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Curvature Pinching for Complete Kaehler Submanifolds
of a Complex Projective Space

Yoshio MATSUYAMA

Chuo University

Abstract. A classification of complete Kaehler submanifolds Mn in Pn+p(C) with scalar curvature ρ > n2

is given, resolving a conjecture of K. Ogiue.

1. Introduction

Let Pn+p(C) be an (n+p)-dimensional complex projective space with the Fubini-Study
metric of constant holomorphic sectional curvature 1. There are a number of conjectures for
Kaehler submanifolds in Pn+p(C) suggested by K. Ogiue ([9]); some have been resolved
under a suitable topological restriction (e.g. Mn is complete) (cf. [1], [6], [8], [9], [11], [12],
[13], [14], [15], [17] and [18]). In this direction, one of the open problems is as follows:

CONJECTURE (K. Ogiue). Let Mn be an n-dimensional complete submanifold immersed

in Pn+p(C). If ρ > n2, is M totally geodesic in Pn+p(C)?
In the case where Mn is a complete Kaehler submanifold immersed in Pn+p(C) which

has the Ricci curvature S > n
2 , it was proved in [9] that such a submanifold Mn is totally

geodesic in Pn+p(C). Recently, in the case of Mn having S ≥ n
2 , Suh and Yang ([14]) proved

that it is parallel, i.e., either totally geodesic or congruent to one of Qn or P1(C) × P1(C).

Also, the case where the scalar curvature ρ > n(n+ 1)− n+2
3 was studied by Tanno [16], and

he proved that M is totally geodesic in Pn+p(C). In [6] we prove that if Mn is compact, then

ρ ≥ n2 if and only if M is either totally geodesic in Pn+p(C) or ρ = n2. In the latter case
Mn is an imbedded submanifold congruent to the standard imbedding of one of the following
submanifolds: P1(C)×P1(C) and the complex quadric Qn, n ≥ 3. Hence, we obtain that Mn

is an n-dimensional compact Kaehler submanifold immersed in Pn+p(C). If ρ > n2, then M

is totally geodesic in Pn+p(C), so that the above conjecture is resolved partially.
In the present paper we would like to consider the case where Mn is complete and ρ >

n2, so that the above conjecture is resolved. The main result is the following:
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THEOREM. Let Mn be an n-dimensional complete Kaehler submanifold immersed in
Pn+p(C). If ρ > n2 then M is totally geodesic in Pn+p(C).

2. Preliminaries

Let Mn be a Kaehler submanifold of complex dimension n, immersed in the complex
projective space Pn+p(C) endowed with the Fubini-Study metric of constant holomorphic
sectional curvature 1. We denote by UM the unit tangent bundle over M and by UMx its
fibre over x ∈ M and by J and 〈 , 〉 the complex structure and the Fubini-Study metric. Let
∇ and h be the Riemannian connection and the second fundamental form of the immersion,
respectively. A and ∇⊥ are the Weingarten endomorphism and the normal connection. The
first and the second covariant derivatives of the normal valued tensor h are given by

(∇h)(X, Y,Z) = ∇⊥
X(h(Y,Z)) − h(∇XY,Z) − h(Y,∇XZ)

and

(∇2h)(X, Y,Z,W) = ∇⊥
X((∇h)(Y,Z,W)) − (∇h)(∇XY,Z,W)

−(∇h)(Y,∇XZ,W) − (∇h)(Y,Z,∇XW) ,

respectively, for any vector fields X,Y,Z and W tangent to M .
Let R and R⊥ denote the curvature tensor associated with ∇ and ∇⊥, respectively. Then

h and ∇h are symmetric and for ∇2h we have the Ricci-identity

(∇2h)(X, Y,Z,W) − (∇2h)(Y,X,Z,W)

= R⊥(X, Y )h(Z,W) − h(R(X, Y )Z,W) − h(Z,R(X, Y )W) .

We also consider the relations

h(JX, Y ) = Jh(X, Y ) and AJξ = JAξ = −AξJ ,

where ξ is a normal vector to M .
If S and ρ are the Ricci tensor of M and the scalar curvature of M , respectively, and M

is a Kaehler submanifold in Pn+p(C), then from the Gauss equation we have

S(v,w) = n + 1

2
〈v,w〉 −

2n∑
i=1

〈Ah(v,ei)ei , w〉 , (1)

ρ = n(n + 1) − |h|2 . (2)

Now, let v ∈ UMx, x ∈ M . If e2, . . . , e2n are orthonormal vectors in UMx orthogonal
to v, then we can consider {e2, . . . , e2n} as an orthonormal basis of Tv(UMx). We remark
that {v = e1, e2, . . . , e2n} is an orthonormal basis of TxM . We denote the Laplacian of

UMx
∼= S2n−1 by Δ.
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Define a function f1 on UMx, x ∈ M , by

f1(v) =
2n∑

i,j=1

〈Ah(ei ,ej )ej , Ah(v,v)ei〉 .

Noting that ∇ekv = −ek,∇ek e� = δk�v, k, � = 2, . . . , 2n, we have

(Δf1)(v) =
2n∑

k=2

(∇f1)(v, ek, ek)

= −2
2n∑

k=2

∇ek (

2n∑
i,j=1

〈Ah(ei,ej )ej , Ah(ek,v)ei〉)

= −2
2n∑

k=2

f1(v) + 2
2n∑

k=2

f1(ek).

Using the minimality of M , we can obtain that

(Δf1)(v) = −2(2n − 1)f1(v) + 2
2n∑

k=2

〈Ah(ei,ej )ej , Ah(ek,ek)ei〉 (3)

= −4nf1(v) .

For more details on this, see [7], [11]. Similarly, define f2, f3, f4, f5, f6, f7, f8, f9, f10 and
f11 by

f2(v) =
∑

〈Ah(v,v)v,Ah(v,ei)ei〉 ,

f3(v) =
∑

〈Ah(ei,ej )ej , Ah(v,ei)v〉 ,

f4(v) =
∑

〈Ah(v,ei)ei, Ah(v,ej )ej 〉 ,

f5(v) =
∑

〈Ah(v,v)ei, Ah(v,v)ei〉 ,

f6(v) =
∑

〈Ah(ej ,v)ei, Ah(ej ,v)ei〉 ,

f7(v) = |h(v, v)|2 ,

f8(v) =
∑

〈Ah(v,ei)ei, v〉|h(v, v)|2 ,

f9(v) = (
∑

〈Ah(v,ei)ei, v〉)2 ,

f10(v) =
∑

〈Ah(v,ei)ei, v〉 ,

f11(v) = |h|2|h(v, v)|2 ,
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respectively. Then we obtain

(Δf2)(v) = −4(2n + 2)f2(v) + 4f3(v) + 4f4(v) + 2f1(v) , (4)

(Δf3)(v) = −4nf3(v) + 2
∑

〈Ah(ej ,ei )ej , Ah(ek,ei )ek〉 , (5)

(Δf4)(v) = −4nf4(v) + 2
∑

〈Ah(ej ,ei )ej , Ah(ek,ei )ek〉 , (6)

(Δf5)(v) = −4(2n + 2)f5(v) + 8
∑

〈Ah(ej ,v)ei, Ah(ej ,v)ei〉 , (7)

(Δf6)(v) = −4nf6(v) + 2
∑

〈Ah(ej ,ek)ei , Ah(ej ,ek)ei〉 , (8)

(Δf7)(v) = −4(2n + 2)f7(v) + 8
∑

〈Ah(v,ei)ei , v〉 , (9)

(Δf8)(v) = −6(2n + 4)f8(v) + 16f2(v) + 2f11(v) + 8f9(v) , (10)

(Δf9)(v) = −4(2n + 2)f9(v) + 8f4(v) + 4|h|2
∑

〈Ah(v,ei)ei, v〉 , (11)

(Δf10)(v) = −4nf10(v) + 2|h|2 , (12)

(Δf11)(v) = −4(2n + 2)f11(v) + 8|h|2
∑

〈Ah(v,ei)ei , v〉 . (13)

Since

1

2

∑
(∇2f7)(ei, ei , v) =

∑
〈(∇2h)(ei, ei , v, v), h(v, v)〉

=
∑

〈(∇h)(ei , v, v), (∇h)(ei , v, v)〉 ,

we have the following (see [2], [3], [4], [5] and [7]):

LEMMA. Let M be an n-dimensional complex Kaehler submanifold of Pn+p(C). Then
for v ∈ UMx we have

1

2

∑
(∇2f7)(ei, ei, v) =

∑
|(∇h)(ei, v, v)|2 + n + 2

2
|h(v, v)|2 (14)

+2
∑

〈Ah(v,v)ei, Ah(ei ,v)v〉
−2

∑
〈Ah(v,ei)ei, Ah(v,v)v〉

−
∑

〈Ah(v,v)ei , Ah(v,v)ei〉 .

The following generalized maximum principle due to Omori [10] and Yau [19] will be used
in order to prove our theorem.

GENERALIZED MAXIMUM PRINCIPLE ([10] and [19]). Let Mn be a complete

Riemannian manifold whose Ricci curvature is bounded from below and f ∈ C2(M)

a function bounded from above on Mn. Then, for any ε > 0,
there exists a point p ∈ Mn such that

f (p) ≥ sup f − ε , ‖grad f ‖ < ε , Δf (p) < ε .



CURVATURE PINCHING FOR COMPLETE KAEHLER SUBMANIFOLDS 495

3. Proof of Theorem

From (2) we have

ρ = n(n + 1) − |h|2 .

Thus we have only to prove the Theorem under the assumption

|h|2 < n. (15)

We see that the following equation holds for v ∈ UMx, x ∈ M ,
∑

〈Ah(Jv,J v)ei , Ah(ei ,J v)J v〉 = −
∑

〈Ah(v,v)ei, Ah(ei ,v)v〉 . (16)

From (14) and (16) we have

1

4

∑
(∇2f7)(ei, ei , v) + 1

4

∑
(∇2f7)(ei, ei , J v) (17)

=
∑

|(∇h)(ei , v, v)|2 + n + 2

2
|h(v, v)|2

−2
∑

〈Ah(v,ei)ei, Ah(v,v)v〉 −
∑

〈Ah(v,v)ei, Ah(v,v)ei〉 .

Now, we choose an orthonormal basis {v = e1, e2, . . . , en} such that the matrix
∑2p

α=1 A2
ξα

is

diagonalized, where {ξ1, ξ2, . . . , ξ2p} is any orthonormal normal basis and 1 ≤ α ≤ 2p. Then
we have

f2(v) = f8(v) . (18)

Now, we set

g(v) = 1

2

(
1

6n(2n + 2)

(
2f2(v) + 2

n
f3(v) − 2

n
f4(v) + 1

n
f1(v)

−(2n + 2)f8(v) − 2f9(v) + f11(v)

)

+n

2

(
1

4(2n + 2)
f7(v) + 2

4n(2n + 2)
f10(v)

)

− 1

4(2n + 2)
f5(v) − 2

4n(2n + 2)
f6(v)

)
.

In terms of (4), (5), (6), (7), (8), (9), (10), (11), (12) , (13) ,(17) and (18) we have

1

4

∑
(∇2f7)(ei, ei , v) + 1

4

∑
(∇2f7)(ei, ei , J v) (19)

+ (Δg)(v) + (Δg)(J v)
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=
∑

|(∇h)(ei, v, v)|2 + n + 2

2
|h(v, v)|2

− 1

n
f11(v) − f5(v)

− n

2
|h(v, v)|2 + n

2n(2n + 2)
|h|2

+ f5(v) − 2

2n(2n + 2)

∑
〈Ah(ej ,ek)ei, Ah(ej ,ek)ei〉

=
∑

|(∇h)(ei, v, v)|2 + |h(v, v)|2 − 1

n
f11(v)

+ n

2n(2n + 2)
|h|2 − 2

2n(2n + 2)

2p∑
α,β=1

(traceAξαAξβ )2

≥
∑

|(∇h)(ei , v, v)|2 + |h(v, v)|2 − 1

n
f11(v)

+ n

2n(2n + 2)
|h|2 − 1

2n(2n + 2)
|h|4 ,

where we used
∑

(traceAξαAξβ )2 ≤ 1

2
|h|4 (see [9], p. 88) for any orthonormal basis

{ξ1, ξ2, . . . , ξ2p}, 1 ≤ α, β ≤ 2p, as above.
On the other hand, from the assumption of (15) we see that the Ricci curvature is bounded

from below. Note that

2g(v) = 1

6n(2n + 2)

(
2f2(v) + 2

n
f3(v) − 2

n
f4(v) + 1

n
f1(v)

−(2n + 2)f8(v) − 2f9(v) + f11(v)

)

+n

2

(
1

4(2n + 2)
f7(v) + 2

4n(2n + 2)
f10(v)

)

− 1

4(2n + 2)
f5(v) − 2

4n(2n + 2)
f6(v)

≤ 1

6n(2n + 2)

(
2f8(v) + 2

n
f3(v) + 1

n
f1(v) + f11(v)

)

+n

2

(
1

4(2n + 2)
f7(v) + 2

4n(2n + 2)
f10(v)

)
.

Combining the scalar curvature ρ〉n2 with the above equation, we know that there exist real
numbers c1, c2 such that

Rii > c1 , g(v) ≤ c2 ,
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where Rii is the Ricci curvature of Mn. Since we can also regard
∑

(∇2f7)(ei, ei , v) as the
Laplacian of f7(v), we obtain that Mn is totally geodesic. This proves the Theorem (see [8],
pp. 662–663).
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