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Abstract. Let k be an integer. In [3, 4], Frankl, Ota and Tokushige proved that the maximum number of three-
covers of a k-uniform intersecting family with covering number three is k3 —3k% + 6k —4fork =3ork > 9, but
the case 4 < k < 8 remained open. In this paper, we prove that the same holds for k = 4, and show that a 4-uniform
family with covering number three which has 36 three-covers is uniquely determined.

1. Introduction

Throughout this paper, we let X denote a finite set. We let 2% denote the family of all
subsets of X and, for an integer k > 1, we let (f) denote the family of those subsets of X
which have cardinality k. A family ¥ C 2% is said to be k-uniform if & (). Let ¥ C 2% be
a k-uniform family. We say that F is intersecting if FNG # @forall F,G € F. AsetC € X
is called a cover of JF if it intersects with every member of F,i.e., CNF # Y forall F € F.
Let C(F) := {C : C is acover of F}. The covering number of F, denoted by 7 (&), is defined
by 7(¥) := mincceg) |C|. Note that if F is intersecting, then we have 7(F) < k because
F C C(9). For an integer t > 1, we define &, (F) := C(F) N (}[() Note that if # < 7(F), then
C:(F) = @. Also it is easy to see that if t = ©(F), then |C,(F)| < k (see, for example, the
proof of Lemma 2.1 (ii) (a) in Section 2).

Let ¢, k be integers with k > ¢ > 1, and assume that | X| is sufficiently large compared
with ¢ and k. Define

pi(k) := max {|C(F)| : F < 2%is k-uniform and intersecting, and 7(F) = ¢}

(from the fact that every k-uniform family F with t(F) = r satisfies |C;(F)| < k', which is
mentioned at the end of the preceding paragraph, it follows that if | X| is sufficiently large, then
the value of p;(k) does not depend on |X|). This paper is concerned with p3(k). However,
the definition of p; (k) looks somewhat technical. Thus we here state a result of Frankl, Ota
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and Tokushige [4], which shows the importance of the function p;_;(k) in the study of the
following more natural function fj ;(n). Define

Jk,:(n) := max {|3"| 1 FC 2%is k-uniform and intersecting, and t(F) = t},

where n = |X|. Note that the famous theorem of Erdds, Ko and Rado [1] shows that if
n>2k>4andt > 1, then fi,(n) < (}_}). Now clearly fi,1(n) = (}_}). Forz > 2, it
is shown in [4] that if k is sufficiently large compared with ¢, then, as n tends to infinity, we
have fi:(n) < p—1(k)(,",) + O (n*~!=1) (in fact, it is expected, though not yet proved, that
equality holds). This shows the role of the function p;_1(k) in the determination of fi ;(n)
(for a more precise result concerning the case where 2 < ¢t < 4, see [7], [2] and [3]).

We turn to p; (k). Clearly pj(k) = k for every k > 1. For ¢t > 2, in Frankl, Ota and
Tokushige [5], it is conjectured that p,(k) = k' — (5)k'™! + O(k'™2) (k — ©0), and the
conjecture is settled affirmatively for t = 4,5 (for ¢ > 6, it is proved in the same paper that

3
pi(k) < k' — %2 L%J 2k =1 4 O(k'=%)). For t = 2,3, the following precise results are
proved in [2], [3] and [4].

THEOREM A (Frankl [2]). Letk > 2. Then py(k) = k* — k + 1.

THEOREM B (Frankl, Ota and Tokushige [3, 4]). Letk =3 ork > 9. Then p3(k) =
k3 — 3k? + 6k — 4.

We now describe examples related to Theorems A and B.

EXAMPLE 1. Letk > 2. Fix2k —lelements y;,z; (1 <i <kand1 < j <k-—1)of

X. SetY :={y1,y2, ..., } Z1 :={z1, 22, ..., zk—1, y1} and Zp := {z1, 22, - . ., Zk—1, 2}
and define fr"ik) :={Y, Z1, Z>}. Then Eng) is k-uniform and intersecting, r(&"ik)) = 2, and

1Co(FI) = k2 —k + 1.

EXAMPLE 2. Letk > 3. Fix 3(k — 1) elements x;, y;, z; (1 <i < k — 1) of X.
Foreachi = 1,2, set X; := {x1,x2, ..., Xk—1,¥i}, Yi := {¥1, ¥2, .-, Yk—1,2zi} and Z; :=
{z1,22,..., 2Zk—1, Xi}, and define EF;k) = {X1, X2, 11, Y2, Z1, Z5}. Then fr"ék) is k-uniform
and intersecting, 7(F) = 3, and |C3(FX)| = (k — 1)* + 3(k — 1) = k3 — 3k + 6k — 4.

In [2], [3] and [4], the following two theorems, which are stronger than Theorems A and
B, are actually proved.

THEOREM C (Frankl [2]). Letk > 2,andlet F C (f) be an intersecting family with
T(F) = 2. Then |Co(F)| < k? — k + 1, with equality if and only if F is isomorphic to fr"ik).

THEOREM D (Frankletal. [3,4]). Letk =3 ork > 9,andlet F C (}k() be an inter-
secting family with T(F) = 3. Then |C3(F)| < k3 — 3k* + 6k — 4, with equality if and only if
.. . k)
F is isomorphic to F, .
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It is natural to conjecture that Theorems B and D hold for 4
paper, as an initial step toward the determination of p3(k) for 4
following theorem.

< k < 8 as well. In this
< k < 8, we prove the

THEOREM 1. We have p3(4) = 36.

We actually prove the following stronger result, which is an analogue of Theorems C and
D;

THEOREM 2. LetJF C (f) be an intersecting family with t(F) = 3. Then |C3(F)| <
36, with equality if and only if ¥ is isomorphic to EF?).

Our notation is standard except for the following. Let A C 2X and Y, Z C X with Y N
Z =@,and write Y = {y1, y2,..., y}and Z = {z1, 22, ..., Zm}. We define A(y1y2---y) =
AY) ={A e A:Y C A}, AGin---y) = AY) ={A e A:YNA =0} and
Ay2---yiz122---21) =A(YZ) ={AeA:YCAandZNA =@}

2. Preliminaries

Throughout the rest of this paper, let F C (f ) be an intersecting family with 7 (&) = 3,
and let C := C3(F). We start with two easy lemmas.

LEMMA 2.1. Letx,y € X withx # y. Then the following hold.
(i) We have |F(x)| = 3 and |F(xy)| > 1.
(i) (a) Wehave |C(xy)| < 4.
(b) Suppose that |C(xy)| = 4. Then |F(xy)| = 1 and, if we write F(xy) = {F},
then C(xy) = {{x,y,z} : z € F}.

PROOF. Suppose that |[F(x)| < 2. Then since JF is intersecting, there exists v € X —{x}
such that v € F for each F € F(x). This means that {x, v} is a cover of &F, which contradicts
the assumption that 7(F) = 3. Thus |[F(x)| > 3. Similarly if F(xy) = @, then {x, y} is a
cover of F, a contradiction. Thus |F(xy)| > 1. This proves (i). To prove (ii), having (i) in
mind, take F € F(xy). Then by the definition of C, C(xy) < {{x,y,z} 1z € F}. Hence
|@(xy)| < 4. Suppose that |C(xy)| = 4. Then C(xy) = {{x,y,z} : z € F}. Since F is an
arbitrary member of F(xy), this also implies F(xy) = {F}. Thus (ii) is proved. O

LEMMA 2.2. Let v,w,x and y be four distinct elements of X. Suppose that
|C(xyvw)| = 4, and write F(xy) = {F}. Then F N {v, w} = @.

PROOF. In view of Lemma 2.1 (ii) (a), we have C(xy) = C(xyvw) and |C(xy)| = 4.
Hence by Lemma 2.1 (ii) (b), C(xy) = {{x,y,2} : z € F}. Since C(xy) = C(xyvw), this
implies F N {v, w} = @. O
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LEMMA 2.3. LetY C X with1 < |Y| < 2. Let Fy, F», F3 € F, and suppose that
FiNFj =Y foranyi, jwith1 <i < j < 3. Then the following hold.

() If|Y| =2, then |C(Y)| < 8.
() If|Y|=1,and |FNG|=1forall F,G € F with F # G, then |C(Y)| < 19.

PROOF. Since F;NF; =Y foranyi, j withl <i < j <3 andsince CN(F;—Y) #
forany C € G(I?) and any { with 1 <i < 3,

ey o, B.yl:iae Fi—Y,pe R —Y,y e F3—Y}. 2.1

Hence if |Y| = 2, then |C(Y)| < (4 — |Y])? = 8.

Suppose that |[Y| = 1, and |[F NG| = 1 forall F,G € F with F # G. By Lemma
2.1 (i), we can take G € F(Y). Then by assumption, |F; N G| = 1 foreach 1 < i < 3.
Write (F; — Y) NG = {a;} foreach 1 < i < 3. Then by (2.1), C N {ay, az, az} # ¥ for
all C € C(Y), and hence C(Y) C {{a. By} :a e i —Y.pe KL —Y,y € F3— Y} —
{{a. By} ia € i = (Y U{a1}), B € F, — (Y U{az}),y € F3 — (Y U{a3})}. Consequently
|C(Y)| <27 —8=19. O

In the following three lemmas, Lemma 2.4 through 2.6, we fix the following notation.
Let F1, F, € Fwith |F1 N F,| = 2, and write F| =: {a1, a2, a3, as} and F» =: {by, by, b3, bs}
sothata; = b; foreach 1 <i <2 anda; # b; foreach3 <i < 4. Set §; := C(azbzaaz),
Gy = C(aszbsaiaz), G3 := Clasbsaiar) and G4 := C(asbzaiar). Note that C(ajar) =

U?:l Si.

LEMMA 2.4. Letl be an integer with 1 < | < 4, and suppose that |G| = 4. Then
SiNSGi—1 # @ and G; N Giy1 # B, where indices are to be read modulo 4.

PROOF. By the cyclic symmetry of {a3, b3}, {a3, bs}, {as, b4} and {a4, b3}, we may
assume [ = 1. Then by Lemma 2.1 (ii)) (a), §; = C(azb3). Having Lemma 2.1 (ii)
(b) in mind, write F(a3b3) = {F}. Then by Lemma 2.2, F N {aj,a2} = @. Since F
is intersecting, it follows that F N F; = {a4} and F N F, = {bs}. Hence by Lemma
2.1 (ii) (b), {a3, b3, as}, {az, b3, by} € C(azb3). This implies {a3, b3, as} € G N G4 and
{as, b3, bs} € G1 N G2, and hence we have §; N G4 # P and G; N Gy # A. |

LEMMA 2.5. We have |C(ajay)| < 12. Furthermore, if equality holds, then one of the
following holds:

(i) |G| =4foreach1 <1 <4, and ({“3’“4éb3’b4}) C Claian); or
() 19| =3foreachl <l <4,and G NG, =0 foranyl,mwithl <]l <m < 4.

PROOF. Since |C| = 3 for all C € C, we clearly have §; N G3 = G, N G4 = @. This

implies that for each 1 < m < 4, we have ()1</<4 §; = @. Hence by the inclusion-exclusion
l#m

principle, |C(aiaz)| = |U15154 G| = Z?ZI(ISA — 197 N G;4+1]), where indices are to be
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read modulo 4. By Lemmas 2.1 (ii) (a) and 2.4, |G;| — |G N G14+1| <3 foreach 1 <1 < 4.
Consequently |C(ajaz)| = Z?=1(|91| —1G:NSGi4+1]) < 12. Suppose that equality holds. Then
1Gil — 1G5 N G4l =3 foreach 1 < < 4. If |G| = 4 foreach 1 <[ < 4, then by Lemma
2.4, ({“3’“4;’3’[’ 4}) C C@(aiaz), and hence (i) holds. Thus by symmetry, we may assume that
|G1] =3 and G NGy = @. Since |G2] — |92 N G3] = 3 and §; N G = @, it follows from
Lemma 2.4 that |G2| = 3 and G N §3 = @. By a similar argument, we get |G3| = |94] = 3
and §3N G4 = §1 N G4 = @. Since §1 N G3 = G2 N G4 = @, this means that (ii) holds. |

LEMMA 2.6. Suppose that |F(ayaz)| = 3. Then |C(ajaz)| < 10. Furthermore, if
|C(ayaz)| = 10, then |F(ajaz)| = 3, and there exist x € {a3, as} and y € {b3, bs} such that
Flarax) = {F1, F2, {a1, a2, x, y}}.

PROOF. Suppose that |C(ajaz)| > 10. Let F3 € F(aijaz) — {F1, F2}, and write
F3 = {ai1,a2,x,y}. Then by Lemma 2.3 (i), {x,y} N (F; U F») # (. Suppose that
x ¢ UK ory ¢ F1 UF, By the symmetry of x and y and the symmetry of as, a4,
b3 and b4, we may assume that x = a3 and y ¢ F; U F». Then G3 U G4 C {{a3, aq, ba},

{as. ba, ¥}, (a3, as, b3}, {as, b3, y}}, which implies C@a) = ;% S 1 UG U
{{aa, ba, y}, {as, b3, y}}. Hence by Lemmas 2.1 (ii) (a) and 2.4, |C(a1a2)| < |51 U Ga| +2 =
1911 + (192l = 191 NG +2 <4+3+4+2 =09, acontradiction. Thus x,y € F; U F>.
By the symmetry of x and y and the symmetry of {as, b3}, {a3, ba}, {aa, b3} and {aa, b4},
we may assume that x = a3 and y = b3. Then G3 C {{a3, a4, b}, {as, b3, bs}}. Hence

Clarar) = U?=1 Gi = §1UG,UG4. Since G2 N G4 = @, this together with Lemmas 2.1 (ii) (a)
and 2.4 implies that |C(a1a2)| = [51UG2U%] = (19511—151NG2) +1921+ (1941 = 151N Gal) <
3 4+ 4+ 3 = 10. Since we are assuming that |C(ajaz)| > 10, it follows that |C(ajaz)| = 10.
Note that this in particular implies that |§;| > 3 for each 1 </ < 4 with [ # 3. We also have
193] < I{{as, a4, ba}, {a4, b3, ba}}| = 2.

Suppose that there exists Fy € F(ajar) — {F1, F2, F3}. Arguing as in the first half of the
preceding paragraph, we see that there exist x” € {a3, a4} and y’ € {b3, by} such that Fy =
{ai, a2, x', y'}. Then {x', y'} # {x, y}. Hence, arguing as in the second half of the preceding
paragraph, we see that for some m (1 < m < 4) withm # 3, we have |§;| > 3 foreach! # m.
But this contradicts the assertion that |G3| < 2. Therefore F(ajaz) = {F1, F», F3}. O

In Lemmas 2.7 through 2.11, we fix the following notation. Let F, F' € F with F # F’,
and let jo := |[FNF'|. Leta € X — (F U F’), and set H := {{a, v,wl:veF—F,we
F —F } (it is not always true that H C €). The following lemma follows from the definition
of H.

LEMMA 2.7. (i) Foreachv e F — F',|H(v)| =4 — jo.
(i) |H| = 4— jo)*.
LEMMA 2.8. () C(@) € (Uyernp Clan)) UIH.



246 SHUYA CHIBA, MICHITAKA FURUYA, RYOTA MATSUBARA AND MASANORI TAKATOU

(i) [C@)| < 4jo+ (4 — jo)*

PROOF. Take C € C(a) —J,cpnp’ Clau). Thensince CNF # Pand CNF' # @, we
get C € H. Since C is arbitrary, this proves (i). Statement (ii) follows from (i) and Lemmas
2.1 (ii) (a) and 2.7 (ii). O

We here prove three technical lemmas.

LEMMA 2.9. Suppose that jo = 1, and let vo € F — F' and wy € F' — F. Then
[C(a)| — [C(avo)| — [Clawp)| + |C(avowp)| < 8.

PROOF. Write F N F' = {u}. Note that |C(avy)| + |Clawo)| — |Clavowy)| =
|C(avg) U C(awp)|. Hence by Lemmas 2.8 (i) and 2.1 (ii) (a), |C(a)| — (|C(avy)| +
|€(awo)| — |Clavowo)|) = |C(a)| — |C(avy) U C(awo)| = |€(a) — (Clavy) U Clawp))| =
|(G(au)U(G(a)ﬂﬂ'C))—(G(avo)UC’(awo))| < |€(au)|+|(€(a)ﬂﬂ{)—(G(avo)UG(awo))I <
Caw)| +|{{a, v, w}:ve F—F' —{v}, we F'—F—{wo}}| <4+ @—jo—D*=8. O

LEMMA 2.10. Suppose that jo < 2 and |C(a)| > 11. Then C(av) # @ foreachv € F.

PROOF. Note that jo = 1or2. Takev € F.

First we consider the case where v € F N F/. By Lemma 2.8 (i), Cla) <
(Uiernp Claw)) UK = C@v) U (U,ernry_qv Claw)) U H. We have
|UME(FQF/)_{U}G(au)| < 4(jo — 1) by Lemma 2.1 (ii) (a) and |H| = 4 — jo)2 by
Lemma 2.7 (ii). Hence |C(a)| < |C(av)| + 4(jo — 1) + (4 — jo)?. Since |C(a)| = 11 by
assumption, this implies |C(av)| > 11 — (4(j0 -1+ ¢4 - jo)z). Since jo = 1 or 2, we get
|Cav)| > 2.

Next we consider the case where v € F — F’. By Lemma 2.8 (i), Ca) =
(Unerne Caw) U@ NH) = (Uyepne Claw) U (Clav) N H) U (e(a) N (H -

J—C(v))) € (Uuepnp Claw)) U C(av) U (H — H(v)). We have |, cpnp Clan)] < 4jo
by Lemma 2.1 (ii) (a) and |H — H(v)| = (3 — jo)4 — jo) by Lemma 2.7. Hence
C(a)| < 4jo+ |C(av)] + (B — jo)(d — jo). Since |C(a)] > 11 and jo = 1 or 2, this im-
plies |C(av)| = 11 — (4jo + B —jo)4d— jo)) =1, as desired. O

LEMMA 2.11. Suppose that jo <2 and |C(a)| > 12. Then |H — C(a)| < 1.
PROOF. Note that |[H — €(a)| = |(€(a) UH) — €(a)| = |C(a) UH]| — |€(a)|. Hence by
Lemma 2.8 (i), |H — C(a@)| = (U, cpnp @(au)) U H]| — |C(a)|. Consequently |H — C(a)| <

4jo+ (4 — jo)* — |C(a)| by Lemmas 2.1 (ii) (a) and 2.7 (ii). Since |C(a)| > 12 and jo = 1 or
2 by assumption, this implies |H — C(a)| < 4jo+ (4 — jo)> — 12 < 1. O

The following lemma follows from Theorem C. However, for the convenience of the
reader, we include a proof which does not depend on Theorem C.
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LEMMA 2.12. Leta € X. Then |C(a)| < 13. Furthermore, if equality holds, then
there exist Y, Z C X —{a}withY NZ = W and y1, y» € Y with y1 # y2 such that |Y| =
4,1Z) =3 and F(a) = {Y, Z U {y1}, ZU {»}}.

PROOF. In view of Lemma 2.1 (i), we can take F, F' € F(a) with F # F’. Let jg
and H be as in Lemmas 2.7 and 2.8. By Lemma 2.8 (ii), |C(a)| < 13. Suppose that equality
holds. Then by Lemma 2.8 (ii), jo = 1 or 3. Further by Lemmas 2.8 (i), 2.1 (ii) (a) and 2.7

(i),

|C(au)| =4 for each u e FNF', (2.2)
Clau) N Clau’) =¥ forany u,u’ € FNF' with u #u’, (2.3)

and
H C C(a). 2.4)

Assume for the moment that jo = 3. Letu € F N F’. By Lemma 2.1 (i), we can take
F" € F(au). If F"N(FNF') # @, then, lettingu’ € F"N(FNF’), we get{a, u,u’} € Clau)
from (2.2) and Lemma 2.1 (ii) (b), which implies {a, u, u’} € C(au) N C(au’), contradicting
(2.3). Thus F” N (FNF’) = @. Hence |F" N F| = |F” N F'| = 1. This means that replacing
F’ by F”, we may assume jo = 1.

In the rest of the proof of Lemma 2.12, we assume jo = 1. Write F N F' = {y}.
By Lemma 2.1 (i), we can take G € F(a) — {F, F'}. By 2.4), wehave G 2 F — F’ or
G D F' — F. Wemay assume G 2 F' — F. Then |G N F| = 1. Write G N F = {y,}. Since
G # F’, y» # y1. Since G is arbitrary, we get F(a) — {F, F'} € F(ay;). Since |C(ay))| = 4
by (2.2), it now follows from Lemma 2.1 (ii) (b) that F(a) — {F, F’} = {G}. Therefore if we
letY=Fand Z=F — F,Y, Z, y; and y; have the required properties. O

3. Proof of Theorem 2

As in Section 2, let F C (f) be an intersecting family with 7(F) = 3, and let C = C3(F).

In order to prove Theorem 2, it suffices to show that I = 3"(4), assuming that |G| > 36. First

we prove a technical claim, which we use toward the end of the proof.

CLAIM 3.1. LetF,F',G € F, and suppose that |[F NG| = |[F' NG| =|FNF'|=1
and FN G # F'NG. Write G = {ay, a3, a3, a4} sothat F NG = {a1} and F' N G = {ay}.
Then |C(a1a2a3)| > 2.

PROOF. By the inclusion-exclusion principle, |C(a;) U C(az) U C(a3z)| = |C(ay)| +
IC(a2)| + [€(a3)| — |C(a1a2)| — |C(a1a3)| — |C(aza3)| + |C(aiaza3)| < |C(an)| + |Claz)| +
(1C(a3)| — |C(a1a3)| — |C(aza3)| + |C(a1aza3)]). Since [C(a1)| < 13 and [C(a2)| < 13
by Lemma 2.12 and |C(a3)| — |C(a1a3)| — |C(ara3)| + |C(aiazaz)] < 8 by Lemma 2.9,
we obtain |C(a;) U C(az) U C(az)| < 34. Recall that we are assuming |C| > 36. Thus
|C(a1aza3)| = |C| — |C(a1) U C(az) U C(az)| = 2. O
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Next we show that F has two members whose intersection has cardinality greater than or
equal to two.

CLAIM 3.2. There exist F, G € F with F # G such that |F N G| > 2.

PROOF. Suppose that [F NG| = 1 forall F,G € F with F # G. Foreachx € X,
we have |C(x)| = |C] — |C(x)| = 36 — 13 = 23 by Lemma 2.12, and hence it follows
from Lemma 2.3 (ii) that |F(x)| < 2. Since ¥ is intersecting, there exists x € X such that
|F(x)] =2. Let F(x) = {F1, F2}, and write F] = {x, az, a3, a4} and F» = {x, by, b3, bs}. By
Lemma 2.1 (i), we can take F3 € 5’“()252). Then F3 N {az, a3, as} # ¥ and F3 N {b3, bs} # @.
By symmetry, we may assume that F3 = {ap, b3,y,z} with y,z € X — (F1 U F,). By
Lemma 2.1 (i), we can take F4 € F(xap). Since |F(v)| < 2 for all v € X, it follows that
FyN{az, as} # B, F4aN{by, ba} # ¥ and F4 N{y, z} # . By symmetry, we may assume that
Fy ={a3, by, y,w}withw € X — (U?:1 F;). By Lemma 2.1 (i), we can take F5 € F(xy).
Then F5 N {a, a3, by, b3,x,y} = @, and hence F5 = {aa, bs, z, w}. By inspection, we
now see that |C| < |C3({F1, F2, F3, F4, Fs})| = 30, which contradicts the assumption that
|C| = 36. O

Having Claim 3.2 in mind, take F, F> € F (F; # F>) with |F; N F>| > 2, and set
io := |F1 N F|. Write F| = {ay, az, a3, as} and F, = {by, by, b3, bs} so that a; = b; for each
1 <i<ipanda; # b; foreachip+ 1 <i <4.

We consider the cases where ip = 2 and ip = 3 separately. In Case 1, the case where
ip = 2, we obtain a contradiction, which means that F has the property that there exist no
F,G € Fsuch that |F N G| = 2. In Case 2, the case where iy = 3, based on this property,

we show that F is isomorphic to EF?).
Case 1: ip = 2.
CLAIM 3.3. One of the following holds:

@) [C(an| = |C(az)| = 12 and C(aiaz) = ¥; or
(1) 1C(ay)| = 13, |C(az-i)| = 11 and |C(a1az)| < 2 for some i with 1 <i < 2.

PROOF.  Since [C(a1)| + [C(a2)| — |C(aiaz)| = |C(a1) U C(az)| = [C| — |C(a1a2)| =
36 — 12 = 24 by Lemma 2.5, the desired conclusion follows from Lemma 2.12. O

CLAIM 3.4. We have |C(ay)| > 13 or |C(a)| > 13.

PROOF. Suppose that |C(a;)| < 12 for each i = 1, 2. Then by Claim 3.3, |C(a;)| = 12
foreachi = 1,2 and C(ajaz) = ¥, and hence |C(ajaz)| = |C|—|C(a)|—|C(az2)| = 36—24 =
12. By Lemma 2.5, this implies |C(ajaz)| = 12. Let G := C(azbzaiaz), G2 := Clazbaaiaz),
G3 := C(agbsaiar) and G4 := C(agbszaiar). Then (i) or (ii) of Lemma 2.5 holds.

First we consider the case where Lemma 2.5 (ii) holds; that is to say, |§;| = 3 for
eachl <l <4, and § NG, =@ forany/,m with 1 <1 < m < 4. Write §| =
{{03, bs, x}, {as, b3, y}, {a3, b3, Z}} Since 91 NGy = @Pand §1 N G4 = @, we have {x, y, z} N
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{as, by} = @. Hence x,y,z € X — J'_ {a;, bi}. Take F € F(azbs). Then {x,y,z} C F.
Since F N Fy, # W tforeachh = 1,2, F = {ay, x, y,z} or F = {az, x, y, z}. We may assume
F ={ai, x,y,z}. Take F' € F(aiaz). Since F'NFy, # Pforeachh =1,2,{a;, b;} C F’ for
somei, j € {3,4}. Hence |[FNF’| < 2. Also note thatay ¢ FUF’ anda; € F. Consequently,
applying Lemma 2.10 with a = a and v = aj, we obtain C(ajaz) # @. Therefore we get a
contradiction to the earlier assertion that C(ajay) = @.

Next we consider the case where Lemma 2.5 (i) holds; that is to say, |§;| = 4 for each
1 <1 < 4and ("43M) = W C €@ 1a). Since §1 C C(asbs), we have 4 = |Gy <
|C(azb3)| < 4 by Lemma 2.1 (ii) (a). This forces |G| = |C(a3b3)| = 4, and hence G| =
C(azbz). Similarly Go = C(azbs), G3 = C(aabs) and G4 = C(asb3). Since |C(azb3)| =
|C(asbs)| = 4, it follows form Lemma 2.1 (i) (b) that |F(a3b3)| = |F(asbs)| = 1. Write
F(azb3) = {F} and F(asbs) = {F'}. By Lemma 2.2, F N{ay, a2} = F'N{ay, az} = ¥. Since
{as, b3, a4}, {az, b3, bs} € W C C(aiaz), we have {a3, b3, a4}, {a3, b3, by} € C(arazazbsz) =
C(aszb3). Hence a4, by € F — F'. Similarly as, b3 € F' — F. Hence |F N F’| < 2. Also note
that ay ¢ F U F’. Consequently, applying Lemma 2.11 with a = ay, we see that at least one
of {az, as, b4} and {az, a4, b3} belongs to C. If {az, as, b4} S G, {az, as, b4} S C’(a3b4) — 92;
if {as, a4, b3} € C, {az, as, b3} € C(asbz) — Ga. Therefore we get a contradiction to the fact
that we have both G = C(aszb4) and G4 = G(asb3).

Thus in either case, we get a contradiction. This completes the proof of Claim 3.4. O

By Claim 3.4, (i) of Claim 3.3 does not hold. Hence (ii) of Claim 3.3 holds. By symme-
try, we may assume |C(ay)| = 13, |C(az)| > 11 and |C(ajaz)| < 2. By Lemma 2.12 there
exist V,Z € X —{a1} with Y N Z = @ and y;, y» € Y with y; # y, such that |Y| = 4,
|Z| =3 and F(a1) = {Y, ZU {y1}, Z U {y2}}. Then

Cla) = {{a1,y.z} :y e Y,z € Z} U {{ar, y1, »}}. 3.1)

Ifay € Y U Z, then by (3.1), |C(ajaz)| > 3, which contradicts the fact that |C(ajaz)| < 2.
Thusay ¢ Y U Z. By (3.1), this implies

Claiar) =0. (3.2)

Set F3:=Y, Fx = ZU{y1}and F5 := Z U {y,}. Note that F(a;) = F(aiaz) = {F3, Fu, Fs}.
CLAIM 3.5. We have F(a1) = F(az) = Flarar) and F(ay) = F(ax) = F(aay).

PROOF. Since F(a;) = F(a1ay), we have F(a;) € F(ay), and hence F(az) € F(ay).

By way of contradiction, suppose that F(a;) — F(az) # @, and take F € F(a;) — F(az).

Since |F3 N F4| = 1, at least one of F3 and Fy, say Fp, satisfies |F N Fj| < 2. Note that

ar ¢ FUF, anda; € F—F},. Consequently, applying Lemma 2.10 with F/ = Fj,, a = ap and

v = ay, we get C(ajaz) # . But this contradicts (3.2). Thus F(a;) = F(az). This implies
F(a;) = F(ap), and hence F(a1) = F(ap) = F(ajaz) and F(a,) = F(ax) = F(a,az). O

CLAIM 3.6. There exist v € {a3, a4} and w € {b3, ba} such that {v, w}NY # @ and
{fv,wiNZ #£ 0.
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PROOF. Recall that F3, Fu, F5 € F(ajaz). Hence Fy N {asz,as} = F4 N F| # @ and
F4N{b3, by} = F4N F> # (. This implies that we have Z N {as, a4} # @ or ZN{b3z, bs} # 0.
By symmetry, we may assume that Z N{b3, by} # @. Note that Y N{a3, a4} = F3N{a3, a4} =
F3 N F; # (. Now if we take v € Y N {a3, a4} and w € Z N {b3, ba}, then v and w have the
required properties. O

Let v and w be as in Claim 3.6. Let Fg € F(vw). Since {a;, v, w} € C(ay) by (3.1),
a) € Fg. Hence by Claim 3.5, Fg € F(aja) — {F1, F2}. By Lemma 2.12, |C(aaz)| > |C| —
|C(ay)] — |C(a2)| = 36 — 26 = 10. In view of Lemma 2.6, this implies that |C(ajaz)| = 10,
F(aiap) = {F1, F», Fg}, and Fg = {ay, az, ¢, d}, where {a3, as} — {v} = {c} and {b3, by} —
{w} = {d}. Take F € F(¢d). Since F(aiar) = {F1, F», Fs}, F ¢ F(aiaz). Therefore
by Claim 3.5, F € F — F(aja2) = F — F(a1) = F(a1) = F(aiaz). Butthen F N Fg =
FN{ay, az, ¢, d} = @, which contradicts the assumption that JF is intersecting. This completes
the discussion for Case 1.

Case 2: ip = 3.
We have shown that Case 1 leads to a contradiction. Thus
[FNG|=1or |[FNG|=3 forany F,G € F with F #G. (3.3)

Let F3 € F(azas). Then by (3.3), | F3N Fy| = |F3N{ay, az}| = 1. By the symmetry of a; and
az, we may assume that F3N F; = {a1}. By (3.3), this implies F3NF> = F3N{ay, by} = {a1}.
Hence F3 N (F1 U F) = {a1}. Write F3 = {aj,c1,c¢3,¢c3}. Then¢; € X — (F1 U Fy)
foreach 1 < i < 3. Let Fy € F(ajas). Then we can argue as above using (3.3), to get
|Fa N (F1 U F)| = |F4sN{az,a3}| = 1. By the symmetry of a; and a3, we may assume
that F4 N (F1 U F>) = {az}. By (3.3), either F4 N F3 = {c1,cz,c3} or |[Fa N F3| = |F4 N
{c1, c2, c3}| = 1. Suppose that |F4 N F3| = 1. Then {a4, b4, c;} is the only possible member
of C(ajaraz), where c¢; is the unique element of F4 N F3. Hence |C(ajazaz)| < 1. But since
|I3NF|=|FanNFi| = |FaNF3| =1, 3N F; ={a1}and F4 N F1 = {a>}, this contradicts
Claim 3.1. Thus F4 N F3 = {c1, ¢2, c3}, and hence F4 = {a3, c1, ¢3, c3}.

Let F5 € F(ajc3). Thenby (3.3), | FsN(F3UF4)| = |FsN{c1, c2}| = 1. By the symmetry
of ¢1 and ¢, we may assume that F5 N (F3U Fy) = {c1}. Then by (3.3), F5N(F U F>) = {a3}
or Fs N (F1 U Fy) = {a4,bs}. If F5 N (F] U F2) = {as}, then since |F5s N F3| = 1, we
get a contradiction to Claim 3.1 by arguing as in the first paragraph with Fy replaced by F5s.
Thus F5 N (F1 U F») = {ay4, bs}. Hence F5 = {cy1, a4, bs, d} withd € X — (U2=1 Fy). Let
Fs € F(ajc1). Then by (3.3), |Fs N (F3 U Fy)| = |Fg N {c2, c3}| = 1. By the symmetry of
¢3 and c3, we may assume that Fg N (F3 U F4) = {c2}. Then, arguing as in the first paragraph
with F) and F, replaced by F3 and Fy, and F3 and Fy4 replaced by Fs5 and Fg, we obtain
Fe = {cy, a4, by, d}.

Now note that {F, F», F3, F4, F5, Fg} = ?§4). Since |G| > 36, this implies |C| = 36
and C = C3({Fy, ..., Fe}). In particular,

{{x.y.2} i x €{cr, 2.3}, y € {ar, a2, a3}, z € {aq, by, d}} C €, (3.4)
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and
{{al,az,z} 17 € {a4,b4,d}} U {{a4, bs,x}:x € {01,6‘2,6‘3}}
Uller, 2, v} 1y € (a1, a2,a3}} C €. (3.5)

Suppose that there exists F € F — {Fy,..., Fg}. By (3.4), we have F 2 {cy, c2, c3} or
F 2 {ay,az,a3} or F 2 {aa, ba, d}. By symmetry, we may assume F 2 {c1, c2, c3}. Since
FNF #0, FNF, # ¢ and F # F3, Fy, this forces F = {a3, c1, c2, c3}. But then
{a1, a2, d) N F = @, which contradicts (3.5). Therefore F = (F, ..., Fg} = FV.

This completes the proof of Theorem 2. (]
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