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Abstract. Sutured manifolds defined by Gabai are useful in the geometrical study of knots and 3-dimensional
manifolds. On the other hand, homology cylinders are in an important position in the recent theory of homology
cobordisms of surfaces and finite-type invariants. We study a relationship between them by focusing on sutured
manifolds associated with a special class of knots which we call homologically fibered knots. Then we use invariants
of homology cylinders to give applications to knot theory such as fibering obstructions, Reidemeister torsions and
handle numbers of homologically fibered knots.

1. Introduction

In the theory of knots and 3-manifolds, sutured manifolds play an important role. They
were defined by Gabai [8] and are used to construct taut foliations on 3-manifolds. To each

knot in the 3-sphere S3 with a Seifert surface R, a sutured manifold (M, γ ) called the com-
plementary sutured manifold for R is obtained by cutting the knot complement along R with
the resulting cobordism M between two copies of R. Using taut foliations on complementary
sutured manifolds, Gabai settled, for example, Property R conjecture [10].

On the other hand, homology cylinders, each of which consists of a homology cobordism
M between two copies of a compact surface and markings of both sides of the boundary of
M (see Section 2 for details), appeared in the context of the theory of finite type invariants
for 3-manifolds. The set of homology cylinders over a surface has a natural monoid structure.
Goussarov [19], Habiro [21], Garoufalidis-Levine [11] and Levine [28] studied it systemati-
cally by using the clasper (or clover) surgery theory.

Since both sutured manifolds and homology cylinders deal with cobordisms between
surfaces, it is natural to observe their precise relationship. In this paper, we first give a specific
answer by restricting sutured manifolds to those obtained from knots. That is, we discuss
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which knot and its Seifert surface define a homology cylinder as a complementary sutured
manifold and conclude in Section 3 that such a case occurs exactly when we take a knot with
a minimal genus Seifert surface whose Alexander polynomial is monic and has degree twice
the genus of the knot (see Proposition 2, where the cases of links are also discussed). We call
such a knot a homologically fibered knot. Several examples of homologically fibered knots
are presented in the same section.

It is well known that fibered knots satisfy the above conditions for homologically fibered
knots. In fact, they define homology cylinders with the product cobordism on a surface with
markings (called monodromies in the theory of fibered knots). On the other hand, interesting
examples of homologically fibered knots come from non-fibered knots. They give homol-
ogy cylinders whose underlying cobordisms are not product. To construct such homology
cylinders, it has been known the following methods:

• connected sums of the trivial cobordism with homology 3-spheres;
• Levine’s method [28, Section 3] using string links in the 3-ball;
• Habegger’s method [20] giving homology cylinders as results of surgeries along string

links in homology 3-balls; and
• clasper surgeries (see [19] and [21]).

It was shown that each of the latter two methods (together with changes of markings) give
all homology cylinders. However those methods need surgeries along links with multiple
components, so that it seems slightly difficult to imagine the resulting manifolds. Our result
in Section 3 shall provide an explicit construction of homology cylinders.

The above mentioned relationship between sutured manifolds and homology cylinders
will be studied further in the latter half of this paper. We apply invariants of homology cylin-
ders defined in [37] to homologically fibered knots. In particular, we focus on Magnus repre-
sentations and Reidemeister torsions of homology cylinders, whose definitions are recalled in
Section 4. The definitions will be given in such a general form that we can apply frameworks
of Cochran-Orr-Teichner’s theory [2] of higher-order Alexander modules and Friedl’s theory
[6] of noncommutative Reidemeister torsions. As an immediate application, it turns out that
they give fibering obstructions of homologically fibered knots. We also use them to derive fac-
torization formulas of Reidemeister torsions of the exterior of a homologically fibered knot in
Section 5.

More applications are given in Sections 6 and 7. We consider handle numbers of su-
tured manifolds, which may be regarded as an analogue of the Heegaard genus of a closed
3-manifold for a sutured manifold. See [12, 13] for details. We discuss lower estimates of
handle numbers by using the above mentioned invariants of homology cylinders. In particu-
lar, we consider doubled knots with certain Seifert surfaces and give a lower bound of their
handle numbers by using Nakanishi index [24].

Conversely, an application of homologically fibered knots to homology cylinders is given
in [17], where we discuss abelian quotients of monoids of homology cylinders.

The authors would like to thank Professor Yasutaka Nakanishi for his helpful comments.
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2. Homology cylinders and sutured manifolds

In this section, we introduce two main objects in this paper: homology cylinders and
sutured manifolds. First, we define homology cylinders over surfaces, which have their origin
in following Goussarov [19], Habiro [21], Garoufalidis-Levine [11] and Levine [28]. Let Σg,n

be a compact connected oriented surface of genus g ≥ 0 with n ≥ 1 boundary components.

DEFINITION 1. A homology cylinder (M, i+, i−) over Σg,n consists of a compact ori-
ented 3-manifold M with two embeddings i+, i− : Σg,n ↪→ ∂M such that:

(i) i+ is orientation-preserving and i− is orientation-reversing;
(ii) ∂M = i+(Σg,n)∪ i−(Σg,n) and i+(Σg,n)∩ i−(Σg,n) = i+(∂Σg,n) = i−(∂Σg,n);

(iii) i+|∂Σg,n = i−|∂Σg,n ; and
(iv) i+, i− : H∗(Σg,n) → H∗(M) are isomorphisms.

If we replace (iv) with the condition that i+, i− : H∗(Σg,n; Q) → H∗(M; Q) are isomor-
phisms, then (M, i+, i−) is called a rational homology cylinder.

We often write a (rational) homology cylinder (M, i+, i−) briefly by M . Precisely speak-
ing, our definition is the same as that in [11] and [28] except that we may consider homology
cylinders over surfaces with multiple boundaries.

Two (rational) homology cylinders (M, i+, i−) and (N, j+, j−) over Σg,n are said to be

isomorphic if there exists an orientation-preserving diffeomorphism f : M
∼=−→ N satisfying

j+ = f ◦ i+ and j− = f ◦ i−. We denote the set of isomorphism classes of homology

cylinders (resp. rational homology cylinders) over Σg,n by Cg,n (resp. CQ
g,n).

EXAMPLE 1. For each diffeomorphism ϕ of Σg,n which fixes ∂Σg,n pointwise (hence,
ϕ preserves the orientation of Σg,n), we can construct a homology cylinder by setting

(Σg,n × [0, 1], id × 1, ϕ × 0) ,

where collars of i+(Σg,n) and i−(Σg,n) are stretched half-way along (∂Σg,n) × [0, 1]. It is
easily checked that the isomorphism class of (Σg,n × [0, 1], id × 1, ϕ × 0) depends only on
the (boundary fixing) isotopy class of ϕ. Therefore, this construction gives a map from the
mapping class group Mg,n of Σg,n to Cg,n.

Given two (rational) homology cylinders M = (M, i+, i−) and N = (N, j+, j−) over
Σg,n, we can construct a new one defined by

M · N := (M ∪i−◦(j+)−1 N, i+, j−) .
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By this operation, Cg,n and CQ
g,n become monoids with the unit (Σg,n ×[0, 1], id × 1, id × 0).

The map Mg,n → Cg,n in Example 1 is seen to be a monoid homomorphism.
By definition, we can define a homomorphism σ : Cg,n → Aut(H1(Σg,n)) by

σ(M, i+, i−) := i−1+ ◦ i− ∈ Aut(H1(Σg,n)) ,

where i+ and i− in the right hand side are the induced maps on the first homology. Note that
the composition

Mg,n
Example 1−−−−−−→ Cg,n

σ−→ Aut(H1(Σg,n))

is just the map obtained as the natural action of Mg,n on H1(Σg,n). For rational homology
cylinders, we have a similar homomorphism

σ : CQ
g,n → Aut(H1(Σg,n; Q)) .

The following facts seem to be well known at least for n = 1 (see [11, Section 2.4] and
[28, Section 2.1]). However, here we give a direct and topological proof of them.

PROPOSITION 1. (1) The homomorphism Mg,n → Cg,n in Example 1 is injective.

(2) For each (M, i+, i−) ∈ Cg,n, the automorphism σ(M) := σ(M, i+, i−) preserves
the intersection pairing on H1(Σg,n). (A similar statement obtained by replacing
H1(Σg,n) with H1(Σg,n; Q) holds for rational homology cylinders.)

PROOF. (1) Suppose [ϕ] ∈ Ker(Mg,n → Cg,n). We may assume that the diffeo-
morphism ϕ is the identity map near ∂Σg,n. By assumption, there exists a diffeomorphism

Φ : Σg,n × [0, 1] ∼=−→ Σg,n × [0, 1] satisfying

Φ
∣∣
Σg,n×{1} = idΣg,n ×{1} , Φ

∣∣
(∂Σg,n)×[0,1] = id(∂Σg,n)×[0,1] and Φ

∣∣
Σg,n×{0} = ϕ ×{0} .

Let ϕt (0 ≤ t ≤ 1) be the map defined as the composite

Σg,n
id×{t}−−−→ Σg,n × [0, 1] Φ−−→ Σg,n × [0, 1] projection−−−−−→ Σg,n .

Then {ϕt }0≤t≤1 gives a homotopy between ϕ0 = idΣg,n and ϕ1 = ϕ. It is well known (see [23,
Section 2] and references given there) that for the surface Σg,n we are now considering, two
diffeomorphisms connected by a boundary fixing homotopy are isotopic. Hence ϕ is isotopic
to the identity and so [ϕ] = 1 ∈ Mg,n.

(2) Recall that the intersection pairing 〈 , 〉Σg,n : H1(Σg,n) ⊗ H1(Σg,n) → Z on
H1(Σg,n) is defined as the composition

H1(Σg,n) ⊗ H1(Σg,n) → H1(Σg,n) ⊗ H1(Σg,n, ∂Σg,n)
∼=−→ H1(Σg,n) ⊗ H 1(Σg,n) → Z ,

where the first (resp. second) map is applying the natural map H1(Σg,n) → H1(Σg,n, ∂Σg,n)

(resp. the Poincaré duality) to the second factor and the last map is the Kronecker product.
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The boundary ∂M of M is the double of Σg,n so that it is a closed oriented surface of
genus 2g + n − 1. It is easy to see that the intersection pairing 〈 , 〉∂M on H1(∂M) satisfies

〈x, y〉Σg,n = 〈i+(x), i+(y)〉∂M = −〈i−(x), i−(y)〉∂M

for any x, y ∈ H1(Σg,n). Also, the intersection pairing 〈 , 〉M : H1(M) ⊗ H2(M, ∂M) → Z
on M satisfies

〈i(x), Y 〉M = −〈x, ∂Y 〉∂M

for any x ∈ H1(∂M) and Y ∈ H2(M, ∂M), where i : ∂M ↪→ M denotes the inclusion. Then
our claim follows from

〈x, y〉Σg,n = −〈i−(x), i−(y)〉∂M = −〈i−(x), i−(y) − i+(σ (M)(y))〉∂M

= 〈i−(x), Y 〉M = 〈i+(σ (M)(x)), Y 〉M
= −〈i+(σ (M)(x)), i−(y)−i+(σ (M)(y))〉∂M =〈i+(σ (M)(x)), i+(σ (M)(y))〉∂M

= 〈σ(M)(x), σ (M)(y)〉Σg,n ,

where Y ∈ H2(M, ∂M) is a homology class satisfying ∂Y = i−(y) − i+(σ (M)(y)). �

To represent σ(M, i+, i−) by a matrix, we here and hereafter fix a spine S of Σg,n as
in Figure 1. That is, S is a bouquet of oriented 2g + n − 1 circles γ1, . . . , γ2g+n−1 tied
at a base point p ∈ ∂Σg,n such that it is deformation retract of Σg,n relative to p. The
fundamental group π1(Σg,n) of Σg,n is the free group F2g+n−1 of rank 2g + n − 1 generated

by γ1, . . . , γ2g+n−1. These loops form an ordered basis of H1(Σg,n) ∼= Z2g+n−1.

REMARK 1. Let (M, i+, i−) ∈ Cg,n. Proposition 1 (2) and its proof show that
σ(M, i+, i−) ∈ Aut(H1(Σg,n)) ∼= GL(2g + n − 1, Z) is represented by a matrix of the
form (

X 0(2g,n−1)

∗ In−1

)
with X ∈ Sp(2g, Z). (A similar result using Sp(2g, Q) holds for CQ

g,n.)

Next we recall the definition of sutured manifolds given by Gabai [8]. We use here a
special class of sutured manifolds.

DEFINITION 2. A sutured manifold (M, γ ) is a compact oriented 3-manifold M to-
gether with a subset γ ⊂ ∂M which is a union of finitely many mutually disjoint annuli. For
each component of γ , an oriented core circle called a suture is fixed, and we denote the set
of sutures by s(γ ). Every component of R(γ ) = ∂M − Int γ is oriented so that the orien-
tations on R(γ ) are coherent with respect to s(γ ), i.e., the orientation of each component of
∂R(γ ), which is induced by that of R(γ ), is parallel to the orientation of the corresponding
component of s(γ ). We denote by R+(γ ) (resp. R−(γ )) the union of those components of
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R(γ ) whose normal vectors point out of (resp. into) M . In this paper, we sometimes abbre-
viate R+(γ ) (resp. R−(γ )) to R+ (resp. R−). In the case that (M, γ ) is diffeomorphic to
(Σ × [0, 1], ∂Σ × [0, 1]) where Σ is a compact oriented surface, (M, γ ) is called a product
sutured manifold.

Let (M, i+, i−) ∈ Cg,n. If we consider a small regular neighborhood of i+(∂Σg,n) =
i−(∂Σg,n) in ∂M to be γ , we can regard (M, i+, i−) as a sutured manifold. However the
converse is clearly not true in general. In the next section, we will determine which kinds of
links give homology cylinders by considering their complementary sutured manifolds, which
are defined as follows.

DEFINITION 3. Let L be an oriented link in the 3-sphere S3, and R̄ a Seifert surface

of L. Set R := R̄ ∩ E(L), where E(L) = cl(S3 − N(L)) is the complement of a regular
neighborhood of L, and (P, δ) := (N(R,E(L)),N(∂R, ∂E(L))). We call (P, δ) the product
sutured manifold for R. Let (M, γ ) = (cl(E(L)−P), cl(∂E(L)− δ)) with R±(γ ) = R∓(δ).
We call (M, γ ) the complementary sutured manifold for R.

3. Homologically fibered links

Let L be an oriented link in the 3-sphere S3, and ΔL(t) the normalized (one variable)
Alexander polynomial of L, i.e., the lowest degree of ΔL(t) is 0.

DEFINITION 4. An n-component oriented link L in S3 is said to be homologically
fibered if L satisfies the following two conditions:

(i) The degree of ΔL(t) is 2g + n − 1, where g is the genus of a connected Seifert
surface of L; and

(ii) ΔL(0) = ±1.
An n-component oriented link L satisfying (i) is said to be rationally homologically fibered.

Hereafter links are always assumed to be oriented. We also assume 2g + n − 1 ≥ 1.
Indeed the trivial knot is the only rationally homologically fibered link with 2g + n − 1 = 0.

A link L is said to be fibered if E(L) is the total space of a fiber bundle over S1 whose
fiber is given by a Seifert surface. It is well known that fibered links satisfy the conditions in
Definition 4. Hence they are homologically fibered.

Let L be an n-component link and Σg,n the compact oriented surface that is diffeo-

morphic to a Seifert surface R of L. We fix a diffeomorphism ϑ : Σg,n

∼=→ R and denote
by (M, γ ) the complementary sutured manifold for R. Then we may see that there are an
orientation-preserving embedding i+ : Σg,n → ∂M and an orientation-reversing embedding
i− : Σg,n → ∂M with i+(Σg,n) = R+(γ ) and i−(Σg,n) = R−(γ ), where two embeddings
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i± are the composite maps of ϑ and the natural embeddings ι± : R ↪→ ∂M:

Σg,n
ϑ ��

i±
����

��
��

��
R

ι±
��

M

If i+, i− : H1(Σg,n) → H1(M) are isomorphisms, we may regard (M, γ ) as a homol-
ogy cylinder. The purpose of this section is to prove the next proposition.

PROPOSITION 2. Let R be a Seifert surface of a link L with a diffeomorphism ϑ :
Σg,n

∼=→ R. If the complementary sutured manifold for R is a (rational) homology cylinder,
then L is (rationally) homologically fibered. Conversely, if L is (rational) homologically
fibered, then the complementary sutured manifold for any minimal genus connected Seifert
surface of L gives a (rational) homology cylinder.

REMARK 2. (1) Aside from the name of homologically fibered links, the above fact
was essentially mentioned in Crowell-Trotter [4].

(2) Suppose L is a homologically fibered link and M is the homology cylinder obtained

from L by the above procedure. If we change the diffeomorphism ϑ : Σg,n

∼=−→ R

into another one ϑ ′, then the resulting homology cylinder is (ϑ−1◦ϑ ′)−1 ·M ·(ϑ−1◦
ϑ ′) ∈ Cg,n, where ϑ−1 ◦ ϑ ′ ∈ Mg,n is considered to be a homology cylinder as
seen in Example 1.

For the proof of Proposition 2, we first set up our notation, following [1] and [29]. Con-

sider the basis {αi := [γi]} (1 ≤ i ≤ 2g + n − 1) of H1(Σg,n; Z) ∼= Z2g+n−1 as shown in

Figure 1. We may see that R consists of a disk D2 and bands Bi (1 ≤ i ≤ 2g + n − 1), where
the cores of Bi correspond to ϑ(αi). For simplicity, we use αi again instead of ϑ(αi). See
Figure 2 for the case of the trefoil.

FIGURE 1. A spine S of Σg,n
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FIGURE 2. Trefoil with the genus 1 Seifert surface

Let (P, δ) be the product sutured manifold for R. The curves α1, . . . , α2g+n−1 of R are

projected onto curves α+
1 , . . . , α+

2g+n−1 on R+(δ) by ι+, and α−
1 , . . . , α−

2g+n−1 on R−(δ) by

ι−. Choose a curve βi on the boundary of the regular neighborhood of the band Bi so that
each βi bounds a disk in P that meets αi at one point. The orientation of the disk and of βi

are chosen such that the intersection number is +1. (See Figure 2, or [1, Figure 8.3].)

LEMMA 1. (1) The set {αε
1, . . . , α

ε
2g+n−1, β1, . . . , β2g+n−1} with ε = +1 or − is a

basis of H1(∂M) = H1(∂P ) ∼= Z4g+2n−2.
(2) {αε

1, . . . , α
ε
2g+n−1} with ε = +1 or − is a basis of H1(P ) and {β1, . . . , β2g+n−1}

is a basis of H1(M) ∼= Z2g+n−1.
(3) H∗(M) = 0 for ∗ ≥ 2.

PROOF. It is not difficult to show (1) and the first statement in (2). For the second one
in (2), one may apply the Mayer-Vietoris sequence:

0 = H2(S
3) → H1(∂M)

φ−→ H1(P ) ⊕ H1(M) → H1(S
3) = 0 .

Note that ∂M = ∂P and φ(βi) = (0, βi). Then, the conclusion follows from (1).
In the exact sequence H1(∂M) → H1(M) → H1(M, ∂M) → 0, the first map is

surjective from (1) and (2). Thus H1(M, ∂M) = 0. By the Poincaré duality, we have

H2(M) ∼= H 1(M, ∂M) = 0. Clearly H∗(M) = 0 for ∗ ≥ 3, and (3) holds. �

Let S be the Seifert matrix corresponding to the above basis of H1(R), namely S =
(ajk) = (lk(α−

j , αk)) (1 ≤ j, k ≤ 2g + n − 1).

LEMMA 2. Let ι± : R±(δ) → M denote the inclusions. Then,

ι+(α+
j ) =

2g+n−1∑
k=1

akjβk and ι−(α−
j ) =

2g+n−1∑
k=1

ajkβk .

PROOF. See the proof of [1, Lemma 8.6] or [29, Page 53]. �
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By Lemma 2, we have:

LEMMA 3. The maps i± : H1(Σg,n) → H1(M) (resp. i± : H1(Σg,n; Q) →
H1(M; Q)) are isomorphisms if and only if S is invertible over Z (resp. over Q).

PROOF OF PROPOSITION 2. Suppose that the complementary sutured manifold M for

R is a rational homology cylinder. Then S is invertible over Q by Lemma 3 and (ST )−1S
represents σ(M), where ST denotes the transpose of S. By definition, we have ΔL(t) =
det(tS − ST ), and now

ΔL(t) = det(tS − ST ) = det(ST ) det(t (ST )−1S − I2g+n−1) (1)

holds. Since det((ST )−1S) = 1, the polynomial det((t (ST )−1S − I2g+n−1) is of degree
2g + n − 1 and so is ΔL(t). Therefore L is rationally homologically fibered. If moreover M

is a homology cylinder, then we have det(S) = ±1 and ΔL(0) = det(−ST ) = ±1. Hence L

is homologically fibered.
Conversely, let L be a rationally homologically fibered link and R be a minimal genus,

say g , connected Seifert surface. Then, the degree of ΔL(t) is 2g + n − 1. Since ΔL(t) =
det(tS − ST ) and 0 �= ΔL(0) = det(−ST ), the complementary sutured manifold for R is
a rational homology cylinder by Lemma 3. Further, if L is homologically fibered, we have
±1 = ΔL(0) = det(−ST ) = det(−S). This completes the proof. �

EXAMPLE 2. It is known ([3], [34]) that alternating links satisfy the condition (i) in
Definition 4. Moreover it was shown by Murasugi [35] (see also 13.26 (c) in [1]) that an
alternating link is fibered if and only if ΔL(0) = ±1. Therefore, if a homologically fibered
link L is not fibered, then it is non-alternating.

EXAMPLE 3. Let p, q and r be odd integers and let P(p, q, r) be the pretzel knot of
type {p, q, r}. See Figure 3. We assume that one of p, q, r , say p, is negative and the others
are positive since our main objects are non-alternating knots (Example 2). It is well-known
that the Alexander polynomial of P(p, q, r) is given by

1

4

(
(pq + qr + rp)(t2 − 2t + 1) + t2 + 2t + 1

)
.

In the range of values: −100 < p ≤ −3, 3 ≤ q ≤ r < 100, the pretzel knots of the following
22 types are homologically fibered knots.

{−3, 5, 9}, {−5, 7, 19}, {−7, 9, 33}, {−9, 11, 51}, {−9, 15, 23}, {−11, 13, 73} ,

{−13, 15, 99}, {−15, 21, 53}, {−19, 33, 45}, {−21, 27, 95}, {−23, 37, 61} ,

{−33, 59, 75}, {−3, 5, 5}, {−5, 7, 15}, {−7, 9, 29}, {−9, 11, 47}, {−11, 13, 69} ,

{−13, 15, 95}, {−15, 25, 37}, {−25, 35, 87}, {−29, 51, 67}, {−37, 59, 99} .
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The minimal genus (genus 1) Seifert surface for the pretzel knot of this type is unique up to
isotopy [16].

FIGURE 3. Standard diagram of Pretzel knots

EXAMPLE 4. Consider the pretzel knot of type {p, q, r, s, u}, where p, q, r, s, u are
odd integers. The leading coefficient of the Alexander polynomial is

1

16
(pq+pr+ps+pu+qr+qs+qu+rs+ru+su+pqrs+pqru+pqsu+prsu+qrsu) .

In the range of values: −500 < p ≤ −3, 3 ≤ q ≤ r ≤ s ≤ u < 500, the following 8 types
give the homologically fibered pretzel knots.

{−3, 9, 9, 9, 85}, {−5, 15, 15, 15, 411}, {−7, 17, 17, 45, 261} ,

{−9, 15, 35, 71, 467}, {−33, 75, 127, 151, 403}, {−39, 113, 161, 165, 221} ,

{−9, 23, 27, 35, 411}, {−37, 107, 107, 179, 363} .

In the range of values: −300 < p ≤ q ≤ −3, 3 ≤ r ≤ s ≤ u < 300, the following 15 types
give the homologically fibered pretzel knots.

{−15,−3, 5, 5, 125}, {−5,−5, 3, 19, 159}, {−69,−5, 7, 15, 151} ,

{−31,−7, 9, 17, 177}, {−27,−11, 9, 85, 205}, {−15,−3, 5, 5, 129} ,

{−5,−5, 3, 19, 163}, {−53,−5, 7, 15, 91}, {−177,−5, 7, 31, 31} ,

{−257,−5, 7, 19, 99}, {−235,−7, 17, 17, 33}, {−15,−11, 13, 13, 265} ,

{−275,−11, 13, 109, 117}, {−37,−33, 23, 111, 207}, {−121,−33, 39, 107, 279} .

EXAMPLE 5. Let K be the trefoil knot, which is fibered. We take the basis {α1, α2}
of H1(R) for the minimal genus Seifert surface R as in Figure 4. We cut the band corre-
sponding to α2, make it knotted, and paste to the original part again, then we have a new knot
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FIGURE 4. Making a new homologically fibered knot

with a Seifert surface of the same genus. Just before pasting, we twist the band so that the
Seifert matrix (linking number) does not change, then we can obtain a knot whose Alexander
polynomial is the same as K . By this method, we can obtain many homologically fibered
knots.

EXAMPLE 6. It is known that a knot K with 11 or fewer crossings is fibered if and
only if K is homologically fibered. Among 12 crossing knots there are thirteen knots which
are not fibered but homologically fibered. See Friedl-Kim[7] for the detail.

4. Invariants of homology cylinders and fibering obstructions of links

In this section, we review some invariants of homology cylinders from [37]. We begin by
summarizing our notation. For a matrix A with entries in a ring R, and a ring homomorphism
ρ : R → R′, we denote by ρA the matrix obtained from A by applying ρ to each entry. When

R = ZG (or its fractional field if it exists) for a group G, we denote by A the matrix obtained

from A by applying the involution induced from (x �→ x−1, x ∈ G) to each entry. For a
module M, we write Mn for the module of column vectors with n entries. For a finite cell
complex X, we denote by X̃ its universal covering. We take a base point p of X. The group
π := π1(X, p) acts on X̃ from the right as its deck transformations. Then the cellular chain
complex C∗(X̃) of X̃ becomes a right Zπ-module. For each left Zπ-algebra R, the twisted
chain complex C∗(X;R) is given by the tensor product of the right Zπ-module C∗(X̃) and
the left Zπ-module R, so that C∗(X;R) and H∗(X;R) are right R-modules.

Let M = (M, i+, i−) ∈ CQ
g,n and let ρΓ : π1(M) → Γ be a homomorphism whose

target Γ is a poly-torsion-free abelian (PTFA) group, where a group Γ is said to be PTFA if
it has a sequence

Γ = Γ0 � Γ1 � · · · � Γn = {1}
whose successive quotients Γi/Γi+1 (i ≥ 0) are all torsion-free abelian. Using a PTFA group
Γ has an advantage that its group ring ZΓ (or QΓ ) is an Ore domain so that it is embedded
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into the right field

KΓ := ZΓ (ZΓ − {0})−1 = QΓ (QΓ − {0})−1

of fractions. We refer to Cochran-Orr-Teichner [2, Section 2] and Passman [36] for generali-
ties of PTFA groups and localizations of their group rings. A typical example of PTFA groups

associated with M is the free part Γ = H1(M)/(torsion) ∼= Z2g+n−1 of H1(M), where KΓ is
isomorphic to the field of rational functions with 2g + n − 1 variables. The following lemma
can be verified by applying Cochran-Orr-Teichner [2, Proposition 2.10]. However we here
give a proof for later use.

LEMMA 4. The maps i± : H∗(Σg,n, p; i∗±KΓ ) → H∗(M,p;KΓ ) are isomorphisms
as right KΓ -vector spaces.

PROOF. For the proof, it suffices to show that H∗(M, i+(Σg,n);KΓ ) = 0. Since
the spine S fixed in Section 2 is a deformation retract of Σg,n relative to p, we have
H∗(M, i+(Σg,n);KΓ ) = H∗(M, i+(S);KΓ ). Now we compute the latter.

Triangulate Σg,n smoothly, so that the spine S is the union of its edges. By gluing two
copies of this triangulated surface, we obtain a triangulation t of ∂M . A theorem of Cairns
and Whitehead shows that there exists a triangulation t̂ of the entire M which extends t.
Starting from a 2-simplex in ∂M , we can deform M onto a subcomplex t̂ of its 2-skeleton.
In this deformation, the 1-skeleton is fixed pointwise. Take a maximal tree T of t such that
T includes all but one sub-edges of each loop of S. We extend T to a maximal tree T̃ of t̃

and collapse T̃ to a point. Then we obtain a 2-dimensional CW-complex M ′ having only one
vertex. By construction, the bouquet i+(S) is mapped onto a bouquet S′ in M ′ with a natural
one-to-one correspondence between their loops, and (M ′, S′) is simple homotopy equivalent
to (M, i+(S)). From this cell structure, we can read a presentation of π1(M) = π1(M

′) as

〈y1, . . . , yk, i+(γ1), . . . , i+(γ2g+n−1) | s1, . . . , sk〉 (2)

for some k, where we identify i+(γj ) (1 ≤ j ≤ 2g + n − 1) with its image in M ′.
We have H∗(M, i+(S);KΓ ) = H∗(M ′, S′;KΓ ). The relative complex (M ′, S′) con-

sists of only the same number of 1-cells and 2-cells, so that the relative chain complex
C∗(M ′, S′;KΓ ) is of the form

0 −→ (KΓ )k
ρΓ J ·−→ (KΓ )k −→ 0

with J :=
(

∂sj

∂yi

)
1≤i,j≤k

. The matrix ρΓ J has its entries in ZΓ . To check the invertibility

over KΓ of this matrix, we apply the augmentation map a : ZΓ → Z to each entry. Then we
obtain a presentation matrix of H1(M, i+(Σg,n)). Since H1(M, i+(Σg,n); Q) = 0, the matrix
a◦ρΓ J is invertible over Q. Then it follows from Strebel [38, Section 1] that ρΓ J is invertible
over KΓ . (Γ belongs to the class D(Z) in the notation of [38].) This completes the proof �
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We use Lemma 4 to construct the following two invariants of rational homology cylin-
ders. The first one is the Magnus matrix, which was defined in [37]. We have

H1(Σg,n, p; i∗±KΓ ) ∼= H1(S, p; i∗±KΓ ) = C1(S̃) ⊗π1(Σg,n) i∗±KΓ
∼= K2g+n−1

Γ

with a basis

{γ̃1 ⊗ 1, . . . , γ̃2g+n−1 ⊗ 1} ⊂ C1(S̃) ⊗π1(Σg,n) i∗±KΓ

as a right KΓ -module. Here we fix a lift p̃ of p as a base point of S̃, and denote by γ̃i the lift
of the oriented loop γi .

DEFINITION 5. For M = (M, i+, i−) ∈ CQ
g,n, the Magnus matrix

rΓ (M) ∈ GL(2g + n − 1,KΓ )

of M is defined as the representation matrix of the right KΓ -isomorphism

K2g+n−1
Γ

∼= H1(Σg,n, p; i∗−KΓ )
∼=−→
i−

H1(M,p;KΓ )
∼=−−→
i−1+

H1(Σg,n, p; i∗+KΓ ) ∼= K2g+n−1
Γ ,

where the first and the last isomorphisms use the bases mentioned above.

EXAMPLE 7. For (Σg,n × [0, 1], id × 1, ϕ × 0) ∈ Mg,n ⊂ Cg,n, we can check that

rΓ ((Σg,n × [0, 1], id × 1, ϕ × 0)) =
ρΓ
(

∂ϕ(γj )

∂γi

)
1≤i,j≤2g+n−1

from the definition or by using Proposition 3 below. From this, we see that rΓ extends the
Magnus representation of Mg,1 in Morita [33].

Next we introduce a torsion invariant. Since the relative complex C∗(M, i+(Σg,n);KΓ )

obtained from any cell decomposition of (M, i+(Σg,n)) is acyclic by Lemma 4, we can con-
sider its torsion τ (C∗(M, i+(Σg,n); KΓ )). We refer to Milnor [32] and Turaev [39] for gener-
alities of torsions and related groups from algebraic K-theory. Recall that torsions are invariant
under simple homotopy equivalences. In particular, they are topological invariants.

DEFINITION 6. The Γ -torsion of M = (M, i+, i−) ∈ CQ
g,n is given by

τ+
Γ (M) := τ (C∗(M, i+(Σg,n);KΓ )) ∈ K1(KΓ )/ ± ρΓ (π1(M)) .

Now we recall a method for computing rΓ (M) and τ+
Γ (M) by following [37, Section

3.2], which is based on the one for the Gassner matrix (using commutative rings) of a string
link by Kirk-Livingston-Wang [26] and Le Dimet [27, Section 1.1].

Let (M, i+, i−) ∈ CQ
g,n. An admissible presentation of π1(M) is defined to be the one of

the form

〈i−(γ1), . . . , i−(γ2g+n−1), z1, . . . , zl, i+(γ1), . . . , i+(γ2g+n−1) | r1, . . . , r2g+n−1+l〉 (3)
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for some integer l. That is, it is a finite presentation with deficiency 2g + n − 1 whose
generating set contains i−(γ1), . . . , i−(γ2g+n−1), i+(γ1), . . . , i+(γ2g+n−1) and is ordered as
above. One of the possible constructions of admissible presentations is obtained from the
presentation (2) by adding generators i−(γ1), . . . , i−(γ2g+n−1) together with relations. (There
also exists a construction using Morse theory.)

Given an admissible presentation of π1(M) as in (3), we define (2g + n − 1) × (2g +
n − 1 + l), l × (2g + n − 1 + l) and (2g + n − 1) × (2g + n − 1 + l) matrices A,B,C over
Zπ1(M) by

A=
(

∂rj

∂i−(γi)

)
1≤i≤2g+n−1

1≤j≤2g+n−1+l

, B =
(

∂rj

∂zi

)
1≤i≤l

1≤j≤2g+n−1+l

, C =
(

∂rj

∂i+(γi)

)
1≤i≤2g+n−1

1≤j≤2g+n−1+l

.

PROPOSITION 3. As matrices with entries in KΓ , we have the following.

(1) The square matrix
ρΓ(

A

B

)
is invertible and τ+

Γ (M) =
ρΓ(

A

B

)
.

(2) rΓ (M) = −ρΓ C

ρΓ(
A

B

)−1 (
I2g+n−1

0(l,2g+n−1)

)
.

In particular, the invariants τ+
Γ (M) and rΓ (M) are computable from any admissible presen-

tation of π1(M).

PROOF. (1) For an admissible presentation of π1(M) = π1(M
′) obtained from (2),

the torsion τ+
Γ (M) is given by the matrix ρΓ J . Hence our claim holds in this case.

Given any admissible presentation P of π1(M) as in (3), we construct a 2-complex X(P)

having one 0-cell as a basepoint, (4g + 2n − 2 + l) 1-cells indexed by the generators and
(2g + n − 1 + l) 2-cells indexed by the relations and attached according to the words. Then
we can use a theorem of Harlander-Jensen [22, Theorem 3] with the fact that the deficiency
of π1(M) is 2g + n − 1 (see Epstein [5, Lemmas 1.2, 2,2]) to show that X(P) and M ′ are
homotopy equivalent. In fact, there exists a basepoint preserving cellular map f : X(P) →
M ′ which is a homotopy equivalence and maps the union S0 of the 1-cells of P0 corresponding
to i+(γ1), . . . , i+(γ2g+n−1) homeomorphically onto S′. Let Mf be the mapping cylinder of
f . We have

τ+
Γ (M) = τ (C∗(M, i+(Σg,n);KΓ )) = τ (C∗(M, i+(S);KΓ ))

= τ (C∗(M ′, S′;KΓ )) = τ (C∗(Mf , S′;KΓ )) = τ (C∗(Mf , S0 × [0, 1];KΓ ))

= τ (C∗(Mf , S0;KΓ )) = τ (C∗(Mf ,X(P );KΓ ))τ (C∗(X(P ), S0;KΓ ))

where we repeatedly used the multiplicativity of torsions. (For example, we have

τ (C∗(M, i+(S);KΓ )) = τ (C∗(M, i+(Σg,n);KΓ ))τ (C∗(i+(Σg,n), i+(S);KΓ ))

with τ (C∗(i+(Σg,n), i+(S);KΓ )) = 1 since i+(Σg,n) is simple homotopy equivalent to
i+(S).)
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We now compute τ (C∗(X(P ), S0;KΓ )). As in the case of the complex (M ′, S′), the
relative complex (X(P ), S0) consists of only the same number of 1-cells and 2-cells. Thus

τ (C∗(X(P ), S0;KΓ )) is given by
ρΓ(

A

B

)
, which is a square matrix over ZΓ . By an argument

similar to the matrix J in the proof of Lemma 4, we can check that this matrix is invertible
over KΓ .

If M is an irreducible 3-manifold, it is a Haken manifold since |H1(M)| = ∞. Wald-
hausen’s theorem [41, Theorems 19.4, 19.5] shows that the Whitehead group Wh(π) =
K1(Zπ1(M))/ ± π1(M) of π1(M) vanishes. Hence X(P), M ′ and Mf are simple homo-
topy equivalent and we have τ (C∗(Mf ,X(P );KΓ )) = 1. The second claim of (1) follows in
this case.

If M is not irreducible, we can check that M is a connected sum of a Haken manifold M0

containing ∂M and a (possibly reducible) rational homology 3-sphere M2. Since any homo-
morphism from π1(M2) to a PTFA group Γ is trivial, the homomorphism ρΓ factors through
π1(M1), whose Whitehead group vanishes as mentioned above. Now τ (C∗(Mf ,X(P );KΓ ))

is the image of the Whitehead torsion τ (C∗(Mf ,X(P ); Zπ1(M))) ∈ Wh(π1(M)) by ρΓ . It
must be trivial since it passes through Wh(π1(M1)) = 0. This completes the proof.

(2) The proof is almost identical to that in [37, Proposition 3.9], and here we omit
it. �

The Γ -torsion and the Magnus matrix can be used as fibering obstructions of a homo-
logically fibered link as follows. If a link is fibered, the complementary sutured manifold for
each minimal genus Seifert surface is a product sutured manifold, whose Γ -torsion is trivial
for any KΓ . Together with Example 7, we have:

THEOREM 8. (1) Suppose a homologically fibered link has a minimal genus Seifert
surface which gives a homology cylinder having non-trivial Γ -torsion for some PTFA group
Γ , then it is not fibered.

(2) Let M be a homology cylinder obtained from a minimal genus Seifert surface of a
fibered link. Then all the entries of the Magnus matrix rΓ (M) are in ZΓ .

EXAMPLE 9. Let K = P(−3, 5, 9), which is a homologically fibered knot as seen in
Example 3. We take a Seifert surface of K and its spine as in Figure 5, where the darker color
means the +-side.

The loops x1, x2 in Figure 6 form a basis of π1(M) of the complementary sutured mani-
fold M . They are oriented according to Figure 2. A direct computation shows that

i−(γ1) = x−1
1 (x2x1)

2, i−(γ2) = x4
2(x2x1)

3, i+(γ1) = x−2
1 (x1x2)

3, i+(γ2) = x5
2(x1x2)

2

and we obtain an admissible presentation〈
i−(γ1), i−(γ2), x1, x2, i+(γ1), i+(γ2)

i−(γ1)(x
−1
1 x−1

2 )2x1, i−(γ2)(x
−1
1 x−1

2 )3x−4
2 ,

i+(γ1)(x
−1
2 x−1

1 )3x2
1 , i+(γ2)(x

−1
2 x−1

1 )2x−5
2

〉
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FIGURE 5. A Seifert surface of
P (−3, 5, 9) and its
spine FIGURE 6. A basis of π1(M)

of π1(M). H1(M) is the free abelian group generated by t1 := [x1] and t2 := [x2] and the
natural homomorphism ρΓ : π1(M) → H1(M) =: Γ maps

i−(γ1) �→ t1t
2
2 , i−(γ2) �→ t3

1 t7
2 , i+(γ1) �→ t1t

3
2 , i+(γ2) �→ t2

1 t7
2 .

Now KΓ is isomorphic to the field of rational functions with variables t1 and t2. We have

ρΓ A = (
I2 0(2,2)

)
, ρΓ B = (

G1 G2
)

, ρΓ C = (
0(2,2) I2

)
,

where

G1 =
(

t1 − t1t
−1
2 − t−2

2 −t−2
1 t−7

2 − t−1
1 t−6

2 − t−5
2

−t1 − t−1
2 −t−2

1 t−6
2 − t−1

1 t−5
2 − t−4

2 − t−3
2 − t−2

2 − t−1
2 − 1

)
,

G2 =
(

t1 − t1t
−1
2 − t−2

2 −t−1
1 t−6

2 − t−5
2

−t−1
1 t−2

2 − t1 − t−1
2 −t−2

1 t−6
2 − t−1

1 t−5
2 − t−4

2 − t−3
2 − t−2

2 − t−1
2 − 1

)
.

Thus τ+
Γ (M) =

ρΓ(
A

B

)
=
(

I2 0(2,2)

G1 G2

)
= G2 ∈ K1(KΓ )/ ± ρΓ (π1(M)), which is non-

trivial because

det(τ+
Γ (M)) = det(G2) = −t−1

1 t−6
2 − t1 + t−4

2 + t−3
2 + t−2

2

is not a monomial. This shows that P(−3, 5, 9) is not fibered by Theorem 8 (1). The Magnus
matrix rΓ (M) is given by
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⎛⎜⎜⎜⎜⎜⎜⎝
−1−t1t2+t1t

2
2 −t2

1 t4
2 −t2

1 t5
2−t2

1 t6
2 +t3

1 t8
2

t1t
2
2 (1−t1t

2
2 −t1t

3
2 −t1t

4
2 +t2

1 t6
2 )

−1−t1t2−t2
1 t2

2 −t2
1 t3

2 −t2
1 t4

2 −t2
1 t5

2 −t2
1 t6

2

t3
1 t7

2 (1−t1t
2
2 −t1t

3
2 −t1t

4
2 +t2

1 t6
2 )

t2
2 (1+t1t2−t1t

2
2 )

1−t1t
2
2 −t1t

3
2 −t1t

4
2 +t2

1 t6
2

1+t1t2+t2
1 t2

2 +t2
1 t3

2 −t3
1 t5

2−t3
1 t6

2 −t3
1 t7

2 +t4
1 t9

2

t2
1 t3

2 (1−t1t
2
2 −t1t

3
2 −t1t

4
2 +t2

1 t6
2 )

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which also indicates the non-fiberedness of P(−3, 5, 9) since all the entries of rΓ (M) should
be Laurent polynomials by Theorem 8(2) if it were fibered .

5. Twisted homology and torsions of rationally homologically fibered link exteri-
ors

In this section, we see that the invariants defined in Section 4 make up torsions of exteri-
ors of rationally homologically fibered links under special choices of PTFA groups Γ . Before
that, we observe generalities of torsions of link exteriors.

Let L be an n-component link. Assume that the (one variable) Alexander polynomial
ΔL(t) of L is not equal to zero. Then the Wirtinger presentation gives a presentation of
π1(E(L)) with deficiency 0. It is known that we can drop any one of the relations. Let Q0 be
such a presentation of the form

〈y1, . . . , ym+1 | s1, . . . , sm〉 .

It is also known that the CW-complex X(Q0) constructed as in the proof of Proposition 3 has
the same simple homotopy type as the link exterior E(L).

Let ρΓ : π1(E(L)) → Γ be an epimorphism whose target Γ �= {1} is PTFA and let
ρ : π1(E(L)) → 〈t〉 ∼= Z be the homomorphism sending each oriented meridian to t . The fol-
lowing proposition gives a sufficient condition for the torsion τΓ (E(L)) = τ (C∗(E(L);KΓ ))

of E(L) to be defined.

PROPOSITION 4. If the (one variable) Alexander polynomial ΔL(t) of L is not equal
to zero and ρ factors through ρΓ , then H∗(E(L);KΓ ) = 0.

PROOF. The chain complex C∗(X(Q0); ZΓ ) is of the form

0 −→ (ZΓ )m
ρΓ J ·−−−→ (ZΓ )m+1

ρΓ

(
1 − y−1

1 , . . . , 1 − y−1
m+1

)
·

−−−−−−−−−−−−−−−−−−−−→ ZΓ −→ 0, (4)

where J =
(

∂sj

∂yi

)
1≤i≤m+1

1≤j≤m

. Now the assumption ΔL(t) �= 0 implies that H∗(E(L);K〈t〉) =

0. In particular, ρJ · : (Z〈t〉)m → (Z〈t〉)m+1 is injective. Since PTFA groups are locally
indicable, it follows from Friedl [6, Proposition 6.4] that the second map of (4) is injective.
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It is still injective when we apply ⊗Γ KΓ . The third map of (4) is clearly surjective after
applying ⊗Γ KΓ . Hence H∗(E(L);KΓ ) = H∗(X(Q0);KΓ ) = 0 holds. �

REMARK 3. In the above argument, we can replace ρ by any other homomorphism
ρ′ : π1(E(L)) → Z satisfying H∗(E(L);KZ) = 0, where KZ is twisted by ρ′. In fact, since
the multivariable Alexander polynomial of L is non-trivial (see [25, Proposition 7.3.10], for
example), we can use McMullen’s argument [30, Theorem 4.1] to show that H∗(E(L);KZ) =
0 for generic ρ′ �= 0. We also remark that by the definition of PTFA groups, there exists at
least one homomorphism Γ → Z, whose composition with ρΓ is non-trivial.

Hereafter we assume that H∗(E(L);KΓ ) = 0. By using the cell structure of X(Q0), the
torsion τΓ (E(L)) is given by

τΓ (E(L)) = τΓ (X(Q0)) = (ρΓ J )i · (1 − ρΓ (y−1
i ))−1

∈ K1(KΓ )/ ± ρΓ (π1(E(L))) = K1(KΓ )/ ± Γ ,

where 1 ≤ i ≤ m + 1 is chosen so that ρΓ (yi) �= 1 and (ρΓ J )i is obtained from ρΓ J

by deleting its i-th row (see Friedl [6, Lemma 6.6] for example). The torsion τΓ (E(L)) is
independent of such a choice of i.

For later use, we show that we can compute τΓ (E(L)) from any presentation of
π1(E(L)) with deficiency 1. Suppose Q is such a presentation of the form

〈x1, . . . , xk+1 | r1, . . . , rk〉 .

Let X(Q) be the corresponding 2-complex.

LEMMA 5. The equality τΓ (E(L)) = τΓ (X(Q)) ∈ K1(KΓ )/ ± Γ holds.

PROOF. The existence of the presentation Q0 shows that the deficiency of π1(E(L))

is at least 1. On the other hand, if it were greater than 1, then H1(E(L);KΓ ) should be non-
trivial, a contradiction. Therefore the deficiency of π1(E(L)) is 1. Then Harlander-Jensen’s
theorem [22, Theorem 3] shows that X(Q0) and X(Q) are homotopy equivalent. In fact they
are simple homotopy equivalent by Waldhausen’s theorem [41, Theorems 19.4, 19.5]. Hence

τΓ (E(L)) = τΓ (X(Q0)) = τΓ (X(Q))

holds. �

Now we assume that L is an n-component rationally homologically fibered link with

a minimal genus Seifert surface R of genus g . Let M = (M, i+, i−) ∈ CQ
g,n be a rational

homology cylinder over Σg,n obtained as the complementary sutured manifold for R. We
take a basepoint p of M on a component of i+(∂Σg,n) = i−(∂Σg,n) and a small segment
μ0 ⊂ ∂M which intersects with i±(∂Σg,n) at p transversely. μ0 is oriented so that it goes
across i±(∂Σg,n) from i+(Σg,n) to i−(Σg,n). We may assume that μ0 defines a meridian
loop μ ∈ π1(E(L)) when we remake E(L) from M . By the definition of a PTFA group, any
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meridian loop of at least one component of L must satisfies ρΓ (μ) �= 1 ∈ Γ , and we choose
such a μ by changing the basepoint if necessary.

Consider the composition π1(M) → π1(E(L))
ρΓ−→ Γ to define rΓ (M) and τ+

Γ (M).

THEOREM 10. Under the above assumptions, we have

τΓ (E(L)) = τ+
Γ (M) · (I2g+n−1 − ρΓ (μ)rΓ (M)) · (1 − ρΓ (μ))−1

∈ K1(KΓ )/ ± Γ.

PROOF. Given an admissible presentation of π1(M) as in (3), we denote it briefly by

π1(M) ∼= 〈i−(−→γ ),−→z , i+(−→γ ) | −→r 〉 .

From this, we can obtain a presentation Q1 of π1(E(L)) given by

π1(E(L)) ∼= 〈i−(−→γ ),
−→
z , i+(−→γ ), μ | −→

r , i−(−→γ ) μ i+(−→γ )−1μ−1〉 .

Consider the 2-complex X(Q1) as before. The matrix

J :=

⎛⎜⎜⎝
A I2g+n−1

B 0(l,2g+n−1)

C −ρΓ (μ)−1I2g+n−1

0(1,2g+n−1+l) ∗ ∗ · · · ∗

⎞⎟⎟⎠
represents the boundary map

C2(X(Q1);KΓ ) ∼= K4g+2n−2+l
Γ −→ K4g+2n−1+l

Γ
∼= C1(X(Q1);KΓ ) ,

where we use the above admissible presentation of π1(M) to give the matrices A, B and C

(recall Section 4), and then apply ρΓ to their entries for simplicity.
By Lemma 5, we have

τΓ (E(L)) = τΓ (X(Q1)) = Jμ · (1 − ρΓ (μ)−1)−1 ,

where Jμ is obtained from J by deleting the last row, and Then as elements in K1(KΓ )/ ±
ρΓ (π1(E(L))), we have

Jμ =
⎛⎝A I2g+n−1

B 0(l,2g+n−1)

C −ρΓ (μ)−1I2g+n−1

⎞⎠ =
⎛⎝A + ρΓ (μ)C 02g+n−1

B 0(l,2g+n−1)

C −ρΓ (μ)−1I2g+n−1

⎞⎠
=
(

A + ρΓ (μ)C

B

)
=
(

A

B

)
− ρΓ (μ)

(
rΓ (M) Z

0(l,2g+n−1+l)

)(
A

B

)
=
(

I2g+n−1 − ρΓ (μ)rΓ (M) −ρΓ (μ)Z

0(l,2g+n−1) Il

)(
A

B

)
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= (I2g+n−1 − ρΓ (μ)rΓ (M))

(
A

B

)
= (I2g+n−1 − ρΓ (μ)rΓ (M)) · τ+

Γ (M),

where Z is defined by the formula (rΓ (M) Z) = −C

(
A

B

)−1

(see Proposition 3 (2)). This

completes the proof. �

EXAMPLE 11. (1) Consider the homomorphism ρ : π1(E(L)) → 〈t〉 at the be-
ginning of this section. We have t = ρ(μ). It is easy to see that the composition

H1(M) → H1(E(L))
ρ−→ Z is trivial. Thus the matrices τ+

〈t〉(M) and r〈t〉(M) have their

entries in Q and in fact r〈t〉(M) = σ(M) holds. Then Theorem 10 together with Milnor’s
formula [31, Section 2] give a factorization

ΔL(t) = (1 − t) det(τ〈t〉(E(L)))

= det(τ+
〈t〉(M)) · det

(
I2g+n−1 − tσ (M)

)
of the (one variable) Alexander polynomial of L. This formula is essentially the same as (1)
in the proof of Proposition 2.
(2) Let π1(E(L)) → H := H1(E(L)) ∼= Zn be the abelianization homomorphism for n ≥ 2.
In this case, Theorem 10 together with Milnor’s formula give a factorization

Δ(L) = det(τH (E(L)))

= 1

1 − ρH (μ)
· det(τ+

H (M)) · det
(
I2g+n−1 − ρΓ (μ)rH (M)

)
of the multivariable Alexander polynomial Δ(L) of L.

More examples are given in [18], where we detect the non-fiberedness of the thirteen
knots mentioned in Example 6 by using the torsions associated with the metabelian quotients
of their knot groups.

6. The handle number

In this section, we review the handle number of a sutured manifold according to [12, 13].
A compression body is a cobordism W relative to the boundary between surfaces ∂+W

and ∂−W such that W is diffeomorphic to ∂+W × [0, 1] ∪ (2-handles) ∪ (3-handles) and
∂−W has no 2-sphere components. In this paper, we assume W is connected. If ∂−W = ∅,
W is a handlebody. If ∂−W �= ∅, W is obtained from ∂−W × [0, 1] by attaching a number of
1-handles along the disks on ∂−W × {1} where ∂−W corresponds to ∂−W × {0}. We denote
by h(W) the number of these attaching 1-handles.

Let (M, γ ) be a sutured manifold such that R+(γ )∪R−(γ ) has no 2-sphere components.
We say that (W,W ′) is a Heegaard splitting of (M, γ ) if both W and W ′ are compression
bodies, M = W ∪ W ′ with W ∩ W ′ = ∂+W = ∂+W ′, ∂−W = R+(γ ), and ∂−W ′ = R−(γ ).
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DEFINITION 7. Assume that R+(γ ) is diffeomorphic to R−(γ ). We define the handle
number of (M, γ ) as follows:

h(M, γ ) = min{h(W)(= h(W ′)) | (W,W ′) is a Heegaard splitting of (M, γ )} .

If (M, γ ) is the complementary sutured manifold for a Seifert surface R, we define

h(R) = min{h(W) | (W,W ′) is a Heegaard splitting of (M, γ )} ,

and call it the handle number of R.

If (M, γ ) is a product sutured manifold then h(M, γ ) = 0, and vice versa. For the
behavior and some estimates of the handle number, see [14, 15]. Note that this invariant is
closely related to the Morse-Novikov number for knots and links [40].

Here we present an estimate of the handle number using the homology. For a sutured

manifold (M, γ ), fix two diffeomorphisms i± : Σg,n

∼=→ R±(γ ) as in the previous sections.
Suppose M has a Heegaard splitting (W,W ′) such that h(W) = h. Then, M is diffeomorphic
to a manifold obtained from R+(γ ) × [0, 1] by attaching h 1-handles and h 2-handles. By
considering the computation of H1(M, i+(Σg,n)) from this handle decomposition, we have

h(M, γ ) ≥ p ,

where p is the minimum number of generators of H1(M, i+(Σg,n)). This estimate is effective
in general (see [13, Example 6.3]), however not at all in case (M, γ ) is a homology cylinder.
To obtain a method which works in that case, we consider a local coefficient system R of a
ring on M . By the same argument as above, we have:

PROPOSITION 5. h(M, γ ) is greater than or equal to the minimum number of elements
generating H1(M, i+(Σg,n);R) as an R-module.

7. A lower estimate of handle numbers of doubled knots by using Nakanishi index

In this section, we give a lower estimate of handle numbers of genus one Seifert surfaces
for doubled knots ([1, page 20]) by using a machinery similar to the Γ -torsion.

Let K̃ be the knot in S1 × D2 depicted in Figure 7, where Ṽ = S1 × D2 is supposed to

be embedded in S3 in a standard position. We denote by λ̃ the standard longitude of S1 × D2.
Take a Seifert surface R̃ of K̃ as in the figure.

For a knot K̂ (not necessarily homologically fibered) in S3, we take a tubular neighbor-

hood N(K̂) of K̂ . Attaching Ṽ to cl(S3 − N(K̂)), we obtain a doubled knot K in S3 with the
Seifert surface R.

If we attach Ṽ to cl(S3 − N(K̂)) by gluing λ̃ to the 0-framing of ∂N(K̂), then we have
the Seifert surface R whose Seifert matrix is the same as that of R̃. Therefore, as seen in
Example 5, if K̂ is homologically fibered, so is K .
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FIGURE 7. The knot K̃ in S1 × D2

PROPOSITION 6. The handle number h(R) of R is greater than or equal to the Nakan-
ishi index m(K̂) of K̂ .

Recall that the Nakanishi index m(K̂) of a knot K̂ is the minimum size of square matrices
representing H1(GK̂; Z[t±]) as a Z[t±]-module, where GK̂ is the knot group of K̂ and t

is a generator of the abelianization of GK̂ . (H1(GK̂ ; Z[t±]) is nothing other than the first

homology group of the infinite cyclic cover of the knot exterior of K̂ .) It is shown in Kawauchi
[24] that

m(K̂) = e(H1(GK̂ ; Z[t±])) ,

where e(A) of a Z[t±]-module A is the minimal number of elements generating A over Z[t±].
PROOF OF PROPOSITION 6. Since h(R) ≥ e(H1(M, i+(Σ1,1); Z[t±])) by Proposi-

tion 5, it suffices to show that e(H1(M, i+(Σ1,1); Z[t±])) ≥ m(K̂).

Let 〈γ̃1, γ̃2〉 be a generating system of π1(R̃, p̃) as in Figure 7. We denote by γi (i = 1, 2)

the image of γ̃i in R and denote by p the image of p̃. Further, we denote by (M, γ ) the
complementary sutured manifold for R. It is easy to see that a presentation of π1(M,p) can be
obtained by adding a generator x to the Wirtinger presentation 〈x1, x2, . . . , xl | r1, . . . , rl−1〉
of GK̂ (with basepoint p) as shown in Figure 8.

From these data, we can give an admissible presentation of π1(M,p) as follows:

π1(M,p) ∼=
〈 i−(γ1), i−(γ2),

x, x1, x2, . . . , xl,

i+(γ1), i+(γ2)

i−(γ1)w1x, i−(γ2)w2,

r1, . . . , rl−1,

i+(γ1)x, i+(γ2)xw3

〉
,

where w1, w2, w3 are words in x1, . . . , xl . The abelianization map ρ : π1(M) → H1(M) ∼=
Z2 = Zs ⊕ Zt is given by

x �→ s , x1, x2, . . . , xl �→ t .
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FIGURE 8. Doubled knot

A computation in matrices with entries in ZH1(M) = Z[s±, t±] shows that

ρ⎛⎝A

B

C

⎞⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i−(γ1)w1x i−(γ2)w2 r1 . . . rl−1 i+(γ1)x i+(γ2)xw3

i−(γ1) 1 0 0 · · · 0 0 0
i−(γ2) 0 1 0 · · · 0 0 0
x ∗ 0 0 · · · 0 s ∗
x1 ∗ ∗ a11 · · · a1,l−1 0 b1

...
...

...
...

. . .
...

...
...

xl ∗ ∗ al1 · · · al,l−1 0 bl

i+(γ1) 0 0 0 · · · 0 1 0
i+(γ2) 0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where aij = ∂rj

∂xi

coincides with the (i, j)-entry (applied an involution) of the Alexander

matrix with respect to the Wirtinger presentation of GK̂ , and bi = ∂(i+(γ2)xw3)

∂xi

.

Recall that the matrix
ρ(

A

B

)
gives a representation matrix of

H1(M, i+(Σ1,1); Z[s±, t±]). As a representation matrix,
ρ(

A

B

)
is equivalent to

⎛⎜⎝a11 · · · a1,l−1 b1
...

. . .
...

...

al1 · · · al,l−1 bl

⎞⎟⎠ .

Therefore, if we apply the natural map Z[s±, t±] → Z[t±] (s �→ 1) to each entry, we have
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an exact sequence

Z[t±] −→ H1(GK̂, {1}; Z[t±]) −→ H1(M, i+(Σ1,1); Z[t±]) −→ 0 ,

which shows that

e(H1(GK̂, {1}; Z[t±])) ≤ e(H1(M, i+(Σ1,1); Z[t±])) + 1 . (5)

(Recall that the Alexander matrix of K̂ is a presentation matrix of H1(GK̂, {1}; Z[t±]).)
In the homology exact sequence

0 −→ H1(GK̂; Z[t±]) −→ H1(GK̂, {1}; Z[t±]) −→ H0({1}; Z[t±]) −→ H0(GK̂; Z[t±]) ,

the fourth map is given by the augmentation map

H0({1}; Z[t±]) ∼= Z[t±] −→ Z ∼= H0(GK̂; Z[t±]) , (t �→ 1) ,

whose kernel is (t − 1)Z[t±] ∼= Z[t±], a free Z[t±]-module. Hence, we obtain an exact
sequence

0 −→ H1(GK̂; Z[t±]) −→ H1(GK̂, {1}; Z[t±]) −→ Z[t±] −→ 0 .

Then, by [24, Lemma 2.5], we have

e(H1(GK̂, {1}; Z[t±])) = e(H1(GK̂ ; Z[t±])) + 1 = m(K̂) + 1. (6)

The conclusion follows from (5) and (6). �

COROLLARY 1. There exist homologically fibered knots having Seifert surfaces of
genus 1 with arbitrarily large handle number.

FIGURE 9. Doubled knot K obtained from P (3,−3, 3)
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PROOF. It is known that there exist knots with arbitrarily large Nakanishi index. Our
claim follows by combining this fact with Proposition 6. �

EXAMPLE 12. We present an example which shows the estimate of Proposition 6 is
sharp.

Let K̂ be the pretzel knot P(3,−3, 3) = 946. The Nakanishi index of K̂ is 2 from the
list in [25]. Let K be a doubled knot along K̂ and let τ1 and τ2 (resp. τ ′

1 and τ ′
2) be the arcs

whose ends are in +-side (resp. −-side) of the Seifert surface R as illustrated in Figure 9.
Let (M, γ ) be the complementary sutured manifold for R. Then we can observe that

(cl(M − N(τ1 ∪ τ2 ∪ τ ′
1 ∪ τ ′

2)), γ ), say (M̌, γ ), is also a sutured manifold. Furthermore,

we can show that (M̌, γ ) is a product sutured manifold by using the technique of product
decompositions (see Gabai [9]). This means that (M, γ ) has a Heegaard splitting (W,W ′)
such that h(W) = h(W ′) = 2 where τ1 and τ2 (resp. τ ′

1 and τ ′
2) correspond to the attaching 1-

handles of W (resp. W ′). Thus we have h(R) ≤ 2. (See [15] for the detail of this technique.)
Therefore we have h(R) = 2 by Proposition 6. Note that the Alexander polynomial of K is
equal to t2 − t + 1, namely K is homologically fibered.
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