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Abstract. In [9], Boyer and Galicki introduced a contact reduction method in the context of Sasakian man-
ifolds, which produces 5-dimentional Sasaki-Einstein manifolds from a 7-sphere. In this paper, we compute very
explicitly the metric obtained from the above mentioned reduction via a projection, §3 x 83 > $2 x $3, and show
that this metric is the homogeneous Kobayashi-Tanno metric.

1. Introduction

Reduction techniques in symplectic geometry, such as Marsden and Ratiu [1], have nat-
ural analogues in the context of contact geometry. Depending on the geometric situation,
various specializations have been considered in the literature, such as the Sasakian case by
Geiges [2], Grantcharov and Ornea [3]. Later on the Sasaki-Einstein case, by Boyer and Gal-
icki in [9]. In the latter approach (on which this paper is based) the authors constructed a
5-dimentional Sasaki-Einstein manifold by means of a §' reduction of the zero set of a mo-
ment map defined on S”.

In this paper, we explicitized the above construction, and compute explicitly the reduced
metric on the reduced space by means of a projection from the zero set to the reduced space,
which is diffeomorphic to §? x §3. More precisely, we consider the following moment map
on C*,

. 2 2 2 2
u(z1, 22, 23, 24) := |z1l” + [z2]” — lz3|” — |z4]7,
with the associated U (1) action,
(21,22, 23, 24) > (€21, €20, ¢7723,¢7%24) (B €R),

and we show that 1~ (0)| 57 1s diffeomorphic to $3 x §3. Using this identification, we define
a smooth projection 77 from $% x 83 to (1 ™1(0)|g7) /S (see §4):

- 2 2 - = - =
(21,22, 23, 24) = (22122, 211" — |z2]%, 2123 + 2224, 7223 — 2124) .
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Later in §4, we show that this image is diffeomorphic to §? x 3. We notice that a SU (2) x
SU(2) acts on §3 x S3 naturally from the left, which gives 7 is an equivariant map, that is,
§% x §3 becomes a homogeneous space by this action. We then define an inner product (-, -),,
on T(,(S2 X S3) (0o =(0,0,—-1,1,0,0,0)) and extend it to any point x as follows

(, )y = (dk~ @), dk )0 (v € Tx(S? x 87))

where k is a (SU (2) x SU(2))/U (1) free action such that x = k - 0. This is a representation
of the metric named the homogeneous Kobayashi-Tanno metric [10], [11]. Our main result
(Theorem 4.1) is an explicit calculation of the metric.

2. Sasaki-Einstein manifolds

In this section, we recall the definition of a Sasaki-Einstein manifold [9].

DEFINITION 2.1. A Sasakian manifold is a (2n — 1)-dimentional Riemannian mani-
fold (M, g) whose metric cone (C(M), r>g +dr?, J) is a Kihler manifold, where C(M) :=
M xRy ={x,r)|xe M, reR.}.

Now we check if there exists a complex structure on C(M). There is a contact metric
structure (@, &, n, g) on Sasakian M where @ is a field of endomorphisms of TM, & is a
Killing vector field and 7 is a 1-form satisfying

né) =1,
PP=—I+n®EL.

We denote a vector field on C(M) by (X, fad—r) where X is tangent to M and f is a C*®
function on C(M). Then we define a field of endomorphisms of 7C (M) by

3 3
J (X,fa—r> = (qsx — fE, n(X)a—r> .

It is easy to check that J> = —I. Since J is integrable [8], it follows that J is a complex
structure on C(M).

DEFINITION 2.2. A Sasaki-Einstein manifold is a (2n — 1)-dimentional Riemannian
manifold (M, g) whose metric cone (C(M), r>g+dr?, J) is a Ricci-flat (i.e. Ricci curvature
= 0) Kéhler manifold.

We recall the definition of Ricci curvature;
Ric(X,Y):=Tr(Z - R(Z, X)Y)
where R is the curvature tensor of the metric r2g + dr?,

R(Z,X)Y :=VzVxY —VxVzY - Viz.x1Y.
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Note that R is a tri-linear map, and 'T'r’ is the trace of the linear map Z — R(Z, X)Y for any
given X and Y.

EXAMPLE 2.3. An odd-dimentional sphere $2*~! with induced metric gy from C” is
Sasaki-Einstein, as its cone (C(S?*~1), r2go + dr?) is isometric to (C", gssa.), Where ggq is
the standard Ricci-flat Kdhler metric on C”.

3. Sasakian reduction by Boyer and Galicki

In this section, we recall the special Sasakian reduction constructed by Boyer and Galicki
in [9]. In particular, they focus on n = 4 case.

DEFINITION 3.1. Let p,q € Z>( be coprime and p > g, or p = 1, g = 0. We define
amoment map (1, , : C* —> R as follows

(21, 22,23, 28) 1= plai? + plaal® = (p = Dzl = (p + @)lzal,
and S;,q is the associated S! action on (C*),
(21,2223, 24) > (1 €%, 2P, 23671 P70 7y eI PHDY)
THEOREM 3.2. We set an inclusion t and a projection w as
A
7 g Olst = (154 O157)/S) -

Then we have the following:

1. u;,lq(O)|57 is diffeomorphic to S x S3.

2. (M;lq (0)|S7)/S[17’q is diffeomorphic to §* x S3.

3. There is a Sasaki-Einstein metric gp 4 on (u;lq (0)|57)/S[1),qsatisfying

*go = ¥ gp 4 where qo is the induced metric on S7 from C* (Example 2.3).

4. Computing the caseof p =1,¢ =0

Let us restrict our attention for the case of p = 1 and g = 0, and consider the zero level
set

_ 1
11607 = {(Zl,zz,z3,z4) e 7 |21l + |z2l” = |z3)* + |zal* = —}

2
(5)0()
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For any point in 127 1(0) C §* x $3, we identify $* and SU (2) as follows:

(z1,22) € §* < (Z‘ __Z2> e SUQ).

2
The reduced space S x §3/8! is diffeomorphic to S? x §3 with a projection 7 defined by,
7w (hy, ha) == (1], hy "ha)

where A1, ho € SU(2) and [-] is the equivalence class ~ given by

e'? 0
h1~h2<:>h2=h1<0 e_l-e).

This equivalence relation is the same as in the definition of the projective space CP!. In
complex coordinates, 7 is given explicitly by

m(21, 22, 23, 24) i= QuiZa, |211* — |221% 2123 + 2224, 2223 — Z124) -
Then we have a left SU(2) x SU(2) action ¢ = (¢1, ¢2) on S° x S,
¢ (h1, h2) == (P1h1, p2h2) (P1,¢2 € SU((2)) .
Let us define a (SU(2) x SU(2))/U(1) action ¢ = ([$1], ¢2) on S% x §3 as follows
@(h1], b1 "h2) := ((G1h1], i1 "ha ') (1, b2 € SU(Q2)),

such that ¢ induces q§, and 7 is (¢, ¢~>)-equivariantz

x5t L Pusd
T 4

$2x 83 2§23,

Since $2 x 3 is a homogeneous space for (SU(2) x SU(2))/U(1), we can define an
inner product (-, -), on T(,(S2 X S3), where o is written with an unit matrix I,

0:=(0,0,-1,1,0,0,0) = (2], ) =7 (I2, I2) =7(1,0,0,0,1,0,0,0),

for the Sasaki-Einstein metric g,0. By Theorem 3.2, the inner product (-, -), satisfies a con-
dition:

dr ({an orthonormal basis of T(1,.1,) (8% x S3)})

= {an orthonormal basis of T(,(S2 X S3)} .
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By this, if we choose {72, -, 52, 2=, -2, 2} an orthonormal basis of T(s, 1,)(S? x

sy’ 0532 0s4° 0S¢’ 0s7° 0sg
§3), thus
d 0 0 d d d
dn | — |=dn|{— )= — ydm | — 21— ) +{—) ,
ds2 056 daxs /), d53 axi/, ax6 / ,
d d d d 0 d d
(@)1 (). ()G #(3)-)
054 ax2 /, ax7/, 057 daxe /, dsg ax7/,

is an orthonormal basis of T(,(S2 X S3). Then the metric g,(-, -) = (-, -), defined by

1 1
9 5 0 7 0 0 —3
<<8_) <a—)> = 0 0O 1 O 0 , ((,j=1,2,5,6,7).
Xi)o ‘xJ olo ij _% 0 0 1 0
1
0 —5 0 0 1
Choosing the local chart (Up, ) such that
Up={(x1,....,x7) € 8 x 8§ x3 <0, x4 > 0},
Yo : (x1, ..., x7) > (X1, X2, X5, X6, X7),

we extend this metric to any point x := ([k1], k2) by another (SU(2) x SU(2))/U (1) action
on 82 x $3: fork = (k1, k),

k(lh1], ha) = (ki) kihaki ') .
noting that x = k - 0. We define the metric g at x by
g, v) := go(dk™ (u), dk™ (v))  (u,v € Tu(S? x §%)).
For y = (y1. y2. ¥3. ¥4. 5. Y6, ¥7) € Up, we can write k™! as

K o) = (k7 )k ), k5 00, kT 00 kS T O kg PO K ()

— ((l—X3—x12)yl—xlx2_vl+xl(I—X3)y3 —xlxzyl+(l—X3—x%)yz+x2(l—X3)y3

T—x3 T—x3 4

XY +XpYp+X3Y3+X4Yy —Xo¥|—X Yo+X4Y3—X3Yy
—X1Y1—X2Y2—X3)3, 2(1=x3) , 20-x3) y

—X3Y1—X§Y2—X1Y3+X2Y4 —X4 Y[+ X3V~ XoV3—X ¥y

S — ), where

X1 = (1 —x3)x4 + x1x6 + x2x7, X2 = X206 — x1X7 — (1 — X3)x5,
X3 = x1x4 — x2x5 — (1 — x3)x6, X4 = x1x5 + x2%4 — (1 — x3)x7,
Yi = —x3)ya+ x1¥6 + x2y7, Y2 = x2y6 — x1y7 — (1 — x3) Y5,
Y3 = x1y4 — x2y5s — (1 = x3)y6, Ya = x1y5 +x2y4 — (1 — x3)y7.
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Next we calculate gy (ai aT) Let us first consider the derivation dk™

() = ), 50 e, i 0 (o), + S 0 )+ 0 (),
_ x2 +x3—1 i —X1X2 Bl
= (1) <8x1> T ad—x) ( ) and

0x
dkil(%) = (0*1) Ty 3)5 (x)(axz) T 3)5 (x)(%) a5 3)5 (x)(%) +8§;—51 m(%),)

—x3 (x4 +X5)+X1(X4x5+X5X7)+X2(X4X7 —X5x6) KN
X4 dxs .

|
oy

+ (1—){3—){%)()65){6 —x4x7)+(1=x3)xp (x£+x§)+xlx2 (xg4x6+x5x7) P
T=x3)%4 6/,

+(1 X3—x )(A4X6+/\5X7) (1 13)11(14+A5)+11A2(1516 X4X7) KR
(T—x3)x4 9x7 )

Then the coeffcient of dx;dxs and dxsdx; is given by

9 0 9 9
—_ dk V[ — ), dk ' | —
gx(am 3XS> go< <3X1> <3XS>>

7(xl+13)(x4x7 —X5%6)— )(2)(3(/\4+){5)+/\1)(2(/\4/\6+)(5)(7)
Also we can find the coefficient of dx;dx; and dx jdx; by calculating g, <;x ) B ) As
j

2x3x4

the result, with the local coordinates x = (xy, x2, x5, X6, x7) on Up, we have the formula:

2 2 2
xX:+x +x
gx=Z L 3dxi2+ dxldx2+z 4 = Ldx 2

2
i x3 = X
2x5X6 X7 2x6X7
+ 3 dxsdxeg + 3 dxsdx7 + 5 dxedx7
X} X} Xy
2 2 2 2
—(x7 + x3)(xa4x7 — x5%¢6) — X2X3(X;7 + Xx5) + x1Xx2(X4X6 + X5%
n (x7 + x3) (x4x7 — x5%6) — X2x3(x) + x5) + x1x2(X4%6 57)dx1dx5
X3X4
2 2 2 2
X7+ x35)(x5 +x2) — x1x2(x4x5 — x6Xx7) — X2x3(X4X7 + X5X
+(1 () +x5) — x1x2(xax5 — x6X7) — X2x3(X4%X7 56)d)qu6
X3X4
2 2 2 2
x1x2(x; +x5) + (x7 + x3)(xa4x5 + x6x7) + xX2x3(X4X6 — X5X
+12(4 7) + (x7 + x3) (x4x5 + x6x7) + x2x3(xX4%6 57)dx1dx7 )
X3X4
2 2 2 2
x1x3(xy +x35) — x1x2(xq4x7 — x5%x¢6) + (X5 + x3)(X4X6 + X5%
+13(4 5) — x1x2(x4x7 — x5%6) + (x5 + x3)(x4X6 57)dx2dx5
X3X4
2 2 2 2
x1x2(xy +x2) + x1x3(xq4x7 + x5x6) — (x5 + x5)(X4X5 — X6X
+12(4 6) + x1x3(x4x7 + x5%6) — (x5 + x3)(X4X5 67)dx2dx6
X3X4
2 2\ (2 2
x5+ x3) (x5 + x5) + x1x2(x4x5 + x6Xx7) — X1x3(X4X6 — X5X%
+(2 (x5 +x7) + x1x2(xax5 + x6x7) — X1x3(X4%6 57)dx2dx7.

X3X4
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On other open sets U+ ;= of §? x S* defined by fori € {1,2,3}, j € {4,5,6,7},ie.

Uptjr = {xi > 0,x; > 0}, Uj-j+ = {xi <0,x; >0},

Ui+j- ={xi > 0,x; <0}and U;- ;- = {x; <0,x; <0},

we can calculate the metric the same way as the previous case. This is an explicit representa-
tion at x of the Sasaki-Einstein metric g ¢ called the homogeneous Kobayashi-Tanno metric
by Boyer and Galicki in [9].

THEOREM 4.1. The Sasaki-Einstein metric g1 o on S* x S> at any point x is given by

the fomula (1).
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