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Abstract. Suppose that L/k is a finite and abelian extension such that & is a totally real base field and L is
a CM-field. We regard the ideal class group Cly of L as a Gal(L/k)-module. As a sequel of the paper [8] by the
first author, we study a problem whether the Stickelberger element for L/k times the annihilator ideal of the roots of
unity in L is in the Fitting ideal of Cl, and also a problem whether it is in the Fitting ideal of the Pontrjagin dual
(Clp)Y. We systematically construct extensions L/k for which these properties do not hold, and also give numerical
examples.

0. Introduction

Our aim in this paper is to study the Galois action on the ideal class group of a CM-
field over a totally real base field. Let k£ be a totally real number field and L be a CM-
field such that L/k is finite and abelian. In this paper, we fix an odd prime number p, and
study the p-component Ay, of the ideal class group Clz, namely A; = Cly ®Z,. We put
Ry =7Z,[Gal(L/k)] and regard Ay as an R;-module.

Let 61/« be the Stickelberger element defined by

b=y, ¢0,0)0 " €QlGal(L/k)]

oeGal(L/k)

where {(s,0) = ) ( Lk ) - N(a)™* is the partial zeta function. We define p oo (L) to be

the group of roots of unity in L with order a power of p, and Iy = Anng; (up>~(L)) to
be the annihilator ideal of @y (L) in Ry. The results in Deligne and Ribet [2] imply that
101/ C Rp. In this setting, Brumer’s conjecture claims that

B) 110/ C Anng, (AL).

For a commutative ring R and a finitely presented R-module M, we denote by Fittg (M)
the (initial) Fitting ideal of R (cf. Northcott [12] §3.1). In general, we have Fittg (M) C
Anng(M). As a sequel of the paper [8], we study in this paper the following two stronger
properties (SB) and (DSB) than (B);

(SB) 101/, C Fittg, (AL),
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and
(DSB) 1101k C Fittg, ((A1)").

Here, (AL)Y is the Pontrjagin dual of A; with cogredient Galois action, namely o €
Gal(L/k) acts as (of)(x) = f(ox) for f € (AL)” and x € Ar. In many cases, these
two properties hold true. For example, if £ = Q, (SB) always holds true, which was proved
in our previous paper [9]; if the p-invariant of L vanishes and any prime above p does not
splitin L/L™, (SB) holds by Nickel [11] Theorem 4; if (L) is cohomologically trivial,
(DSB) holds by Greither [4]. (Nickel [11] Theorem 4 implies more, for example, it implies
that (SB) holds true if all primes above p are tamely ramified in L/k and LY ¢ (LYt (u »)
where L¢! denotes the normal closure of L over Q.) But these two properties do not hold in
general (see [5], [8]). In [5], some explicit numerical examples for which (SB) does not hold
were given. In [8], (DSB) was studied but explicit numerical examples for which (DSB) does
not hold were not given. In this paper, we give explicit numerical examples for which (DSB)
does not hold, and also give explicit conditions under which (DSB) does not hold. Also, we
give explicit examples for which neither (SB) nor (DSB) holds. While the first author studied
(SB) and (DSB) in [8] using Iwasawa theoretic arguments, we study these problems in this
paper by investigating finite and abelian extensions directly. Concerning the background and
known results on these two problems, see [8] and [3]. For the function field case, see Popescu
[13].

We are interested in the Teichmiiller character component of A7. So we assume that a
primitive p-th root of unity is in L, and put K = k(u,), which is a subfield of L. Let Koo /K
(resp. Loo/L) be the cyclotomic Z,-extension of K (resp. L). We assume that L/k is a
finite and abelian extension, L/K is a p-extension and L N Ko = K. We denote by K™
the maximal real subfield of K, and by L,, the n-th layer of Lo /L (so [L, : L] = p™) for
any integer n > 0. If Gal(L/K) is cyclic, (SB) and (DSB) are equivalent. In this paper, we
consider the case that Gal(L/K) is not cyclic. In §1 we will prove the following theorem (we
will prove in §1 a slightly more general Theorem 1.2).

THEOREM 0.1. We assume that no prime above p splits in K /KT (namely (NTZ) is
satisfied, see the beginning of §1), and also that if a prime v splits in K /K™, v is unramified in
L/K (we call this property (R), see the beginning of §1). Suppose also that G = Gal(L/K)
is not cyclic. Then (DSB) does not hold for L,/ k for all n > 0. Namely, we have

11,01,k € Fittg,, ((AL,)")
foralln > 0.

In §2 we will give an explicit numerical example L/k of Theorem 0.1 where k =
QW1901), p = 3, K = k(uz) and L = K(a, B) with o3 — 84 — 191 = 0 and
B> — 578 — 68 = 0. Then we know that Gal(L/K) ~ Z/3Z & Z/3Z. For this L/k, we
explicitly compute Ay, the Galois action on it, 67/« and also Fittg, ((AZ)V) (for the minus
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part A}, see the beginning of §1). We will see directly

#upo(L)0L k& Fittg, ((Ar)")

from these computations for this example.

In §3 and §4 we study the case that L/k does not satisfy (NTZ). In §3 we prove Proposi-
tion 3.2 which says that if L/ k satisfies some conditions, L/ k satisfies neither (SB) nor (DSB).
Using this Proposition 3.2, we will see in §3.2 that there is an explicit example L /k for which
neither (SB) nor (DSB) holds. The example we give in §3.21is p = 3, k = Q(+/69, v/713),
K = k(u3),and L = K (o, B) where o® —6a —3 = 0 and B> — 68 — 1 = 0. Then we know
that Gal(L/K) ~ Z/3Z & Z/3Z. For this L/k, neither (SB) nor (DSB) holds.

The condition of Proposition 3.2 is not easy to check. In §4 we will prove another
theorem by which we can easily construct examples for which neither (SB) nor (DSB) holds.

THEOREM 0.2. Suppose that L/k satisfies the conditions of §4.1. Then neither (SB)
nor (DSB) holds for L,/ k for any integer n > 1. Namely, we have both

11,00,k ¢ Fittg, (Ap,) and 1,01,k ¢ Fittg, ((A,)")
foralln > 1.

We give in §4.3 a numerical example for which Theorem 0.2 can be applied.

We would like to thank heartily X.-F. Roblot who kindly helped us to compute the nu-
merical examples in this paper. Especially, we learned much from him on the computation of
the L-values and of the Galois action on the class group of a number field. The first author
would like to thank C. Greither for several significant discussions with him.

ERRATUM FOR THE PAPER [8]: The first named author would like to make a cor-
rection concerning his previous paper [8]. In page 426 line 21, the correct formula is

HY(G. xp ) =HG. A} )Y = (A2 G)(1).

NOTATION

For any positive integer n, t,» denotes the group of p”-th roots of unity. For a group G
and a G-module M, we denote by M the G-invariant part of M (the maximal subgroup of
M on which G acts trivially), and by M the G-coinvariant of M (the maximal quotient of M
on which G acts trivially).

1. The case that there is no trivial zero

In this section, we assume the conditions before Theorem 0.1. Namely, K = k(up), L/k
is a finite and abelian extension, K C L, L/K is a p-extension, and L N Ko, = K. Suppose
that KT is the maximal real subfield of K. We take n € Z( and consider the n-th layer L,
of the cyclotomic Z,-extension Lo /L. We put Ry, = Z,[Gal(L,/k)]. Any Ry, -module M
is decomposed into M = M+ @ M~ where M* = {x € M | p(x) = =x} for the complex
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conjugation p € Gal(L,/k). Let w be the Teichmiiller character which gives the action of
Gal(K /k) on pp. For any Z,[Gal(K / k)]-module M, we define M to be
M® =M Qg Rx/{{oc —w(0) |0 € Gal(K/k)})
~{xeM]|ox)=w(o)x forallo € Gal(K/k)}.

Note that M +— M® is an exact functor.
For any n € Z>(, we call the following condition (R),,;

(R),  Any prime which splits in K /K is unramified in L, /K.

We simply write (R) for the condition (R),.
We also consider the following condition (no trivial zero);

(NTZ) No prime above p splits in K /K.

Of course, if n is sufficiently large, the condition (R),, implies (NTZ). Also, if we assume
(NTZ) and (R), then we get (R),, for all n > 0.
The following is a key Proposition of this section.

PROPOSITION 1.1. We assume that L, /k satisfies (R), and G = Gal(L/K) is not
cyclic. Then we have

#(AZH)Gal(Ln/K) > #AE
and
#(AD YTUEE) > A%

PROOF. We put I, = Gal(K,/K) and G, = Gal(L,/K). Then G, = G x I, by our
assumption.
We denote by Ep, the unit group and by Cr,, the idele class group of L,. For any prime

w of L,, we denote by L, ,, the completion of L, at w, and by E;, , the unit group of L, ,,
if w is a finite prime, and £y, , = L,f,w if w is an infinite prime. By Lemma 5.1 (2) in [7] (cf.
also [8] §1), an exact sequence 0 — Er, — [][,, EL,, — Cr, — Cl, — 0 yields

an exact sequence

I:IO(GI% ELn)_ — <@ I:IO(Gn,v» EL,“,))> — I:I_I(Gn» ALn)_
v

— H'(Gu, EL,)” — (@Hl(c,,,v, ELW)> — H%G,, AL,)~
v

— HZ(GI‘M ELn)_ — (@Hz(Gn,U’ ELn.w)>
v

where v runs over all finite primes of K, for each v we choose a prime w of L, above v, and
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G, = Gal(L,,,/Ky) is the decomposition group of G,, at v. We know that I-AIO(G,,,U, Er,.)
is isomorphic to the inertia group of G, , by local class field theory. The exact sequence
0— Er,, — L}, — Z —> 0implies that H' (G, v, Ep,, ) = Z/eyZ where e, is the

n,w

ramification index of v in L, /K, and that H Z(Gn,v, E, ) is a subgroup of the Brauer group

nw

of K. We denote by [ the prime of KT below v. If [ does not split in K/K ™, the complex
conjugation p acts trivially on HY (Guvs EL,,,) (g = 0, 1, 2) by the above description, so
p acts trivially on P, H%(Gpy. Ep,,). Hence we have (D H%(Gny. Er,,)” = 0.

If [ splits in K/K™, v is unramified in L,/K by our assumption (R),. Therefore, we have
HY(Gpy, EL,,) =0(q =0, 1, 2; see [14] Chap.XII §3 for the case ¢ = 2). Thus, in any
case we obtain

(1.1.1) (EBI%’I(GM,ELn_,,,)> =0 for g=0,1,2.
v

Suppose that #u o (L) = p©. Then we know L, = L(ppn+c) and K, = K (i pnte).
We will compute H4(G,, Er,)” = H1(G,, E; )= HY(Gp, ftpn+e). As is well-known (for

example, see Lemma 13.27 in [16]), we have H 1 (Ins ppn+e) = 0. Since I, is cyclic, we have
HY(I, ppr+e) = 0 for any g > 1. This implies that

HY (G, pprte) = HY(Gy/ Ty HO (D, i) = HY(G, pape)
by the Serre-Hochschild spectral sequence. Therefore, we obtain
(1.1.2) HY(G,, Er,)” = HY(G, ppe) 2 HI(G,Z/p°Z) .
Letip,/x : Ay — Azn be the natural map. Since the kernel of iy, /g is isomorphic

to the kernel of HI(G,,, Ep)” — (@U Hl(Gn,U, E; )~ (cf. Remark 2.2 in [6]), con-

sidering (1.1.1), we have an isomorphism Ker(iz, /x) ~ H'(Gn, Er,)” ~ H'(G,Z/pZ).
Therefore, we have

(1.1.3) #Ker(i,/k : Ay — (A7 )°") =#(G/G"").

On the other hand, the norm map Azn —> Ay is surjective by Lemma 5.1 (1) in [7] (cf.
Lemma 1.4 below). Therefore, the image of iy ,/x coincides with the image of the multipli-
cation by Ng, = X5¢cG,0 on Azn. Thus, we have an exact sequence

0— H'(Gn. EL,)” — Ax — (A )9 — H%(G,. A} ) — 0.
Using (1.1.1) and (1.1.2), we get
Coker(ir,/k : Ay —> (A7 )) >~ H(G,. AL,)” ~ H*(Gy. EL,)~
~ H*(G,Z/p°Z).
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Considering an exact sequence

0— Z/p°Z — Qp/Z, 2> Q,/Z, — 0,
and taking cohomology, we get an exact sequence
0— H'(G,Qp/Zp)/p* — H*(G,Z/p°L) — H*(G,Qp/Zp)[p‘] —> 0

where H2(G, Q,/Z,)[p¢]is the kernel of the multiplication by p© on H?*(G, Q,/Z,). Since
H%(G,Q p/Zp) is isomorphic to Hom( /\2 G, Qp/Z,) by the universal coefficient sequence
(see page 60 in Chap. III in [1] and Theorem 6.4 (iii) in Chap. V in [1], cf. also Lemma
1.3 in [8]), we get H2(G, Q,/Z,)[p°] # 0 from our assumption that G is not cyclic. Since
HY(G, Q,/Z,) is isomorphic to G as an abelian group, HY(G, Q,/Z,)/p¢ is isomorphic to

G/GP" as an abelian group. Therefore, we obtain
#H*(G,Z/p°L) > #H" (G, Q) /Zy)/p" =#G/G"" .
This implies that
(1.1.4) #Coker(ir,/x : Ay —> (A[ )9") > #(G/G"").
It follows from (1.1.3) and (1.1.4) that #A . < #(AZH)G".
Since H'(G,, Er,)” = H'(G, pe) >~ H'(G, Z/p°Z) and
H%Gn, AL,)? ~ H*(Gy, EL,)® ~ HX(G, jupe) =~ HX(G, 2/ p°Z)

by the same method as above, we obtain an exact sequence
(1.1.5) 0— H'G,Z/p°L) — A} — (A )" — H*(G,Z/p°Z) — 0.
Since

#H'(G,Z/p°Z) = #G/G"" < #H*(G,Z/p°Z),

we obtain #A¢ < #(A‘Zn)G". This completes the proof of Proposition 1.1.

As in the proof of Proposition 1.1, we suppose that #1100 (L) = #upe(K) = p©. Let
Kk : Gal(Loo/ k) —> Z; be the cyclotomic character and y be a generator of Gal(Lo /L) =
Gal(Ks/K). We fix this y throughout this paper. Since #upo(L) = p°, we know that
ord, (1 —«(y)) = c. We also regard y as a generator of Gal(L, /L) = Gal(K,,/K). For 0k
and 6z, /k, we have pOg/kx € Rg = Z,[Gal(K/k)], p”+"9Ln/k € Ry, = Z,|Gal(L,/k)],
(y —k(¥)OL,/k € R,

The Teichmiiller character w induces the ring homomorphism Ry —> R = Z,, (resp.
Ry, — R‘L"n = Z,[Gal(L,/K)]) such that 0 + w(o) for all 0 € Gal(K/k) (note that
Gal(L,/k) = Gal(L,/K) x Gal(K/k)). For an element x € Rk (resp. x € Ry, ), we denote
the image of x by x®.
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THEOREM 1.2. We assume that L,/ k satisfies (R),,, G = Gal(L/K) is not cyclic, and
that Fittz,, (A%) = (p‘O?/k) where p¢ = #1p (K). We have
(v —k(¥)0L,/k & Fittg,, (AL,)").
(Ifn =0, we have p°0r i & Fittg, ((ApD)Y).) In particular, we have
11,00,k € Fittg, ((AL,)").

REMARK 1.3. If [K : k] = 2 (for example, if p = 3), the class number formula
implies Fittz,, (AR) = (pce)?/k). In fact, by definition, we have Oﬁ/k = L0, 0™ 1. Since
[K : k] =2, we get A = Ay. So we obtain

Fittz, (A%) = Fittz, (Ax) = (#A%) = (p°L0. 0™ 1) = (p°62,})
by the class number formula.

We often use the following lemmas in this paper.

LEMMA 1.4. Let L/K be an abelian p-extension of CM-fields. We put G =
Gal(L/K). For a prime v of K, we denote by I,,(L/K) the inertia group of v in G. Then
we have an exact sequence

- . N . _
fpoe (K) =2 <@IU(L/K)) — (A))g — Ax — 0
v
where a is induced by the reciprocity map of local class field theory, v runs over all finite
primes of K, and N is induced by the norm map.

PROOF. This is Proposition 5.2 in [7].

In general, for an abelian extension L/k and a subfield K such that k C K C L, we
define a ring homomorphism

cr/k + QIGal(L/k)] — Q[Gal(K /k)]

by the restriction o > o for o € Gal(L/k). We will use the same notation ¢, ,x for any
group rings such as Ry = Z,[Gal(L/k)]1, Z,[[Gal(L/k)1] (in case L/k is infinite), etc.

LEMMA 1.5. Suppose that L]k is a finite and abelian extension and k C K C L. We
denote by Sy, (resp. Sk) the set of finite primes of k ramifying in L/k (resp. K /k). Then we
have

cL/K(eL/k)=< I1 (1—¢;1))9K/k

UESL\SK

where @, is the Frobenius of v in Gal(K / k).
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PROOF. This is well-known, and follows from the expression of 6L/ (s) by the Euler
product (see Tate [15] p.86 and Lemma 2.1 in [7]).

PROOF OF THEOREM 1.2. Assume that (y — «(y))0L,/k is in FittRLn ((ALn)V). Let

cL,/k : RL, —> Rk be the ring homomorphism defined by the restriction. Then we have
cL,k (v —k(¥)0L, 1) € Fittg, ((AL,) " )6,)
where G, = Gal(L,/K). This implies that
cL,/k((y —k(¥))0L,/0)* € Fittz, (A7 ))a,) -
If a prime [ of k is ramified in L, /K, the primes of K™ above [ do not split in K/K™* by
our assumption (R),,, so w(¢[) # 1. This implies that ¢,/ K(@Z’n / Q) = uoy Ik for some unit
u € Z[X, by Lemma 1.5. Since #1100 (L) = p°, we know that p¢ divides «(y) — 1 but petl
does not. Therefore, we get
(cL,/k (v =k (YNOLO”) = (P°OK 1)

as ideals of Z,,. Hence we obtain
pO%; € Fittz, (((A7))")g,) = Fittz, (A?,)9")") = Fittz, (A7 )°") .

Here, the last equality holds because Fittzp (M) = (#M) for any finite Z,-module M.
Since we are assuming Fittz,, (A%) = (p%);/k), we get

Fittz,, (A%) C Fittz, (A7 )",

which implies that #A% > #(A‘i’)l)G". This contradicts Proposition 1.1. Thus, we get the
conclusion of Theorem 1.2.

PROOF OF THEOREM 0.1. Since (NTZ) and (R) imply (R),, for all » > 0, what we
have to show is Fittz ,(A%) = (p“Oy / ) by Theorem 1.2. We define the Iwasawa module

Xk, by

XKoo = lim AKn

where the limit is taken with respect to the norm maps. Then by our assumption (NTZ), we
have an isomorphism (X I?w)Gal( Koo/K) = Ax by Lemma 1.4.

We put Ag, = Zy[[Gal(Kxo/k)]] = li(r_n Rk,. Similarly as in the finite level, we
consider the ring homomorphism Ag,, —> A‘I‘;w >~ Z,[[Gal(K/K)]] which is induced by
o, and we denote the image of x € Ak by x? € A%oo. Let (¥ — k(¥ )Oko/k)? € A%w
be the projective limit of ((y — «(¥))0k,/k)* € R%n (which is the numerator of the p-adic
L-function of Deligne and Ribet). Then the main conjecture proved by Wiles [17] can be
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stated as
Fittay (X% ) = (7 = €(7)0ko/0)”)

because X%OO contains no nontrivial finite submodule and hence its Fitting ideal coincides
with its characteristic ideal. Let ¢k, x : Ak, —> Rk be the restriction map. By the
condition (NTZ), we get

Koo/ K (Y = K (Y)OK /1)) = u((1 =k (¥)Ok/1)” = u' PO )1

for some u, u' € Z; by Lemma 1.5. From the isomorphism (X%m)Gal(Km/K) >~ A%, it
follows that

Fittz, (A%) = (p°0% 1) -

2. A numerical example

In this section, we will give an example of a number field which does not satisfy (DSB).
We will give an extension L/k explicitly, and compute the Stickelberger element of L/k and
the Fitting ideals of Ay, and AZ. We will see from these computations that (SB) holds for this
L/k but (DSB) does not.

We take p = 3 and k = Q(+/1901). Then p = 3 is inert in k. Let F, be the minimal
splitting field of X 3 _ 84X — 191 over Q. We know that F,, contains k and F;, /k is a cubic
cyclic extension which is unramified everywhere. We define Fg to be the minimal splitting
field of X3 — 57X — 68. Then we can check that Fg/k is a cubic cyclic extension of k
which is unramified outside 3 and that the prime of k above 3 is totally ramified in Fg/k. Put
F = FyFg, L = F(u3) and K = k(u3). Then L/k satisfies all the conditions in Theorem
0.1. In fact, G = Gal(L/K) = Gal(F /k) = Z/3Z & Z/3Z is not cyclic, and both conditions
(NTZ) and (R) are satisfied because (3) is ramified in K/k and L/K is unramified outside
(3). We also have L N K+, = K. (Theoretically the existence of F' can be checked by class
field theory. For a modulus m = (3)2 of k, the ray class group of k modulo m is isomorphic to
Z/32Z.87Z/3Z37Z/3Z. So the class field theory tells us that there is an abelian extension F/k
whose Galois group is Z/3Z & Z./37Z, and which is unramified outside 3, and F Nk = k.)

Let o (resp. 7) be a generator of Gal(Fy/k) (resp. Gal(Fg/k)). We can write the
Stickelberger element for L/k as

0= Y. ajo't) € QIG] ~ QIGal(L/k)]™.
0<i<2

0=j=2

Let x be the unique quadratic character of Gal(K /k). We define characters ¢; of Gal(F,/k)
and v; of Gal(Fg/k) by

gi(0)=¢) and Y;(x)=¢f for 0<i, j<2
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where ¢3 is a primitive 3-rd root of unity. Then all the odd characters of Gal(L/k) can be
written as ¥;j = x ¢;y;. The element 0, is characterized by the L-values;

2.1 llfij(GL_/k) = L3(0, 11/1.]71) forall i,j suchthat 0 <i, j <2

where L3)(s, ¥;;) is the L-function obtained by removing the Euler factors above 3, which
is (1 —¥;;(3)) in this example. In our case, L{3)(s, ¥;;)’s coincide with the usual L-functions
L(s, ¥;;)’s since (3) is ramified in any subfield of L corresponding to ¥;;. Using Pari/GP, we
calculated the values of these L-functions at s = 0. The following table gives these values.

G ) 10,0 d,0]E 00O D |d DH|E 1)) 0 2]d 2@ 2
L0, ¥;;) 18 24 24 60 96 24 60 24 96

This implies that
142 2 2 38 38 34 38 34 38
B B O R e S RN o 2.2

T — —o°T".
3

Lk= 3 73973 30739t 3° 3 3
Now we identify Z,[G] with Z,[S, T1/((S+1)3—1, (T+1)3—1) by sending o and 7 to S+1

and T + 1, respectively. In this ring, we have equalities $° = —35 — 352, 73 = —3T — 372,
Using S and 7', we can rewrite GL_/ ¢ as

38
Or/ = 18— 68 — 257 — 42T — 185T — 14S°T — 14T — 14ST? — ?SQTQ.

SinceI;, = @3, S, T), I, OL_/ « is generated by the following three elements;

36, = 233 =325 —382—7-3*T —33ST —7-38*T —7-3T% —7-3ST?> — 195°T?),

SO, =8(S +3S*T +35T% +35°T?),
and
T0;,, =4(5-3T +328>T +2.35T% +2-382T?).
L/k

Next, we proceed to the ideal class groups. By the computation using Pari/GP, we have
isomorphisms

Ay ~7/97.87Z/3Z
and
Ay ~Z/2TL O L)L S L/3L D L/3LDL/3L.OL/3L S L/3L D ZL/3L
as abelian groups. Therefore, we also have

(A ~Z/21ZSZ/ILSL/3L S L3S L/3LSL/3LSL/3L S L/3L.
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Moreover, using Pari/GP, we can compute the Galois action on A}, namely how o and
act on this group. Pari/GP computes explicitly the basis of the ideal class group, which is
represented by a basis of the ring of integers of L, though we do not write down here this
representation. Let {g1, ..., gg} be the basis of A; corresponding to the above isomorphism,
which was computed by Pari/GP. We denote by M, (resp. M;) the matrix corresponding to
the action of o (resp. T) with respect to the above basis. The result of the computation is

1 0o o o0 9 9 -9 9

3 4 -3 3 -3 3 3 -3
-1 1 -1 -1 0 -1 0 -1
1 -1 -1 0 0 0 -1 1
My = 0O 0 -1 -1 1 0 -1 1
-1 0 1 0 0 -1 -1 -1
1 -1 0 0 0 -1 1 1
-1 1 1 0 0 1 =1 0
and
1 0 9 -9 -9 0 0 -9
-3 1 3 0 0 -30 3
-1 1 -1 0 -1 1 0 0
-1 -1 0 0 0 1 0 0
M. = 1 -1 0 -1 1 1 0 0
-1 1 -1 -1 1 1 0 0
1 -1 -1 -1 -1 0 1 -1
0O 0 -1 -1 1 0 0 1

This means that o (g1) = g1 + 392 — g3 + 94 — g6 + g7 — g8, for example.
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Thus, the transpose of a relation matrix of A is

co—1 -3 1 -1 0 1 -1 1
0 co—4 -1 1 0 0 1 —1
0 3 o+1 1 1 —1 0 —1
0 -3 1 o 1 0 0 0
-9 3 0 0 o-1 0 0 0
-9 -3 1 0 0 o+1 1 —1
9 -3 0 1 1 1 o—1 1
-9 3 1 -1 -1 1 -1 o

T—1 3 1 1 -1 1 -1 0
0 T—1 1 1 1 —1 1 0
-9 -3 ©+1 0 0 1 1 1
9 0 0 T 1 1 1 1
9 0 1 0 -1 -1 1 -1
0 3 -1 -1 -1 7-1 0 0
0 0 0 0 0 0 T—1 0
9 -3 0 0 0 0 1 T—1
27 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

Here, each row vector represents a relation of A} . Substituting S + 1 and T + 1 for o and
T respectively, and applying the elementary row and column operations, we can reduce the
above matrix to

38 0
9 —82 4 ST — 717
S+T S+S8>—T—ST—-28°T+T?
ST 34 8% +28°T — 17
52 6 — ST — 28T + T2
0 38
0 3T
0 9
0 —S2T 4+ ST?
0 S212

Here, extra zero vectors and identity matrices which were appeared in the process of the
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reduction were removed. We know from this calculation that A} is generated by two elements

as an R; -module and that these two generators have 10 relations in A; . Taking all the 2 x 2
minors in the above matrix and carrying out tedious computation, we obtain

Fitty— (A7) = 81, 38, 3T, 27 — S’T?).
So we get
36, =207 — 1987%) = —365°T* =0 (mod Fittg- (AD)),
and also
SO,/ =T6r;, =0 (mod Fittg-(A7)).
Therefore, we conclude that
IL6; ) C Fittg- (A7)

in this case. In particular, #upoo(L)QL_/k € FittRZ (A7) holds.

Note that we also have numerically checked
Fittz,, ((A})c) = (27) = Fittg,,(Ay) .

This corresponds to the fact that the norm map induces an isomorphism

(A)6 — Ax .

Next we will calculate the Fitting ideal of the dual. Let {fi, ..., f3} be the dual basis
of (AZ)v determined by {gi, ..., gs}. Namely, f1,..., fs are homomorphisms from A} to
Q/Z satisfying

1 .
f1(91)=ﬁ, filg)) =03 #1),

1 .
f(p) = 5" f(g))=0( #2),

andfor3 <i <8,

1 .
filg) =3, filg =00 #10).
Note that any element f € (A} )" can be written as

=271 +9f () fa+3f(g)fs+ - +3f(gs)fs.

Let M, (resp. M) be the matrix representing the action of o (resp. 7) on (A})" corresponding
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to the dual basis { f1, ..., fs}. Recall that (AZ)v have the cogredient Galois action. We have
1 9 -9 9 O -9 9 -9
0 4 3 -3 0 0o -3 3
o -1 -1 -1 -1 1 0 1
~ 0 1 -1 0 -1 0 0 0
My = 1 -1 0 0 1 0 0 0
1 1 -1 0 0o -1 -1 1
-1 1 o -1 -1 -1 1 -1
1 -1 -1 1 1 -1 1 0
and
1 -9 -9 -9 9 -9 9 0
0 1 3 -3 -3 3 -3 0
1 1 -1 0 0o -1 -1 -1
~ -1 0 0 o -1 -1 -1 -1
M. = -1 0 -1 0 1 1 -1 1
0o -1 1 1 1 1 0 0
0 0 0 0 0 0 1 0
-1 1 0 0 0 0o -1 1
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Then the transpose of a relation matrix of (AZ)v is

o—1 0 0 0 -1 -1 1 -1
-9 o-4 1 —1 1 -1 —1 1
9 -3 o+1 1 0 1 0 1
-9 3 1 o 0 0 1 -1
0 0 1 1 o-1 0 1 -1
9 0 -1 0 0 o+1 1 1
-9 3 0 0 0 1 co—1 -1
9 -3 -1 0 0 -1 1 o

T—1 0 —1 1 1 0 0 1
9 T—1 -1 0 0 1 0 -1
9 -3 t+1 O 1 -1 0 0
9 3 0 T 0 -1 0 0
-9 3 0 I -1 -1 0 0
9 -3 1 1 -1 -1 0 0
-9 3 1 1 1 0 T—1 1
0 0 1 1 -1 0 0 T—1
27 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

Calculating in the same way as before, we can reduce the above matrix to

0 —S2T + ST?
0 —T17

0 —52

3 ST

S 72

T —52

0 3

0 s272

SO O O O N0

From this, we know that (A;)" is generated by three elements and that these elements have
8 relations in (AZ)V. Furthermore, taking all the 3 x 3 minors in the above matrix, we obtain

Fittz- ((A7)") = (81, 9S, 9T, 38%, 3T, 387).



426 MASATO KURIHARA AND TAKASHI MIURA

Thus, we have

3

00k = 27 —198?T% # 0 (mod FittRZ((AZ)v)) ,
S _ . _
S0k = 35 #£0 (mod FlttRZ((AL)V)) ,
T _ . _
§9L/k =3T #0 (mod FlttRZ((AL)V)) .

In conclusion, we have
1L, & FittRZ((AZ)V)
unlike to the previous case. We also have
#upo (L)0p ) = 30, & Fittg—((A7)Y).
Note that we have checked numerically
Fittz, (A7)")6) = Fittz, (((A])®)) = (81) € (27) = Fittz, (A})

namely #(AZ)G = 81 > #A = 27. Note that this is the inequality which was obtained in
Proposition 1.1.

3. Examples for which neither (SB) nor (DSB) holds

In this section, we will prove that there are extensions L/k for which neither (SB) nor
(DSB) holds.

3.1. We begin with the following easy lemma.

LEMMA 3.1. Letk be a totally real number field and M/ k be a finite abelian extension
such that M is a CM-field. Suppose that M’ is an intermediate CM-field of Mk such that
M /M’ is a p-extension. Then we have

#Ker(A,, — Ay) <[M: M'].
PROOF. As is well-known, there is an injective map from Ker(A,, —> A;,) to
H' (Gal(M/M'), Ep)~ = HY(Gal(M/M'), po(M)). We put M” = M N M, where

M, is the cyclotomic Z,-extension of M'. Put G = Gal(M/M’') and H = Gal(M/M").
Consider an exact sequence

0 —> H'(G/H, pp=(M")) — HY G, ppo(M)) —> H'(H, ppe(M)).
We know H'(G/H, ppoo (M) = 0and ppo (M) = ppoo(M”). Therefore, we have
#HY (G, pwpoo(M)) < #H'(H, jupo(M)) < #H <#G =[M : M'],

which completes the proof of Lemma 3.1.
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In this section we assume that & is a totally real number field and K = k(up). For
simplicity, we also assume [K : k] = 2 (namely we replace k by KT if it is needed). Suppose
that L/k is an abelian extension such that K C L. We also assume that

Gal(L/K) ~ (Z/pZ)®, Ay ~ (Z/pZ)® forsome r > 2,
and the natural map A, —> A; is the zero map.

PROPOSITION 3.2. Assume that L/k satisfies the above conditions. We also assume
that there are intermediate fields Ky, Kg of L/K such that [Ky : K] = [Kg : K] = p, each

prime of k which splits in K and which is ramified in L is ramified in Ko, Ay is generated
by exactly r elements as a Z,[Gal(Ky/K)]-module, AI_{ﬂ is generated by exactly r’ elements
as a Z,[Gal(Kg/K)1-module, and r' > r. Then neither (SB) nor (DSB) holds for L/k.

We will give in §3.2 a numerical example which satisfies all the conditions of the above
proposition. Before the proof, we remark that our assumption implies that (R) is not satisfied
for L/k. In fact, if (R) is satisfied, by Lemma 1.4 we have isomorphisms (A} )Gai(L/K,) =
AEa and (A})Gair/ Kp) = AEﬂ- This shows that r = r’ by Nakayama’s lemma. Therefore,
(R) is not satisfied in our case. After the proof of Proposition 3.2, we will show that our
assumption in Proposition 3.2 implies that (NTZ) is not satisfied for L/k.

PROOF OF PROPOSITION 3.2. Wehave LNKy = K. Infact, if we put K’ = LN K,
we know that Ay —> Ay, is injective. By Lemma 3.1, we have #Ker(A, —> A;) <
#Ker(Ay, — A;) < [L : K ']. Since the left hand side is p” by our assumption, we
must have [L : K'] = p" and K’ = K. We put p¢ = #up~(L) as in §1. Then we have
H1upoe (K) = pE.

For an intermediate field M of L/K such that [M : K] = p, we consider Ry =
Z,(Gal(M/k)] and the decomposition Ry = R;’,[ ® R,,. Here, Ry, = Z,[Gal(M/k)]™
is isomorphic to Z,[Gal(M/K)]. For any element x € Ry, we denote by x~ € R;, =~
Z,(Gal(M/K)] the minus component of x. We take a faithful character vy, : Gal(M/K) —>
up C 6;, and put Oy, = Zy[Ilmageyy] which we regard as a Z,[Gal(M/K)]-
module on which Gal(M/K) acts via ¥3;. We also denote by v, the ring homomorphism
Z,(Gal(M/K)] —> Oy,, which is defined by o + vy (o) for all 0 € Gal(M/K). We

define (A )y, by
(ApDyy = Ay ®z,1Gai(M/K)] Oy -

Suppose that oy is a generator of Gal(M/K). Then oy acts trivially on ppe(M) =
poo(K) = ppe. Thus, we have (o — 1Oy i € Zp[Gal(M/ k)] where 6y is the Stick-
elberger element of M/k. We consider (o3 — 1)91;1/,( € Z,[Gal(M/K)] and ¥y ((op —

DO31/0) € Oyy-
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LEMMA 3.3. Foran intermediate field M of L/K such that [M : K] = p, we have
Fitto, ((Ay)yy) = Wu((om — DOy ,)) -

PROOF. This can be proved by the class number formula. Let ord, : Q[X, —> Z be
the normalized additive valuation at p such that ord, (p) = 1. The class number formula says
that ord, #A ) = ord, (p“@lz/k) and

ord, (#A ) = ord, (PO ) NQ, (1u,)/Q, WM (Opg/4))

where NQ,(..,)/Q, is the norm from Q) (1) to Q. Hence we have

#A7T B
ord, <—A—4> = ord (NQ, (11)/Q, (W (041/1))) -
H#A

On the other hand, since the norm map A), —> A} is surjective by Lemma 1.4, we
have

— — -1 — — — —
Ay = Ay/(L+op+ -+ o0y )Ay = Ay /Image(Ay — A})).

Since the natural map iy /x : Ay —> A is the zero map by our assumption, the image
of iyk : Ay —> A, is in the kernel of iy ;p : A}, — A} . By Lemma 3.1 we have
#Ker(Ay —> Aj) < p and #Ker(A;;, — Aj) < p"~!. Therefore, we must have
#Ker(Ay — A}) = pand#Ker(A,, — A}) = p" 1. It follows that

- _ _ #A,

#(A))yy =#Coker(Ay — Ay) =p——.
#A L
This implies that
ord, (#(A ) yy) = 0rdp (NQ, (,0/Q, (Wt (O — DO3y,)))

Thus, we get lengthowM ((Ay)yu) = lengthowM Oy /Ym(om — 1)91;1/,{)), which implies
the conclusion of Lemma 3.3 (note that Oy, is a discrete valuation ring).

Now we prove Proposition 3.2. First, we will prove that (SB) does not hold. Since the
map (A} )Gal(L/Kp) — Agﬂ which is induced by the norm map is surjective, the number of
generators of A} as a Z,[Gal(L/K)]-module is > r’ by Nakayama’s lemma. We consider
a surjective homomorphism (A} )GaL/k,) — A}a. Let Y1 = vk, be a faithful character
of Gal(Ky/K). For any Z,[Gal(K,/K)]-module M, we define the y1-quotient by My, =
M ®z,[Gal(k,/K)1 Oy,- We consider a surjective homomorphism ((A;)Gal(L/ky)y1 —

(Ag, )y, which is the ¥;-quotient of the above homomorphism. The number of generators
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of ((A)Gal(L/Kkq))y, (resp. (AI_(a)vn) as an Oy, -module is > r’ (resp. r) by Nakayama’s
lemma. Therefore, we obtain

(3.1.1) Ker(((A)Galr/k))yy — (Ag )y) #0.
It follows from Lemma 3.3 that
Fitto, (((Ap)GalL/Kn))y1) & W10k, — DO 1)) -

Let o € Gal(L/K) be a K-isomorphism whose restriction to K is ok,. The image of (o —
1)9L_/k inZ,[Gal(Ky/K)]is u(og, — 1)91;a/k for some unit u by Lemma 1.5 because all the
primes of k which splitin K and which are ramified in L are ramified in K. If (60 —1)0, /k Was
in Fitth[Gal(L/K)](AZ)s Y1((ok, — 1)91?a/k) would be in Fittowl (((AZ)Gal(L/Ka))lfll ), which
is a contradiction. Therefore, we have (o — I)OL_/ & Fitth[Gal(L /K)1(A}), and conclude that
(SB) does not hold.

Next, we prove that (DSB) does not hold. In the proof of Lemma 3.3, we proved that
#Ker(Ay —> A}ﬁ) = p, #Ker(ir/k,) = p"~ 1, and Image(ik,/k) = Ker(ir k). Let
V2 = Yk, be a faithful character of Gal(Kg/K). In the proof of Lemma 3.3 we also proved

that (A Eﬂ)w is isomorphic to Coker(ix,/x ), so we have an injective homomorphism
- —\Gal(L/K
(3.1.2) (A vz <> (A]) al(L/Kp)

Let 7w be a prime element of Oy,. For any m € Z.¢ we know that Oy, /(7™) is a
Gorenstein ring, so the Pontrjagin dual (Oy,/ (™))" is isomorphic to Oy, /(@™) (cf. [10]
Proposition 4 on page 328). Since (AEﬂ)I/,2 is a finite Oy,-module, we can apply the above
argument to know that the Pontrjagin dual ((AI_{,S),/,Z)v is generated by exactly r’ elements as
a Z,[Gal(Kg/K)]-module. Therefore, from the injectivity (3.1.2) we know that the number
of generators of (A;)" is > r'.

By the same method as (3.1.2), we obtain an injective homomorphism

(3.1.3) (AED()]//l s (AZ)Gal(L/KO,) '
Taking the dual and the 1-quotient, we have a surjective homomorphism
(AP DGalw/k) v —> (A )y)”

where the number of generators of (((AZ)V)Gal( L/Ko))yy 18 > r’ and the number of generators
of ((AI_{Q)I/,1 )V is r. Therefore, the above surjective homomorphism has nontrivial kernel. This
implies that

Fitto, ((((AD)GaL/k))y) S W1 ((ok, — DO i)
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by Lemma 3.3. Therefore, by the same method as in the case of (SB), we know that (o —
1)9L_/k is not in Fittzp[Gal(L/K)]((AZ)v). Thus, (DSB) does not hold. This completes the
proof of Proposition 3.2.

We finally remark that our assumption in Proposition 3.2 implies that (NTZ) is not satis-
fied for L/k. In fact, (3.1.1) and Lemma 1.4 imply that there is a prime p of k which splits in
K and is ramified in L/ K. Then p has to be ramified in K, /K by our assumption. Therefore,
the inertia group of P in Gal(L/k) is not cyclic. This shows that p is above p. Since p splits
in K, (NTZ) is not satisfied.

3.2. We give a numerical example which satisfies the conditions of Proposition 3.2.

Let p =3,k = Q(+v/69, v/713) and K = k(u3) = k(~/=3). Suppose that o, S satisfy
a’—6a—3 =0and B*—68—1 = 0,and put K4 = K («), Kg = K (B). The minimal splitting
field of x3—6x—3 (resp. x3—6x— 1) over Q is a ©3-extension and contains V69 (resp. x/ﬁ).
Therefore, both k() / k and k(B)/ k are cubic cyclic extensions. We put L = K, Kg. We have
Gal(L/K) = Gal(Ky/K) @ Gal(Kg/K) = Gal(k(a)/ k) & Gal(k(B)/k) = (Z.)37)%2.

There is only one prime P in k above 3. We can check that both k(x)/k and k(8)/k
are unramified outside P, and that p is totally ramified both in k() and in k(8). Since K =
k(v/=3) = k(~/=23), p splits in K. Two primes of K above p are totally ramified in L. So
L/ k satisfies neither (NTZ) nor (R).

We can easily check that A, ~ (Z/ 3Z)%? by the computations of the class numbers of
imaginary quadratic fields which are contained in K. More precisely, we have

Ak = Ao ® Ao -
We can check that the natural map Ag /=53, —> AqQ(/=23./=3.) 18 the zero map both

theoretically (using that the A-invariant of Q(+/—23) is 1) and numerically (using Pari/GP).

We will explain it numerically. By Pari/GP, we can check that A QB Ty = Z7/3Z.

—> A /=23 Is surjective by class field theory, it is

QW-23,v=3.)
bijective. This shows that the natural map Ao /=33 —> Aq(/=23./=3.) IS the zero map.

Since the norm map A

Similarly, using Aa(m,ﬁ,ﬁ) ~ Z/3Z, we know that AQ(«/—_31) — AQ(J—_SI,J—_S,ﬁ) is
also the zero map. Therefore, A, —> Aj is the zero map.
Using Pari/GP, we can compute

Ay ~Z/812®Z1/2TLSL/3L.
The action of a generator ok, of Gal(Ky/K) is represented by the matrix

—32 21 -27
Moo, =| -10 4 0
0o 0 1
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The meaning of the matrix is the same as §2. Putting S = ok, — 1, we obtain a relation matrix

S+33 =21 27 81 0 O
10 S-3 0 0 27 0
0 0 S 0 0 3

of Ag asa Z,[Gal(Ky/K)]-module. The above matrix is reduced to

3 S 0 0
0 0 27S 3+3S+52-952 J°

This shows that A} is generated by exactly two elements.
In the same way, we have

Ay, ~Z/9ZSZ/3LSZL/3L.

The action of a generator ok, of Gal(Kg/K) is represented by the matrix

-2 0 -3
Mo, =| 0 1 0
0 0 1

Weput T = oKy — 1, then a relation matrix of A%,; is

T+3

o o 4+

0 3 9 00
r 0 0 3 0
0 T 0 0 3

Therefore, Agﬂ is generated by exactly three elements. Thus, our L/k satisfies all the condi-

tions of Proposition 3.2. Hence we know that neither (SB) nor (DSB) holds for our L/ k.
We finally remark that we could not compute numerically the Fitting ideal of A; for this
example. We can compute

A7 ~Z/81Z28 Z/812 & Z/92 & 7./92 & 7.)9Z. & Z./9Z & 1./ 9Z

as an abelian group. But since the degree of L is too large, we could not compute the action
of Gal(L/K) on A}, using Pari/GP.

4. Other examples

4.1. In this subsection, we describe the setting and the assumptions in this section. Let
k' be a totally real number field and K’ = k’(u,). We assume (K')*™ = k', so [K' : k'] = 2.
Let F’/k’ be a finite and abelian p-extension such that Gal(F’/k’) is not cyclic. We further
assume that F’/k’ is ramified at a prime above p. We put L’ = F'K’. We assume (NTZ) and
(R) for L' /k’. So every prime above p does not split in K’/k’, and every prime which splits
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in K'/k’ is unramified in L'/ k’. Let k,/k’ (resp. F.,/F") be the cyclotomic Z,-extension.
We further assume that F' N k., = k', and all the primes of F’ above p are totally ramified in
Fl,.

We also assume that there is a CM-field K” which is a quadratic extension of k" such that
Ay, = 0, and that there is a prime p’ of k' above p which is ramified in F’ and which splits
in K”. Put L” = F’K”. Then (R) is not satisfied for L”/k’ because p’ splits in K” and is
ramified in L”. Also, (NTZ) is not satisfied for L” /k’ because p’ splits in K”. Since p’ splits
in K” and does not split in K’, we have K’ # K”. We assume that every prime of k¥’ which is
prime to p and which splits in K" is unramified in L” /k’.

In this setting, we put K = K'K”. Then K is a CM-field and K/k’ is an abelian
extension such that Gal(K /k") ~ Z/2Z @® Z,/2Z. The maximal real subfield K+ of K is
a quadratic extension of k. Weputk = K+, F = kF’ and L = kL' = kL”. We have
K = kK" = k(up). Let p’ be a prime of k" above p which is ramified in F” and which splits
in K”. Since p’ does not splitin K’, it does not split in k. We denote by p the prime of k above
p’. Then p splits in K, and is ramified in L. In particular, neither (NTZ) nor (R) is satisfied
for L/k. Since every prime above p is totally ramified in F/ /F’, every prime of L (resp. K)
above p is also totally ramified in Lo (resp. Koo)-

4.2. In this subsection, we will prove Theorem 0.2. Put G = Gal(L/K) = Gal(L'/
Ky = Gal(L"/K") = Gal(F/k) = Gal(F'/k’) and I' = Gal(K«/K) = Gal(K ,/K') =
Gal(K3,/K"). Letk : I' —> Z7 be the cyclotomic character and y be a generator of I".

We put I'T = Gal(K;/K) = Gal(K{/K') = Gal(K{/K") where K (resp. K{, K is
the first layer of Koo/ K (resp. K.,/ K', K/ ,/K"). We regard y as a generator of 7.

Asin §3, we consider Rg; = Z,, [Gal(K|/k")] and the decomposition Ry, = R;i EBRI_(; .

For any element x € R K> We denote by x~ € Ry, =~ Z,[I"] the minus component of x. Let
1

Yl —> up C 6; be a faithful character, and Oy = Z,[Image y] be a Z,[/7]-module
on which Iy acts via ¥. The ring homomorphism Z,[I"1] — Oy defined by o — (o) for
all o € I7 is also denoted by . So ¥ (x™) € Oy is defined for x € RK{'

For any Z[I'1]-module M, we define My, by My = M ®z,r;) Oy . We will prove

LEMMA 4.1.
(4.2.1) Fitt0¢(((AZ/l)G)x//) = Wy =Nk /1))
(4.2.2) Fittol,,((((A;l)v)G)w) G Wy =)0k jx) 7)) -

PROOF. We will first prove (4.2.1). Since (R); is satisfied for L} /k’, the norm map
induces an isomorphism
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by Lemma 1.4. Therefore, we have Fitt,- ((A,)g) = Fittg- (A,,).
K| 1 K1 1

Using the class number formula and the fact that #u y (K{) = p# 0 (K'), we get

#A,
K| -
ord,, <#A;/> = ordp(NQ, (u,)/Q, (V Or ))) + 1

by the same method as Lemma 3.3. Since A, —> A, is injective in our case, we have an
1

exact sequence

0— AL

x Al_q — (Agi)w — 0.

It follows that
ord, (#(A g, )y) = lengthg, (A )y) = lengtho,, (04 /Y ((y — k()0 )

which implies (4.2.1).
Next, we will prove (4.2.2). Suppose that n is an integer > 1. As in the proof of
Proposition 1.1, we have HY(Gal(L, /L)), Er;)~ = 0 for any ¢ > 1. Using the long exact

sequence in §1 for L, /L), we obtain H(Gal(L},/L}), Ap) = H'(Gal(L, /L)), Ap) =0
by our assumption (NTZ). This implies that the natural map Ay — (AZ;)G*‘I(LZ/ Ly s
bijective (cf. the proof of Proposition 1.1). Put Ag, = li_r>n Ag;and A = 1i_r>n Ay, . Thus,
we have an isomorphism

4.2.2.1) A7, = (A7 )Gal(L[,o/L’l) )
L L

’
oo

Put Xy, = A}, and X = A), . In the proof of Theorem 0.3 in [8], we proved
(4.2.2.2) FittA;, ((XL_/OO)G) C(p,y =Dy =Nk /)7 ) -

The isomorphism (4.2.2.1) induces an isomorphism (X}, )G xGa(r Ly = ((AZ,)V)G. We
9] e 1
denote by CKI /K] Ak, = Z,[[Gal(K,/k')]] — R K| the natural restriction map. Since

every prime of k” above p is ramified in K|, by Lemma 1.5 we have
(4.2.2.3) ey k(v =k (YDOk k) = (v =k (¥)Ok! i -
Hence by (4.2.2.1), (4.2.2.2) and (4.2.2.3) we have

FittRz? (((AZ/I)V)G) C(py = DUy =c¥)Ok; /1))

which implies (4.2.2).
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Next, we consider L” /K”. Since K" # K’, K" does not contain a primitive p-th root of
unity, so neither does K{'. Put Ry = Z,[Gal(K{'/k")]. Since Igy = Anng, , (np= (K{)) =
1

Ry, we have Ogr /. € Ry by a theorem of Deligne and Ribet.

As we did for K {, we consider the decomposition R Kl = R;g,, DR K and use the
1 1

notation x~ € R, which is the minus component of x for any x € R k- Fora faithful
1

character  : It —> up, we also consider the ring homomorphism  : R1_<” ~Zyll] —
1
Oy.
We will prove

LEMMA 4.2.
(4.2.3) Fitto, (AL)6)y) & WO, 1))
(4.2.4) Fitt0¢((((AZ/l/)v)G)x//) C (1#(9,};//,(,)).

PROOF. We first note that
4.23.1) Fitto, (A )w) = (¥ B )

We can prove (4.2.3.1) by the class number formula, using the same method as Lemma 3.3
and (4.2.1) (now we use #uu poo (K{') = #upoe (K”) = 1).

We first prove (4.2.3). By Lemma 1.4, we have a commutative diagram of exact se-
quences

o

0 — @, LL{/K)H™ — (Az/l,)G — Agi, — 0

s I |

0 — @, LL/KY) -5 (Al)¢ — Ag. — 0

where w (resp. v) runs over all finite primes of K (resp. K”). Let vy be the prime of &’
below a prime v of K”. If vy is not above p and splits in K”/k’, v is unramified in L”
by our assumption. Hence (D, I,(L"/K"))™ = (@v‘p I,(L"/K"”))~. Similarly, we have
B, lw(L]/K{)™ = (@w‘p Iy(L{/K{))~. If v is above p, v is totally ramified in K7’
because every prime above p is totally ramified in F/,/F’. Let w be the prime of K| above v.
Then the restriction map I, (L}/K{) — I,(L"/K") is bijective because every prime of L”
above v is totally ramified in L. Therefore, B is bijective. Since A}, = 0, 8 is also bijective.

Thus, « has a left inverse 7! 0 7! o . Hence we have isomorphisms

4232)  (Ap)e= <EB Iw(L’{/Ki’)> ® A, ~ <@IU(L~/K/,)> ® A%,

w|p vlp
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as Ry ,-modules. Since there is a prime p’ of k" above p which splits in K” and which is
1

ramified in L, (@vlp I,(L"/K"))~ # 0. Therefore, we have

Fitte- ((A, )6) C (p,y — DFittp- (Ar,).
K1 1 K1 1
By (4.2.3.1), this implies that
Fitto, (A7)6)y) C ¥y = DOy ).

This completes the proof of (4.2.3).
Finally, we will prove (4.2.4). Since #u,=(L]) = 1, we have H' (G, EL/I/)_ = 0. This

implies that the natural map A K/ — (AZ’()G is injective. Hence ((AZ’()V)G — (Al_q,)v is

surjective, so (((AZ,,)V)G)W — ((Ag,,)v)l/, is also surjective, which gives an inclusion
1 1

Fittow((((AZ/l/)v)G)w) - Fittow(((A;i,)V)w .

In general, for any Z,[1"1]-module M, we define M ¥ to be the kernel of N n=1+y+..+
y?~1 on M. We have an exact sequence

v Ny
O— MY —>M—M-—M;, —0.
Suppose that M is finite. Then by the above exact sequence, we have

#MY)y =#MV)Y =#MV =#M,, .

Applying the above equality to M = A,
1

we get

Fitto,, ((((AZ/I/)V)G)w) C Fitto,, (((Agi/)v)w) = Fittow((AEi/)w) .
Using (4.2.3.1), we obtain (4.2.4).
REMARK 4.3. Note that (4.2.3) shows that (SB) does not hold for L} /k’". In fact, we

X

Ky

above p are ramified in K{, and a prime of k" which is not above p and which splits in K" is

would be in Fitt 5- (A, )6)s
kY 1

have cL/Ky (QL/{/k’) = MQK{//k’ for some u € R, by Lemma 1.5 because all the primes of &’

. . -
unramified in L7/K{". So if 9L’l’/k’ was in FlttRL’l’ (AL'{)’ eKi’/k’

and w(ng/, / k,) would be in Fittow (((AZ”)G)W)’ which contradicts (4.2.3).
1 1

Now we proceed to the proof of Theorem 0.2. Let Gal(K /k’)" be the group of characters
of Gal(K /k'). For any x € Gal(K/k')¥ and a Z,[Gal(K /k’)]-module M, we define

M* ={xeM|o(x)=x(o)x forallo € Gal(K/k')}.
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Let x; be the trivial character, x; be the character corresponding to k/k’, and x’ (resp. x”)
be the character corresponding to K'/k’ (resp. K”/k'). Any Z,[Gal(K /k")]-module M is
decomposed into M = MX & M* & M x"@ M*". Since x', x” are odd characters (and

X1, Xk are even characters), we have M~ = Mx @ Mx". We identify G, = Gal(L,/k)
with Gal(L),/k’) by the restriction map, and also identify G, with Gal(L]//k"). We have an
isomorphism

(4.2.5) AL, =AL, ®A] AL ®Ap,

as Z,[Gy,]-modules for any n > 0.
Using the identifications of G, with Gal(L,,/k") and with Gal(L, /k’), we regard 61/ ',
L7k as elements in Q[G,]. Then we have

(4.2.6) 0L,k = 011 /BL1 i -

We will give a proof of (4.2.6). We use a technique of Tate [15] Proposition 1.8 on page 87.
Let o (resp. ) be a generator of Gal(L,, /L)) (resp. Gal(L,/L})), which is a cyclic group of
order 2. Note that o7 is in G, and this equals to the complex conjugation p. We know that
Gal(L,/k") ~ G, x (o) ~ G, x (tr). We have an isomorphism

C[Gal(Ly/k)]™ —> C[Gal(L,,/k)]~ & C[Gal(L,/k)]~ =~ C[G,]” & C[Ga]™

where the first isomorphism is induced by ¢, L, ®cL, /Ly and the second isomorphism comes
from our identifications of G, with Gal(L},/k’) and with Gal(L,//k"). Since cr,,1/ (resp.
CLn/L,’{) is defined by o > 1 (resp. T — 1), the above first isomorphism satisfies a + bo +—
(a+b,a—Db)foranya, b € C[G,]".

Let x be an element of C[Gal(L,/k’)]~. The multiplication by x defines an endomor-
phism of C[Gal(L,/k’)]~ which is a free C[G, ] -module of rank 2. Hence, the determinant
induces a homomorphism N : C[Gal(L,/k")]” —> C[G,]™. Namely, N (a +bo) = a—bp?
for any a, b € C[G,], and

4.2.7) Nx) =cp,/p,(ecr,/Lr(x) .
Let 0;,/k (s) be a C[Gal(L,/k’)]-valued function defined in [15] satisfying 67, /¢ (0) =
61,/ - Using Tate [15] Proposition 1.8 on page 87, we have
(4.2.8) N O, w(s) =[]0 = 'N@)™)0L,/x(5)
ves

where S is the set of primes of k¥’ which are ramified in k/k’ and are unramified in L, /k, and
N (v) is the norm of a prime v. If visin S, it is unramified in L, /K, so it is prime to p. Hence
it is unramified in K’, and is unramified in L,’l. Therefore, we have

S = {v : aprime of k¥’ | v is ramified in L, /k" and is unramified in L}, /k'} .
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By Tate [15] Corollary 1.7 on page 86, we have

(4.2.9) L1, O, () = [ [ =) 'N@) )0 /1 ().

vesS

If a prime v of k' is ramified in L, and unramified in L/, it is ramified in K’ so it is a prime
above p. But this contradicts our assumption that all the primes above p are totally ramified
in L"/L". Hence there is no prime of k" which is ramified in L,, and unramified in L. By
Tate [15] Corollary 1.7 on page 86, we have

(4.2.10) CL,/L;OL, k() = 0Lk (s) .
By (4.2.7), (4.2.8), (4.2.9), and (4.2.10), we get
OL,/1(s) =01 /i ($)OLr 1 (s) .

Substituting s = 0, we obtain (4.2.6). This completes the proof of (4.2.6).
Now, we will prove that (SB) does not hold for L, /k for n > 1. Suppose that (y —
k(¥))OL,/k is in Fittg, (AL,). Since (AZ,I)Gal(Ln/LD — AZI is surjective by Lemma 1.4,

we have cp, /L, ((y =« (¥)0r, /1) € FittRL‘l (Az,), and
cLk (v = k()L ) € FittREI (AL )6) -

By Lemma 1.5, ¢z, /k, (QL_H/k) = ”91;1/1( for some u € (Rl_q)X because every prime of k
above p is totally ramified in K1, and every prime of k which is not above p and which splits
in K is unramified. Therefore, we have

(v = ()0, i € Fittg (A7)6)-
1
By (4.2.5) and (4.2.6), this implies that
(v = KOO, iy € Fitt, (A7) Fittge (A7)
and
vy — K(J/))Ggi/kﬂ,;i//k,) € FittOw(((AZ/l)G)I/f) Fitt0¢(((AZ/l/)G)1//)-
On the other hand, by (4.2.1) and (4.2.3) we have
Fitto, (A7,)6)y) Fitto, (A;)6)y) & (W ((y = k()b 1 0icr 1)) -

This is a contradiction.
By the same method, we can prove that (DSB) does not hold. Suppose that (y —
K (¥))0L,/k is in Fittg, (A\L/n). As we saw in §1,

HY(Gal(L,/L1), E1,)” = H'(Gal(L,/L1), jtp(Ly)) = 0
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([16] Lemma 13.27), which implies that Azl — Azn is injective. Therefore, we get

(v =)k i € FittR];l (((AZI)V)G)
by the same method as above. By (4.2.5) and (4.2.6), we have

— — . — \/ . —_ \/

(v = KON By € Fitte, (A))0) Fittg, (((A)")6)
= FittRI—< (((AZI)V)G).
1
But (4.2.2) and (4.2.4) imply that
. _ _ _
Fitto, (A7)V)6)w) & W =k B )

which is a contradiction. This completes the proof of Theorem 0.2.

4.3. We give an example which satisfies the conditions of Theorem 0.2. We consider
p =3,k = Q(+/1901) and K’ = k'(13). Let F., (resp. F/é) be the minimal splitting field of
X3 —84X —191 (resp. X>—57X —68). Both F, and F é are &3-extensions over Q containing
k'. We put F' = F, Fg. The prime (3) of k' is ramified in Fy , so in F'. The extension F’/k’
is unramified outside 3. The Galois group G = Gal(F’/k’) is not cyclic and isomorphic to
7/37 ® Z/3Z. Put L' = F'K’'. Then L'/k’ satisfies both (NTZ) and (R) as we explained
in §2. From our construction (see §2), we know F’ Nk, = k', and every prime above 3 is
totally ramified in F. /F’.

We put K” = k'(+/—2). Then Ay, = 0, and (3) splits in K”/k". Put L” = F'K".
Then L”/K” is unramified outside (3). We take k = k'(+/6) = Q(v/6,/1901), F = kF’,
K = kK’ = K'K”, and L = kL’. Thus, the extension L/k satisfies all the conditions of
Theorem 0.2, namely the conditions in the subsection 4.1. Applying Theorem 0.2, we know
that neither (SB) nor (DSB) holds for L, /k foralln > 1.
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