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Abstract. Let ξ = √
v/u tanh(uv)−1/2, where u and v are positive integers, and let η = |h(ξ)|, where

h(t) is a non-constant rational function with algebraic coefficients. We compute upper and lower bounds for the
approximation of certain values η of hyperbolic functions by rationals x/y such that x and y satisfy Diophantine
equations. We show that there are infinitely many coprime integers x and y such that |yη − x| � log log y/ log y and
a Diophantine equation holds simultaneously relating x and y and some integer z. Conversely, all positive integers x

and y with y ≥ c0 solving the Diophantine equation satisfy |yη − x| � log log y/ log y.

1. Introduction and the basic theorem

α = [a0; a1, a2, . . . ] denotes the regular (or simple) continued fraction expansion of a
real α, where

α = a0 + 1/α1 , a0 = �α� ,

αn = an + 1/αn+1 , an = �αn� (n ≥ 1) .

Assume that the continued fraction expansion of a real ξ is quasi-periodic of the form

[a0; a1, . . . , an, g1(k), . . . , gs (k)]∞k=1

= [a0; a1, . . . , an, g1(1), . . . , gs (1), g1(2), . . . , gs (2), g1(3), . . . ] , (1)

where a0 is an integer, a1, . . . , an are positive integers, g1, . . . , gs are positive integer-valued
functions for k = 1, 2, . . . . If every gi (k) (i = 1, 2, . . . , s) is a polynomial and at least one of
them is not constant, (1) is called Hurwitz continued fraction ([16, Viertes Kapitel]). If every
gi (k) (i = 1, 2, . . . , s) is exponential and at least one of them is not constant, (1) is called
Tasoev continued fraction (see e.g. [11, 17]).

We have the following properties.
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LEMMA 1. For all positive integers n, let pn and qn be the n-th partial numerator and
denominator of the continued fraction of ξ . We have

1. q(n−1)s+� = g�(n)q(n−1)s+�−1 + q(n−1)s+�−2 (� = 1, 2, . . . , s).
2. For each � ∈ {1, 2, . . . , s − 1}, there exists ε > 0 such that

1

(g�+1(n) + ε) q2
(n−1)s+�

<

∣∣∣∣ξ − p(n−1)s+�

q(n−1)s+�

∣∣∣∣ <
1

g�+1(n)q2
(n−1)s+�

.

Moreover,

1

(g1(n + 1) + ε) q2
ns

<

∣∣∣∣ξ − pns

qns

∣∣∣∣ <
1

g1(n + 1)q2
ns

.

PROOF. Recall that the denominator of the convergents of the continued fraction of ξ

are defined recursively by

qm = amqm−1 + qm−2

where q−1 = 0, q0 = 1 and am is the m-th partial quotient of (1). It is easily verified by
induction that, for all positive integers n and for all � ∈ {1, 2, . . . , s}, we have

a(n−1)s+� = g�(n) ,

from which the first part holds.
The second part follows immediately from the fact that

1

(am+1 + 1/αm+2 + qm−1/qm)q2
m

=
∣∣∣∣ξ − pm

qm

∣∣∣∣ = 1

(αm+1qm + qm−1)qm

<
1

(am+1qm + qm−1)qm

<
1

am+1q2
m

.

�

Let h : Q̄ → R be a non-constant rational function which is in the class C1[0 + δ, 1],
where δ is an arbitrary small positive number. In particular, we choose a rational function h

such that for each p, q(> 0) ∈ Z the function h takes the form

h

(
p

q

)
= h1(p, q)

h2(p, q)

where h1, h2 ∈ Z[p, q]. Assume that there is a polynomial P , whose coefficients are in Z,
such that

P(h1, h2, h3(h1, h2)) = 0 . (2)

By the mean value theorem, there exists t ∈ (p/q, ξ) if p/q < ξ ; t ∈ (ξ, p/q) if ξ < p/q
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such that ∣∣∣∣h(ξ) − h

(
p

q

)∣∣∣∣ = |h′(t)|
∣∣∣∣ξ − p

q

∣∣∣∣ .

We apply Lemma 1 to the above equation and obtain:

LEMMA 2. Let n ∈ N.
1. For each � = 1, 2, . . . , s − 1, there exist ε > 0 and a constant t such that

|h′(t)|
(g�+1(n) + ε) q2

(n−1)s+�

<

∣∣∣∣h(ξ) − h

(
p(n−1)s+�

q(n−1)s+�

)∣∣∣∣ <
|h′(t)|

g�+1(n)q2
(n−1)s+�

.

2. For � = s, there exist ε := ε(s, n) > 0 and a constant t such that

|h′(t)|
(g1(n + 1) + ε) q2

ns

<

∣∣∣∣h(ξ) − h

(
pns

qns

)∣∣∣∣ <
|h′(t)|

g1(n + 1)q2
ns

.

Putting the above information together, we have:

THEOREM 1. Let ξ ∈ R whose continued fraction expansion is given by (1). Then,
1. for each � = 1, 2, . . . , s − 1, there exist ε > 0 and a constant t such that

|h′(t)|
(g�+1(n) + ε) q2

(n−1)s+�

<

∣∣∣∣h(ξ) − h

(
p(n−1)s+�

q(n−1)s+�

)∣∣∣∣ <
|h′(t)|

g�+1(n)q2
(n−1)s+�

;

2. for � = s, there exist ε > 0 and a constant t such that

|h′(t)|
(g1(n + 1) + ε) q2

ns

<

∣∣∣∣h(ξ) − h

(
pns

qns

)∣∣∣∣ <
|h′(t)|

g1(n + 1)q2
ns

for all the points (pm, qm) from the m-th convergents pm/qm of (1) lying on the curve (2).

2. Hyperbolic tangent functions

Let pn/qn denote the n-th convergent of the number

ξ :=
√

v

u
tanh

(
1√
uv

)
= [0; (4k − 3)u, (4k − 1)v ]∞k=1 ,

where u and v are positive integers.
By applying [7, Corollary 1], the following identities hold for n ≥ 2.

(4n − 5)q2n − (
(4n − 1)(4n − 3)(4n − 5)uv + (8n − 6)

)
q2n−2 + (4n − 1)q2n−4 = 0 ,

(4n − 3)q2n+1 − (
(4n + 1)(4n − 1)(4n − 3)uv + (8n − 2)

)
q2n−1 + (4n + 1)q2n−3 = 0 .
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The same identities also hold for p2n’s and p2n+1’s instead of q2n’s and q2n+1’s. Then, for
n ≥ 1 there exist ε1, ε2 > 0 such that

1(
(4n + 1)u + ε1

)
q2

2n

<

∣∣∣∣ξ − p2n

q2n

∣∣∣∣ <
1

(4n + 1)uq2
2n

, (3)

1(
(4n − 1)v + ε2

)
q2

2n−1

<

∣∣∣∣ξ − p2n−1

q2n−1

∣∣∣∣ <
1

(4n − 1)vq2
2n−1

. (4)

Let h(x) be a function defined in the previous section. Then we have the following,

which shall be proven in the next section. The case where ξ is replaced by e1/s is proven in
[8, Theorem 3].

LEMMA 3. For any of (Pn,Qn) = (p2n, q2n) and (Pn,Qn) = (p2n−1, q2n−1), the
inequalities

C1
log log Qn

Q2
n log Qn

≤
∣∣∣∣h(ξ) − h

(
Pn

Qn

)∣∣∣∣ ≤ C2
log log Qn

Q2
n log Qn

(n ≥ 3) ,

hold, where C1 and C2 are effectively computable positive constants depending only on u, v

and the function h.

It has long been known, see e.g. [16, p. 124], that the exponential value e1/s has a quasi-

periodic continued fraction expansion of the form [1; s − 1, 1, 1, s(2k − 1) − 1, 1, 1]k≥2. Us-
ing this particular explicit form and the concept of leaping convergents, very good rational ap-

proximations of several numbers related to e1/s , such as sinh(1/s), cosh(1/s) and tanh(1/s),
have been obtained in 2007 by Elsner, Komatsu and Shiokawa ([8]). The authors have re-
markably shown that by choosing appropriate rational functions h, such approximations can
be made to involve values of rationals satisfying certain diophantine equations. In 2009,
Elsner-Komatsu-Shiokawa ([9]) gave more results dealing with hyperbolic and trigonometric
functions which can be approximated by rationals satisfying more diophantine equations.

Various values h(e1/s) of hyperbolic and trigonometric functions approximated by ra-
tionals x/y such that x and y satisfy Diophantine equations are obtained in [8] and [9],
based upon the ideas in [5], [6] and [12]. It is also mentioned without giving any proof in
the last section of [9] that similar results would be established even if e1/s is replaced by

h(tan(1/s)). We shall show that the similar results are established even if e1/s is replaced by√
v/u tanh(uv)−1/2. Namely, we shall show the following results.

THEOREM 2. Let

η := 1

2
√

uv

(
(u − v) coth

2√
uv

+ (u + v)cosech
2√
uv

)
.

In addition, assume that u ≥ v. Then there are infinitely many triples (x, y, z) of integers
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satisfying simultaneously

|yη − x| < C3
log log y

log y
and x2 + y2 = z2 .

Conversely, for given integers x, y with x2 + y2 = z2, we have the inequality

|yη − x| > C4
log log y

log y
.

THEOREM 3. Let

η2 := 1

2
√

uv

(
(u + v) coth

2√
uv

+ (u − v)cosech
2√
uv

)
.

In addition, assume that u ≥ v. Then there are infinitely many triples (x, y, z) of integers
satisfying simultaneously

|yη2 − x| < C5
log log y

log y
and x2 − y2 = z2 .

Conversely, for given integers x, y with x2 − y2 = z2, we have the inequality

|yη2 − x| > C6
log log y

log y
.

THEOREM 4. Let

η3 :=
(u − v) cosh 2√

uv
+ (u + v)

(u + v) cosh 2√
uv

+ (u − v)
.

In addition, assume that u ≥ v. Then there are infinitely many triples (x, y, z) of integers
satisfying simultaneously

|yη3 − x| < C7
log log y

log y
and y2 − x2 = z2 .

Conversely, for given integers x, y with y2 − x2 = z2, we have the inequality

|yη3 − x| > C8
log log y

log y
.

3. Proof of Lemma 3

We need the following lemma in order to prove Lemma 3.
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LEMMA 4. For n ≥ 1

n2n−1unvn−1 < q2n−1 < (2n − 1)2n−1unvn−1 , (5)

n2n(uv)n < q2n < (2n)2n(uv)n . (6)

PROOF. By [14, Corollary1], for n = 1, 2, . . . we have

q2n−1 =
n−1∑
k=0

(
2n + 2k

4k + 2

)(
4k + 2

2k + 1

)
(2k + 1)!

22k+1
uk+1vk,

q2n =
n∑

k=0

(
2n + 2k

4k

)(
4k

2k

)
(2k)!
22k

(uv)k .

By using the recurrence relation qn = anqn−1+qn−2 (n ≥ 2) together with a2n−1 = (4n−3)u

and a2n = (4n − 1)v (n ≥ 1), we get both identities by induction. �

PROOF OF LEMMA 3. First, let (Pn,Qn) = (p2n, q2n). By (6) for a positive constant
D1 depending only on u and v

2n log n < log q2n < 2n log 2n + n log uv

< D1n log 2n (n ≥ 1) .

So, for a positive constant D2

log log q2n < log(D1n log 2n) < D2 log n (n ≥ 2) .

Thus, for n ≥ 2

n <
log q2n

2 log n
<

D2 log q2n

2 log log q2n

or

1

n
>

D3 log log q2n

log q2n

(D3 := 2/D2) . (7)

Conversely,

log 2n < log(2n log n) < log log q2n (n ≥ 3) .

Hence,

n >
log q2n

D1 log 2n
>

log q2n

D1 log log q2n

or

1

n
<

D1 log log q2n

log q2n

(n ≥ 3) . (8)
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Now, for every positive integer n there exists a real number t satisfying simultaneously∣∣∣∣h(ξ) − h

(
p2n

q2n

)∣∣∣∣ = |h′(t)|
∣∣∣∣ξ − p2n

q2n

∣∣∣∣
and

t1 := p2

q2
≤ p2n

q2n

< t < t2 := ξ .

By the hypotheses on the function h, the choice of δ and the transcendence of ξ , the positive
numbers

D6 := min
t1≤t≤t2

|h′(t)| and D7 := max
t1≤t≤t2

|h′(t)|

exist. By Theorem 1 with (3) we have

D6

((4n + 1)u + ε1) q2
2n

<

∣∣∣∣h(ξ) − h

(
p2n

q2n

)∣∣∣∣ <
D7

(4n + 1)uq2
2n

. (9)

Therefore, together with (7) and (8) we get

D4D6 log log q2n

q2
2n log q2n

<

∣∣∣∣h(ξ) − h

(
p2n

q2n

)∣∣∣∣ <
D5D7 log log q2n

q2
2n log q2n

(n ≥ 3) .

Thus, if we put C1 = D4D6 and C2 = D5D7, the proof of the lemma is completed.
Next, let (Pn,Qn) = (p2n−1, q2n−1). By (5) together with (4) for positive constants D′

4

and D′
5

D′
4 log log q2n−1

q2
2n−1 log q2n−1

<

∣∣∣∣ξ − p2n−1

q2n−1

∣∣∣∣ <
D′

5 log log q2n−1

q2
2n−1 log q2n−1

.

The rest of the parts are also similar and omitted. �

4. Proof of Theorem 2

We need an auxiliary Lemma in order to Prove Theorem 2. The case where ξ is replaced

by e1/s is proven in [9, Lemma 2.1]. The method of proving the following Lemma is similar
to the one in [9, Lemma 2.1], so the proof is omitted.

LEMMA 5. Let h(t) ∈ Q̄(t)\Q. Then there exists a closed interval I = [ξ − δ, ξ + δ]
such that for any coprime integers p and q(≥ 3) the following holds.

p

q
∈ I implies

∣∣∣∣h(ξ) − h

(
p

q

)∣∣∣∣ > C
log log q

q2 log q
,

where δ and C are positive constants depending only on u, v and the function h.
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Let

h(t) := 1

2

(
t − 1

t

)
(0 < t ≤ ξ < 1) .

Notice that h(t) is monotonically increasing for 0 < t < 1 and h ∈ C(1)(0,∞). Then

h′(t) = 1

2
+ 1

2t2 , 1 ≤ h′(t) ≤ 1

2

(
1 + 1

t2
1

)
(t1 ≤ t ≤ t2 < 1) .

Put xn := Q2
n − P 2

n , yn := 2PnQn. Notice that Pn < Qn, so that xn and yn are always

positive. Thus, x2
n + y2

n = (P 2
n + Q2

n)
2 = z2

n. Furthermore,

h(ξ) = −η , h

(
Pn

Qn

)
= P 2

n − Q2
n

2PnQn

= −xn

yn

.

By t1Q
2
n < PnQn = yn/2 ≤ t2Q

2
n, we get t1Qn ≤ Pn ≤ t2Qn. So, Qn ≤ 2PnQn = yn,

implying log log Qn ≤ log log yn. On the other hand, by 2t2 ≤ Qn, we have

log yn ≤ log 2t2 + 2 log Qn < 3 log Qn ,

yielding log Qn > (1/3) log yn.
Applying Lemma 3, we have∣∣∣∣η − xn

yn

∣∣∣∣ =
∣∣∣∣h(ξ) − h

(
Pn

Qn

)∣∣∣∣
≤ C2

log log Qn

Q2
n log Qn

< C2
log log yn

(yn/2t2)(1/3) log yn

.

Setting C3 := 6t2C2 and (x, y) = (xn, yn), we get the upper bound in Theorem 2.
Conversely, by Lemma 5, there exists a closed interval I = [ξ − δ, ξ + δ] ⊂ [0, 1] such

that for any positive integers p, q(≥ 3), p/q ∈ I the inequality∣∣∣∣h(ξ) − h

(
p

q

)∣∣∣∣ > C
log log q

q2 log q

holds. Let positive integers x, y(≥ 3), z be given such that x2 + y2 = z2. Since h((0, 1)) =
R<0, x/y takes every positive rational number. We have

x = q2 − p2(> 0) , y = 2pq , z = p2 + q2

and h(p/q) = −x/y. If p/q = h−1(−x/y) ∈ I , then∣∣∣∣η − x

y

∣∣∣∣ > C
log log q

q2 log q
.
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If p/q ∈ I = [ξ − δ, ξ + δ], then (ξ − δ)q < p < (ξ + δ)q . Since y = 2pq > 2(ξ − δ)q2

and y < 2(ξ + δ)q2, there exists a positive constant D4 such that

log log q

q2 log q
>

log((1/2) log(y/2(ξ + δ)))

(y/4(ξ − δ)) log(y/2(ξ − δ))

> D4
log log y

y log y
(y ≥ 3) .

Setting C4 = D4C, we get the lower bound in Theorem 2.

5. Sketch of the proofs of Theorems 3 and 4

In order to prove Theorem 3, let

h(t) = 1

2

(
t + 1

t

)
(0 < t < 1) .

Notice that h(t) is monotonically decreasing for 0 < t < 1 and h ∈ C(1)(0,∞). Then

h(ξ) = η2 and h

(
p

q

)
= p2 + q2

2pq
.

Put x = p2 + q2, y = 2pq and z = q2 − p2 with 0 < p < q . Then x > y > 0 and z > 0.
Since

0 < t1 ≤ p

q
≤ t2 < 1 ,

we get

2t1q
2 ≤ y = 2pq ≤ 2t2q

2 ,

yielding the desired evaluations.
In order to prove Theorem 4, let

h(t) = t2 − 1

t2 + 1
(0 < t < 1) .

Notice that h(t) is monotonically increasing for 0 < t < 1 and h ∈ C(1)(0,∞). Then

h(ξ) = −η3 and h

(
p

q

)
= p2 − q2

p2 + q2 .

Put x = q2 − p2, y = p2 + q2 and z = 2pq with 0 < p < q . Then 0 < x < y and z > 0.
Since

0 < t1 ≤ p

q
≤ t2 < 1 ,
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we get

(t2
1 + 1)q2 ≤ y = 2pq ≤ (t2

2 + 1)q2 ,

yielding the desired evaluations.

6. More applications

As seen in [9, Section 5], if we apply the results to various functions connected with
some suitable Diophantine equations, then we can obtain more results.

THEOREM 5. Let u and v be integers with u ≥ v > 0. Let

η4 :=
(u − v) cosh 2√

uv
+ 2

√
uv sinh 2√

uv
+ (u + v)

(u − v) cosh 2√
uv

− 2
√

uv sinh 2√
uv

+ (u + v)
and h(t) = t2 − 2t − 1

t2 + 2t − 1
.

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

|yη4 − x| < C9
log log y

log y
and x2 + y2 = 2z2 .

Conversely, for given positive integers x, y(≥ 3) with y > x, h−1(x/y) >
√

2 − 1 and

x2 + y2 = 2z2, we have the inequality

|yη4 − x| > C10
log log y

log y
.

REMARK. If h(t) = (t2 + 2t − 1)/(t2 − 2t − 1), then

η4 :=
(u − v) cosh 2√

uv
− 2

√
uv sinh 2√

uv
+ (u + v)

(u − v) cosh 2√
uv

+ 2
√

uv sinh 2√
uv

+ (u + v)
.

THEOREM 6. Let u and v be integers with u ≥ v > 0. Let

η5 :=
(
(u − v) cosh 2√

uv
+ (u + v)

)2 − 4uv sinh2 2√
uv

4
√

uv sinh 2√
uv

(
(u − v) cosh 2√

uv
+ (u + v)

) and h(t) = (t2 − 1)2 − 4t2

4t (t2 − 1)
.

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

|yη5 − x| < C11

√
y log log y

log y
and x2 + y2 = z4 .

Conversely, for given positive integers x, y(≥ 3) with x2 + y2 = z4, we have the inequality

|yη5 − x| > C12

√
y log log y

log y
.
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THEOREM 7. Let u and v be integers with u ≥ v > 0. Let

η6 :=
(u − v) cosh 2√

uv
+ (u + v)

2
√

uv sinh 2√
uv

+ u
(
cosh 2√

uv
+ 1

) and h(t) = t2 − 1

2t + 1
.

Then there are infinitely many triples (x, y, z) of integers satisfying simultaneously

|yη6 − x| < C13
log log y

log y
and x2 + xy + y2 = z2 .

Conversely, for given positive integers x, y(≥ 3) with x2 + xy + y2 = z2, we have the
inequality

|yη6 − x| > C14
log log y

log y
.

THEOREM 8. Let u and v be integers with u ≥ v > 0. Let

η7 :=
(
(u + v) cosh 2√

uv
+ (u − v)

)(
(u − v) cosh 2√

uv
+ (u + v)

)
4uv sinh2 2√

uv

and

h(t) = 1

4

(
t2 − 1

t2

)
.

Then there are infinitely many triples (x, y, z,w) of integers satisfying simultaneously

|yη7 − x| < C15

√
y log log y

log y
and x2 + y2 = z4 − w2 .

Conversely, for given positive integers x, y(≥ 3), z and w with x2 + y2 = z4 − w2, if we

assume that x = q4 − p4, y = 4p2q2, z = p2 + q2 and w = 2pq(q2 − p2) (p and q are
positive integer with p < q), then we have the inequality

|yη7 − x| > C16

√
y log log y

log y
.

SKETCH OF THE PROOF OF THEOREM 5. The proof is similar to [9, Section 5]. The
diophantine equation is due to [2, p.353, Corollary 6.3.14], [9, Lemma 3.2], [15, p.13]. Notice
that

h(ξ) = η4 and h

(
p

q

)
= x

y
= p2 − q2 − 2pq

p2 − q2 + 2pq
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up to an exchange of x and y, and z = p2 + q2. h(t) is monotonically increasing for 0 <

t <
√

2 − 1 and t >
√

2 − 1, and h ∈ C(1)(0,
√

2 − 1), h ∈ C(1)(
√

2 − 1,∞). h(t) > 0 for

0 < t <
√

2 − 1, h(t) < 0 for
√

2 − 1 < t <
√

2 + 1. �

SKETCH OF THE PROOF OF THEOREM 6. The diophantine equation is due to [3,
p.466], [4, p.256], [9, Lemma 3.1]. Notice that

h(ξ) = −η5 and h

(
p

q

)
= −x

y
= −p4 − 6p2q2 + q4

4pq(q2 − p2)

up to an exchange of x and y, and z = p2+q2. h(t) is monotonically increasing for 0 < t < 1

and h ∈ C(1)(0, 1). h(t) < 0 for 0 < t <
√

2 − 1, h(t) > 0 for
√

2 − 1 < t < 1. �

SKETCH OF THE PROOF OF THEOREM 7. The diophantine equation is due to [4,
p.406], [9, Lemma 3.4]. Notice that

h(ξ) = −η6 and h

(
p

q

)
= −x

y
= − q2 − p2

2pq + q2

up to an exchange of x and y, and z = p2 + pq + q2. h(t) is monotonically increasing for

t > −1/2 and h ∈ C(1)(−1/2,∞). h(t) < 0 for 0 < t < 1. �

SKETCH OF THE PROOF OF THEOREM 8. The diophantine equation is due to [4,
p.260], [9, Lemma 3.5]. Notice that

h(ξ) = −η7 and h

(
p

q

)
= −x

y
= −q4 − p4

4p2q2

up to an exchange of x and y, and z = p2 +q2 and w = 2pq(q2 −p2). h(t) is monotonically

increasing for t > 0 and h ∈ C(1)(0,∞). h(t) < 0 for 0 < t < 1. �

7. Irrationality of numbers

Hurwitz’s criterion on irrationality states that a real number α is irrational if and only if
there are infinitely many rational numbers p/q , written in lowest terms, such that∣∣∣∣α − p

q

∣∣∣∣ <
1√
5q2

.

Under the view of this criterion, one cannot decide if the numbers η, ηi (i = 2, 3, . . . , 7) in
this paper are irrational or not. The speed of the convergence is not so rapid since

log y

log log y
� √

y < y .
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