mathematics, Kasetsart University, BANGKOK 10900, Thailand. e-mail: fscivil@ku.ac.th

