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Abstract. A bounded operator T ∈ L(X), X a Banach space, is said to satisfy Weyl’s theorem if the set of all
spectral points that do not belong to the Weyl spectrum coincides with the set of all isolated points of the spectrum
which are eigenvalues and having finite multiplicity. In this article we give sufficient conditions for which Weyl’s

theorem for an extension T of T (respectively, for T ) entails that Weyl’s theorem holds for T (respectively, for T ).

1. Introduction

Let X be a complex infinite dimensional Banach space and denote by L(X) the algebra
of all bounded linear operators on X. Suppose that X is a subspace of another Banach space Y

and assume that the embedding of X into Y is continuous, i.e. there is a constant k > 0 such

that ‖x‖Y ≤ k‖x‖X for all x ∈ X. Let T ∈ L(X) and denote by T ∈ L(Y ) is an extension
of T to Y . In general, very few things can be said concerning the relationship between the

spectral theory and Fredholm theory of T and T , see Example 1 and Example 2 of [4]. In [4]

it has been observed that the spectral theory and Fredholm theory of T and T are almost the
same if we assume:

A) X is dense in Y and T (Y ) ⊆ X.

In [15] some aspects of Fredholm theory have been studied when we assume:B) Y is a
Hilbert space and T is symmetrizable (see later for definitions).

In this paper we are mainly concerned with the transmission of Weyl’s theorem (or some

strong variants of Weyl’s theorem) from T to T in both cases (A) and (B). We fix first our
terminology. Let T ∈ L(X) and denote by α(T ) the dimension of the kernel ker T , and
by β(T ) the codimension of the range R(T ). Recall that T ∈ L(X) is said to be an upper
semi-Fredholm operator if α(T ) < ∞ and R(T ) is closed, while T ∈ L(X) is said to be a
lower semi-Fredholm operators if β(T ) < ∞. The class of all semi-Fredholm operators is
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defined by Φ±(X) := Φ+(X) ∪ Φ−(X), the class of all Fredholm operators is defined by
Φ(X) := Φ+(X) ∩ Φ−(X), where Φ+(X) and Φ−(X) denote the classes of upper semi-
Fredholm operators and lower semi-Fredholm operators, respectively. If T ∈ Φ±(X), the
index of T is defined by ind (T ) := α(T )−β(T ). For a linear operator T the ascent p := p(T )

is defined as the smallest non-negative integer p such that ker T p = ker T p+1. If such integer
does not exist then we put p(T ) = ∞. Analogously, the descent q := q(T ) is defined as

the smallest non-negative integer q such that R(T q) = R(T q+1), and if such integer does not
exist then we put q(T ) = ∞. It is well-known that if p(T ) and q(T ) are both finite then
p(T ) = q(T ), see [14, Proposition 38.3]. Moreover, λ ∈ σ(T ), σ(T ) the spectrum of T , is
a pole of the resolvent precisely when 0 < p(λI − T ) = q(λI − T ) < ∞, see Proposition
50.2 of [14].

Two important classes of operators in Fredholm theory are the class of all upper semi-
Browder operators defined by

B+(X) := {T ∈ Φ+(X) : p(T ) < ∞} ,

and the class of all lower semi-Browder operators defined by

B−(X) := {T ∈ Φ−(X) : q(T ) < ∞} .

The class of all Browder operators (known in the literature also as Riesz-Schauder operators)
is defined by B(X) := B+(X) ∩ B−(X). The set of Weyl operators is defined by

W(X) := {T ∈ Φ(X) : ind T = 0} .

Define

W+(X) := {T ∈ Φ+(X) : ind T ≤ 0} ,

and

W−(X) := {T ∈ Φ−(X) : ind T ≥ 0} .

Clearly W(X) = W+(X) ∩ W−(X). The classes of operators defined above motivate the
definition of the following spectra. The upper semi-Browder spectrum of T ∈ L(X) is
defined by

σub(T ) := {λ ∈ C : λI − T /∈ B+(X)} ,

the lower semi-Browder spectrum of T ∈ L(X) is defined by

σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)} ,

while the Browder spectrum of T ∈ L(X) is defined by

σb(T ) := {λ ∈ C : λI − T /∈ B(X)} .

Finally, the Weyl spectrum of T ∈ L(X) is defined by

σw(T ) := {λ ∈ C : λI − T is not Weyl} .
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Note that σw(T ) ⊆ σb(T ) for every T ∈ L(X). Let σa(T ) denote the classical approximate
point spectrum of T defined as

σa(T ) := {λ ∈ C : λI − T is not bounded below} ,

where T ∈ L(X) is said to be bounded below if T is injective and has closed range. For a
bounded operator T ∈ L(X), if we write iso K for the set of all isolated points of K ⊆ C, set

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) < ∞} .

Following Coburn [10], we say that Weyl’s theorem holds for T ∈ L(X) if

(1) σ(T ) \ σw(T ) = π00(T ) .

Define

πa
00(T ) := {λ ∈ iso σa(T ) : 0 < α(λI − T ) < ∞} .

Following Rakočević [19], we shall say that a-Weyl’s theorem holds for T ∈ L(X) if

σa(T ) \ σwa(T ) = πa
00(T ) ,

where σwa(T ) = ∩K;compactσa(T +K), the Weyl approximate point spectrum of T . Note that

a- Weyl’s theorem ⇒ Weyl’s theorem ,

see for instance [1, Chapter 3]. A weaker variant of Weyl’s theorem is given by Browder’s
theorem: T ∈ L(X) is said to satisfy Browder’s theorem if σw(T ) = σb(T ).

The concept of semi-Fredholm operator has been generalized by Berkani ([7], [9]) in the
following way: for every T ∈ L(X) and a nonnegative integer n let us denote by T[n] the
restriction of T to T n(X) viewed as a map from the space T n(X) into itself (we set T[0] = T ).
T ∈ L(X) is said to be semi B-Fredholm (resp. B-Fredholm, upper semi B-Fredholm, lower
semi B-Fredholm,) if for some integer n ≥ 0 the range T n(X) is closed and T[n] is a semi-
Fredholm operator (resp. Fredholm, upper semi-Fredholm, lower semi-Fredholm). In this
case T[m] is a semi-Fredholm operator with ind T[n] = ind T[m] for all m ≥ n ([9]). This
enables one to define the index of a semi B-Fredholm as ind T = ind T[n].

An operator T ∈ L(X) is said to be B-Weyl if, for some integer n ≥ 0, T n(X) is closed
and T[n] is Weyl. The B-Weyl spectrum is defined by

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl} .

According Berkani and Koliha ([8]) an operator T ∈ L(X) is said to satisfy generalized Weyl’s
theorem, if σ(T ) \ σbw(T ) = E(T ), where

E(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T )} .

In general we have

generalized Weyl’s theorem ⇒ Weyl’s theorem .
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We now introduce a basic concept which has an important role in local spectral theory: T ∈
L(X) is said to have the single valued extension property at λ0 ∈ C (abbreviated SVEP at
λ0), if for every open disc U of λ0, the only analytic function f : U → X which satisfies the
equation (λI − T )f (λ) = 0 for all λ ∈ U is the function f ≡ 0.

An operator T ∈ L(X) is said to have the SVEP if T has the SVEP at every point λ ∈ C.
Evidently, an operator T ∈ L(X) has the SVEP at every point of the resolvent ρ(T ) :=

C \ σ(T ). The identity theorem for analytic function ensures that every T ∈ L(X) has the
SVEP at the points of the boundary ∂σ(T ) of the spectrum σ(T ). In particular, every operator
has the SVEP at every isolated point of the spectrum. It should be noted that if T is a normal
operator on a Hilbert space, in particular if T is a selfadjoint operator, then both T and T ∗
have SVEP (in fact T is decomposable, see [17]).

The quasi-nilpotent part of T is defined as the set

H0(T ) :=
{
x ∈ X : lim

n→∞ ‖T nx‖ 1
n = 0

}
.

Clearly, ker T n ⊆ H0(T ) for every n ∈ N.

THEOREM 1.1 [1, Theorem 3.74]. Let T ∈ L(X) and suppose that λ0 ∈ iso σ(T ).
If P0 is the canonical spectral projection associated with λ0 then R(P0) = H0(λ0I − T ).
Furthermore, if λ0 is a pole of order p then H0(λ0I − T ) = ker (λ0I − T )p.

Let p00(T ) := σ(T ) \ σb(T ) denote the set of all spectral points λ for which λI − T ∈
B(X). For operators having SVEP, Weyl’s theorem may be characterized as follows:

THEOREM 1.2 ([2]). Suppose that either T or T ∗ has SVEP. Then T satisfies Weyl’s
theorem if and only if p00(T ) = π00(T ).

If T ∈ L(X), the analytic core K(T ) is the set of all x ∈ X such that there exists a
constant c > 0 and a sequence of elements xn ∈ X such that x0 = x, T xn = xn−1, and
‖xn‖ ≤ cn‖x‖ for all n ∈ N. Note that T (K(T )) = K(T ), see [1].

The condition p00(T ) = π00(T ) may be characterized as follows:

LEMMA 1.3 . T ∈ L(X) satisfies p00(T ) = π00(T ) if and only if for all λ ∈ π00(T )

there exists p := p(λ) ∈ N such that H0(λI − T ) = ker (λI − T )p.

PROOF. Suppose that for λ ∈ π00(T ) there exists p := p(λ) ∈ N such that H0(λI −
T ) = ker (λI − T )p. Since every λ ∈ π00(T ) is isolated in σ(T ) then, by [1, Theorem 3.74],

X = H0(λI − T ) ⊕ K(λI − T ) = ker (λI − T )p ⊕ K(λI − T ) ,

from which we obtain

(λI − T )p(X) = (λI − T )p(K(λI − T )) = K(λI − T ) ,

so X = ker (λI −T )p ⊕ (λI −T )p(X) which implies, by [1, Theorem 3.6], that p(λI −T ) =
q(λI − T ) ≤ p. By definition of π00(T ) we know that α(λI − T ) < ∞ and this implies
by Theorem 3.4 of [1] that β(λI − T ) is also finite. Since λI − T has both ascent and
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descent finite then λI −T is Browder, see [1, Theorem 3.4]. Therefore λ ∈ p00(T ) and hence
π00(T ) ⊆ p00(T ). Since the opposite inclusion holds for every operator we then conclude
that p00(T ) = π00(T ).

Conversely, if p00(T ) = π00(T ) and λ ∈ π00(T ) then p := p(λI − T ) = q(λI − T ) <

∞. By Theorem 3.16 of [1] it then follows that H0(λI − T ) = ker(λI − T )p.

2. Extensions

As observed in the introduction the spectrum, and the Weyl spectrum, for T ∈ L(X) and

an extension T ∈ L(Y ) may be completely different. An illuminating example is given by the
following operator.

EXAMPLE 0.1 Let C denote the Cesàro matrix. C is a lower triangular matrix such

that the nonzero entries of the n-th row are n−1 (n ∈ N)

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 . . .

1/2 1/2 0 0 . . .

1/3 1/3 1/3 0 . . .

1/4 1/4 1/4 1/4 . . .
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠

.

Let 1 < p < ∞ and consider the matrix C as an operator Cp acting on 
p. Let q be such that
1/p + 1/q = 1. In [20] it has been proved that σ(Cp) is the closed disc Γq , where

Γq := {λ ∈ C : |λ − q/2| ≤ q/2}.
Moreover, it has been proved in [13] that for each μ ∈ int Γq the operator μI − Cp is an
injective Fredholm operator with β(Cp) = 1. Hence int Γq ⊆ σw(Cp). Actually, we have
Γq = σw(Cp). In fact, let λ be in the boundary of Γq and suppose that λI −Cp is Weyl. Since
every operator, as well as its dual, has SVEP at the points of the boundary the spectrum then
p(λI − Cp) = q(λI − Cp) < ∞, see [1, Theorem 3.16 and Theorem 3.17], hence λ is an
isolated point of σ(Cp) and this is impossible. Therefore, λ ∈ σw(Cp).

Now, choose 1 < p′ < p < ∞ and let q ′ be such that 1/p′ + 1/q ′ = 1. The 
p′ is
continuously embedded and dense in 
p. Let Cp′ : 
p′ → 
p′ be the operator induced by the
matrix C. The extension of Cp′ to 
p is the operator Cp and, as above, σ(Cp′) = σw(Cq ′) =
Γq ′ , with q ′ �= q .

In the the sequel of this section we always assume that X and Y are Banach spaces with

X a proper subspace of Y . Suppose that T ∈ L(X) admits an extension T ∈ L(Y ) and set

M(X) := {T ∈ L(X) : T (Y ) ⊆ X} .

It is easily seen that M(X) is a left ideal of L(X), i.e., if T ∈ M and S ∈ L(X) then

ST ∈ M(X). If T ∈ M(X), σ(T ) and σ(T ) may differ only in 0. Precisely, we have:
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THEOREM 2.1. If T ∈ M(X) then

(i) ker (λI − T ) = ker (λI − T ) for all λ �= 0.

(ii) σ(T ) \ {0} = σ(T ) \ {0}.
(iii) σw(T ) \ {0} = σw(T ) \ {0}.
(iv) σb(T ) \ {0} = σb(T ) \ {0}.

PROOF. To show (i), note first that ker (λI − T ) = ker (λI − T ) ∩ X for all λ ∈ C.

Suppose that λ �= 0 and y ∈ ker (λI − T ). Then y = 1
λ
T y ∈ T (Y ) ⊂ X, which proves the

assertion (i). A direct proof of the assertions (ii) and (iii) can be found in [4], but it is possible
to prove these by using an argument of [5]. Let S ∈ L(X, Y ) denote the canonical embedding

of X into Y and define R ∈ L(Y,X) by Ry := T y for all y ∈ Y . Then T = RS and T = SR,
and hence the assertions (ii) and (iii) follows from [5, Theorem 6], while (iv) follows from [5,
Theorem 6 and Proposition 10].

REMARK 2.2. Note that since X is dense in Y then T ∈ M(X) if and only if there
exists c > 0 such that ‖T x‖X ≤ c‖x‖Y for all x ∈ X ([4]).

REMARK 2.3. Since in the notation of the proof of Theorem 2.1 we have T = RS and

T = SR, then T has SVEP if and only if T has SVEP, see [6, Proposition 2.1].

THEOREM 2.4. Suppose that X is dense in Y and T ∈ M(X). Then 0 ∈ σw(T ) ∩
σw(T ) ⊆ σ(T ) ∩ σ(T ). Consequently, σ(T ) = σ(T ) and σw(T ) = σw(T ).

PROOF. Suppose that 0 /∈ σw(T ). Then T ∈ Φ(Y ), so T (Y ) has finite codimension in
Y and hence has finite codimension in X. Therefore there exists a finite-dimensional subspace

Z such that X = T (Y ) ⊕ Z. But T (Y ) is closed in Y , hence X is a closed subspace of Y .

Since X is assumed to be dense in Y , it then follows that X = X = Y , contradicting our
assumption that X is a proper subspace of Y .

Suppose now that 0 /∈ σw(T ). Then T ∈ W(X), hence there exists an invertible operator
U ∈ L(X) and a finite dimensional operator K ∈ L(X) such that T = U − K ∈ M(X), see
[1, Theorem 3.39]. From this we obtain

U−1(U − K) = I − U−1K = I − K0 ∈ M(X) ,

where K0 := U−1K is a finite dimensional operator. By Remark 2.2 then ker K0 is closed
in Y . Since ker K0 has finite codimension in X, then there is a finite dimensional subspace
N such that X = ker K0 ⊕ N . Therefore X is closed in Y and this implies X = Y , again
contradicting the assumption that X is a proper subspace of Y .

The last assertion is clear by Theorem 2.1.

COROLLARY 2.5. Suppose that X is dense in Y and T ∈ M(X). Then T satisfies

Browder’s theorem if and only if T satisfies Browder’s theorem.

PROOF. By Theorem 2.4 we have 0 ∈ σw(T ) ∩ σw(T ) ⊆ σb(T ) ∩ σb(T ). Therefore,
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by Theorem 2.1, σb(T ) = σb(T ), and hence σw(T ) = σb(T ) if and only if σw(T ) = σb(T ).

The equivalence of Weyl’s theorem for T and T requires a very special condition on the
range of T .

THEOREM 2.6. Suppose that X is dense in Y , T ∈ M(X) and T (X) is closed in X.

Then T satisfies Weyl’s theorem if and only if T satisfies Weyl’s theorem. In particular, this
equivalence holds if β(T ) < ∞.

PROOF. Suppose that Weyl’s theorem holds for T . By Theorem 2.4 then 0 /∈ σ(T ) \
σw(T ) = π00(T ). If λ ∈ π00(T ) then λ �= 0 so, by part (i) of Theorem 2.1, we have

α(λI − T ) = α(λI − T ). Since λ ∈ iso σ(T ) = iso σ(T ), it then follows that λ ∈ π00(T ).
Therefore, π00(T ) ⊆ π00(T ).

We now show that also the reverse inclusion holds. We claim that α(T ) = ∞. To see
this, suppose α(T ) < ∞. Then ker T is complemented, since it is finite-dimensional, so there
exists a closed subspace M of X such that X = ker T ⊕M . The restriction T |M : M → T (X)

admits an inverse (T |M)−1. Define V ∈ L(X) by

V : x ∈ X → (T |M)−1T x ∈ X .

Clearly, V (ker T ) = {0} and V m = m for all m ∈ M . Consequently, I − V is finite
dimensional. We show that V ∈ M(X). Since T ∈ M(X) there exists c > 0 such that
‖T x‖X ≤ c‖x‖X. Therefore,

‖V x‖X = ‖(T |M)−1T x‖X ≤ ‖(T |M)−1‖‖T x‖X

≤ c‖(T |M)−1‖‖x‖Y ,

from which we conclude that V ∈ M(X). Now, ker (I − V ) is closed in Y . Indeed, let (xn)

be a sequence of elements of ker (I − V ) ⊂ X such that ‖xn − x0‖Y → 0 for some x0 ∈ Y .
Then

‖xn − xm‖X = ‖V (xn − xm)‖X ≤ c‖(T |M)−1‖‖x − x − xm‖Y → 0 ,

so (xn) is a Cauchy sequence in X. Since X is a Banach space then there exists z ∈ X such
that ‖xn − z‖X → 0. Therefore, for some c′ > 0 we have ‖xn − z‖Y ≤ c′‖xn − z‖X → 0
and z = x0. Consequently, ‖xn − x0‖X → 0 which shows that ker (I − V ) is closed in Y , as
desired.

Since I − V is finite dimensional, we have X = ker (I − V ) ⊕ N , with N finite dimen-
sional, and hence X is closed in Y . Hence X = X = Y , a contradiction.

Therefore, α(T ) = ∞ and hence 0 /∈ π00(T ). Consequently, by part (i) of Theorem

2.1, we have α(λI − T ) = α(λI − T ) for all λ ∈ π00(T ), so π00(T ) ⊆ π00(T ). Therefore,
π00(T ) = π00(T ). Finally

σ(T ) \ σw(T ) = σ(T ) \ σw(T ) = π00(T ) = π00(T ) ,
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so T satisfies Weyl’s theorem.
Suppose that T satisfies Weyl’s theorem. Then 0 /∈ σ(T ) \ σw(T ) = π00(T ) and hence

π00(T ) ⊆ π00(T ). Suppose that α(T ) < ∞. Then α(T ) < ∞ and as it has been proved

before this is impossible. Therefore, α(T ) = ∞ and hence 0 /∈ π00(T ). As above, it then

follows that π00(T ) = π00(T ) and hence σ(T ) \ σw(T ) = π00(T ).
The last assertion is obvious: every finite codimensional subspace is closed.

In the next corollary we consider the case that X is a dense subspace of a Hilbert space.

COROLLARY 2.7. Suppose that X is dense in a Hilbert space H and let T ∈ M(X)

be such that T (X) is closed in X. If T is self-adjoint then T satisfies a-Weyl’s theorem.

PROOF. If T is self-adjoint then T is decomposable (see [17] for definition and basic

results), hence the dual T
∗

(or equivalently, the Hilbert adjoint of T ) has SVEP. In the notation

of the proof of Theorem 2.1 we have T
∗ = R∗S∗ and T ∗ = S∗R∗, and this implies, again by

[6, Proposition 2.1], that also T ∗ has SVEP. By Theorem 2.6 we know that T satisfies Weyl’s
theorem and the SVEP of T ∗ implies that also a-Weyl’s theorem holds for T .

Note that instead of assuming that T is self-adjoint we can assume that T is generalized
scalar, see [17, p. 44 and §1.5] for definition and basic results. Indeed, every generalized
scalar operator is decomposable and hence its dual has SVEP, so the argument of Corollary
2.7 still works.

A bounded operator T ∈ L(X) is said to be polaroid if every isolated point λ of the σ(T )

is a pole of the resolvent, i.e., p(λI − T ) = q(λI − T ) < ∞.

THEOREM 2.8. Suppose that X is dense in Y and T ∈ M(X).

(i) If T is polaroid and T satisfies Weyl’s theorem then T satisfies generalized Weyl’s
theorem.

(ii) If T is polaroid and T satisfies Weyl’s theorem then T satisfies generalized Weyl’s
theorem.

PROOF. (i) Proceeding as in the first part of the proof of Theorem 2.6 we see that

π00(T ) ⊆ π00(T ). The polaroid condition on T entails that 0 /∈ π00(T ). Indeed if 0 ∈ π00(T )

then 0 is a pole of the resolvent and hence p(T ) = q(T ) < ∞. By definition of π00(T )

we also have α(T ) < ∞, so β(T ) = α(T ), hence 0 /∈ σw(T ), which is impossible by

Theorem 2.4. By part (i) of Theorem 2.1 we then conclude that π00(T ) ⊆ π00(T ). Therefore,

π00(T ) = π00(T ) and as in the proof of Theorem 2.6 this implies that T satisfies Weyl’s
theorem. Since T is polaroid, then T satisfies generalized Weyl’s theorem, see [3, Theorem
3.7].

(ii) The proof is analogous to that of part (i).
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3. Symmetrizable operators

In this section we are concerned with proving that Weyl’s theorem holds for symmetriz-
able operators. Indeed, in this very special situation the assumptions of Corollary 2.7 can be
simplified. To see this, assume that the Banach space X is a subspace of a H a Hilbert space
and assume that the embedding of X into H is continuous and X dense in H . Following Lax
[15] T ∈ L(X) is said to be symmetrizable if T is symmetric with respect to the inner product
〈, 〉 induced by H on X, i.e.,

〈T x, y〉 = 〈x, Ty〉 for all x, y ∈ X .

Note that every quasi-hermitian operator in the sense of Dieudonné [11] is symmetriz-
able. Applications of symmetrizable operators to partial differential equations may be found
in Lax [15] and Gokheberg and Zambitsky [12].

The following important properties of symmetrizable operators T ∈ L(X) may be found
in [15]:

(a) T is bounded with respect to the Hilbert norm. Moreover, the natural extension T

of T to H is a bounded self-adjoint operator.

(b) σ(T ) ⊆ σ(T ). Clearly, since T is a self-adjoint operator then σ(T ) ⊂ R. This
inclusion may be strict, since σ(T ) may contain non-real points, see in [18, Example 1, §4].

(c) If λI −T ∈ W(X) then λI −T ∈ W(H). In this case ker (λI −T ) = ker (λI −T ).

LEMMA 3.1 If T is symmetrizable and λ0 is an eigenvalue of T then λ0 ∈ R. Further-

more, if λ0 is an isolated eigenvalue of T then λ0 is an isolated eigenvalue of T .

PROOF. Clearly, every eigenvalue λ of T is an eigenvalue of T . Since T is self-adjoint
then λ ∈ R. If λ0 is an isolated eigenvalue of T then there exists a punctured open disc D0

centered at λ0 such that λ /∈ σ(T ) of all λ ∈ D \ {λ0}, and hence by (b) we have λ /∈ σ(T ),

from which we deduce that λ0 is an isolated eigenvalue of T .

LEMMA 3.2. Every symmetrizable operator T has SVEP.

PROOF. Observe first that since T is self-adjoint then T has SVEP. This entails that also
T has SVEP. In fact, let λ ∈ C be arbitrary given. Since every analytic function f : U → X,
defined on an open disc U centered at λ remains analytic when considered as a function from
U to H , it is clear that T inherits the SVEP at λ.

THEOREM 3.3. If T ∈ L(X) is symmetrizable then Weyl’s theorem holds for T .

PROOF. Since T has SVEP, by Theorem 1.2 and Lemma 1.3 it suffices to prove that
H0(λI − T ) = ker (λI − T ) for all λ ∈ π00(T ).

For this suppose that λ0 ∈ π00(T ). Then λ0 is an isolated eigenvalue of finite multiplicity

in σ(T ) and hence, by Lemma 3, it follows that λ0 is also an isolated eigenvalue of T . Since

T is self-adjoint then λ0 is a pole of first order of the resolvent of T , see [14, Proposition
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70.5]. Therefore, p(λ0I − T ) = q(λ0I −T ) = 1. By Theorem 1.1, if P0 denotes the spectral

projection of T associated with λ0, then, by (c),

H0(λI − T ) = P0(H) = ker(λ0I − T ) = ker(λ0I − T ) .

Therefore, (λ0I − T )P0x = 0 for all x ∈ H .
On the other hand, the restriction of P0 to X coincides with the spectral projection of T

associated with the isolated point λ0 of σ(T ). For all x ∈ X then (λ0I − T )P0x = 0, which
implies, again by Theorem 1.1 that

H0(λ0I − T ) = R(P0|X) ⊆ ker (λ0I − T ),

where R(P0|X) is the range of P0|X. This implies that H0(λ0I − T ) = ker (λ0I − T ) for all
λ ∈ π00(T ), so Weyl’s theorem holds for T .

The result of Theorem 3.3 has been proved in [18] by using different arguments.

ACKNOWLEDGEMENT. We are grateful to the referee for his comments and sugges-
tions. In particular one of these suggestions leads to an improvement of the result of Theorem
2.6.

References

[ 1 ] P. AIENA, Fredholm and local spectral theory, with application to multipliers, Kluwer Acad. Publishers
(2004).

[ 2 ] P. AIENA, Classes of operators satisfying a-Weyl’s theorem, Studia Math. 169 (2005), 105–122.
[ 3 ] P. AIENA, E. APONTE and E. BAZAN, Weyl type theorems for left and right polaroid operators, Integr. Equat.

Oper. Theory 66 (2010), 1–20.
[ 4 ] B. A. BARNES, The spectral and Fredholm theory of extension of bounded linear operators, Proc. Amer. Math.

Soc. 105, 4 (1989), 941–949.
[ 5 ] B. A. BARNES, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126,

4 (1998), 1055–1061.
[ 6 ] C. BENHIDA and E. H. ZEROUALI, Local spectral theory of linear operators RS and SR, Integr. Equat. Oper.

Theory 54 (2006), 1–8.
[ 7 ] M. BERKANI, On a class of quasi-Fredholm operators, Integr. Equat. Oper. Theory 34 (1999), 244–249.
[ 8 ] M. BERKANI and J. J. KOLIHA, Weyl type theorems, for bounded linear operators, Acta Sci. Math. (Szeged)

69 (2003), 359–376.
[ 9 ] M. BERKANI and M. SARIH, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457–465.
[10] L. A. COBURN, Weyl’s theorem for nonnormal operators, Michigan Math. J. 20 (1970), 529–544.
[11] J. DIEUDONNÉ, Quasi-hermitian operators, Proc. Intern. Symposium on linear spaces, Jerusalem (1961), 115–

122.
[12] I. C. GOHKBERG and M. K. ZAMBITSKI, On the theory of linear operators in spaces with two norms, Pukrain

Mat. Z 18, 1 (1966), 11–23 (Russian).
[13] M. GONZÁLEZ, The fine spectrum of the Cesàro operator in 
p (1 < p < ∞), Arch. Math. 44 (1985),

355–358.
[14] H. HEUSER, Functional Analysis, Marcel Dekker, New York (1982).
[15] P. LAX, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633–647.
[16] D. C. LAY, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197–214.



WEYL’S THEOREMS AND EXTENSIONS OF BOUNDED LINEAR OPERATORS 289

[17] K. B. LAURSEN and M. M. NEUMANN, Introduction to local spectral theory, Clarendon Press, Oxford
(2000).

[18] J. I. NIETO, On the essential spectrum of symmetrizable operators, Math. Ann. 178 (1968) 145–153.
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