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Gauss Sums on Finite Groups
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Abstract. We shall discuss Gauss sums on finite groups and give several examples including the case of the
complex reflection groups G(m, r, n), and hence finite symmetric groups, and also finite Weyl groups.

0. Introduction

For an odd prime p, the classical Gauss sum gp is given by

gp =
p−1∑
x=0

e2x2π
√−1/p =

p−1∑
x=1

(
x

p

)
e2πx

√−1/p,

where

(
x

p

)
is the Legendre symbol. There are several generalizations of this sum, and vast

studies have been done. What we shall discuss in this paper starts by regarding the above sum
gp as a sum on the finite cyclic group F×

p of nonzero elements of a finite field with p elements

Fp. Generalizing the pair of F×
p and the Legendre symbol to a pair of a finite group G and its

complex character χ , we can define a Gauss sum τG(χ,ψρ) on G associated with a modular
representation ρ of G. (In the case of gp, ρ is the identity.) Precise definition will be given in
the next section.

As for this sum τG(χ,ψρ), T. Kondo firstly determined the values for a finite general
linear groups G in [5], for every irreducible character χ and the canonical representation ρ.
Also in a series of papers starting with [4], Kim-Lee, D. S. Kim and Kim-Park explicitly
described the value τG(χ,ψρ) for classical groups G and for linear characters χ , i.e. of
degree 1. Saito-Shinoda [8, 9] considered τG(χ,ψρ) for finite reductive groupsG and for the
Deligne-Lusztig generalized character χ , and applied this result, in particular, to determine
τG(χ,ψρ) for G = Sp(4, q) and for all irreducible characters χ of G.

Thus the Gauss sums on finite groups treated so far are related with finite linear algebraic
groups. The purpose of this paper is to consider the Gauss sums on (not necessary algebraic)
finite groups, particularly on finite complex reflection groups G(m, r, n).

This paper is organized as follows: after preliminaries in §1, in §2 we determine ex-
plicitly τG(χ,ψρ) for the complex reflection group G = G(m, 1, n) and for all irreducible
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characters χ of G with an n-dimensional modular representation ρ. Main tool in this section
is the invariant theory described by I. G. Macdonald in [7]. The results includes the case of
finite symmetric groups and also Weyl groups of type B. We also mention the case of alter-
nating groups in this section. In §3, applying Clifford’s theorem for this case described by N.
Kawanaka in [3], the Gauss sums of the complex reflection groupsG(m, r, n) are determined.
In §4, Weyl groups of finite exceptional type will be treated. For calculation in this section
we used CHEVIE [2].

1. Preliminaries

1.1. Let G be a finite group, π : G → GLm(C) an ordinary representation, and ρ :
G → GLn(Fq) be a modular representation over a finite field with q elements, where q is a
power of a prime number p. Throughout this paper we fix a nontrivial additive character e of
Fq , e : Fq → C×. Using this e we define a class function ψρ on G as follows: for x ∈ G,
ψρ(x) = e(Trρ(x)), where Tr denotes the trace of a matrix.

Let

WG(π,ψρ) =
∑
x∈G

π(x)ψρ(x) ∈ Mm(C),

where Mm(C) is the algebra of all square matrices of degree m with complex coefficients.
The trace ofWG(π,ψρ) will be called the Gauss sum on G associated with π and ρ, and will
be denoted by τG(χπ,ψρ), where χπ is the character of π ; thus

τG(χπ,ψρ) = TrWG(π,ψρ).

If there is no afraid of confusion, we shall simply write τG(χπ) instead of τG(χπ,ψρ).
If π is irreducible, then by Schur’s Lemma WG(π,ψρ) = wG(χπ)Im is a scalar matrix

with some wG(χπ) ∈ C, and hence τG(χπ) = m ·wG(χπ), wherem is the degree of π .

1.2. For C-valued functions f and g on G, let

〈f, g〉G = 1

|G|
∑
x∈G

f (x)g(x)

be the usual hermitian inner product on the space of C-valued functions on G, where g(x) is

the complex conjugate of g(x). Thus for a character χ onG, we have τG(χ) = |G|〈χ,ψρ〉G.
Let cf(G) be the space of C-valued class functions on G. Then by linearity we can extend

τG to a linear mapping on cf(G). It is sometimes useful to consider |G|−1τG, so we define a
linear map τ̃G on cf(G) by

τ̃G(χ) = |G|−1τG(χ) = 〈χ,ψρ 〉G .
Now the following lemma is an immediate consequence of the Frobenius reciprocity.
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LEMMA 1.3. Let G be a finite group,H its subgroup, χ a character of H , and ρ be a
modular representation of G. Then we have

τ̃G(indGH(χ),ψρ) = τ̃H (χ,ψρ|H ) ,

where indGH(χ) denotes the induced character of χ from H .

2. Gauss sums on complex reflection groupsG(m, 1, n)

2.1. Let m,n be two positive integers, ω = e2π
√−1/m and 〈ω〉n = 〈ω〉 × · · · × 〈ω〉

be the direct product of n copies of the cyclic group 〈ω〉 of order m. The symmetric group
Sn acts on 〈ω〉n by permuting the factors: for g = (g1, g2, . . . , gn) ∈ 〈ω〉n and σ ∈ Sn,
σ(g1, g2, . . . , gn) = (gσ−1(1), gσ−1(2), . . . , gσ−1(n)).

Then we define the group G(m, 1, n) as a semidirect product of 〈ω〉n with Sn given by
this action. Fixing m, we shall write Gn = G(m, 1, n) throughout this section. The elements
of Gn may be thought of as permutation matrices with entries in 〈ω〉. Thus we identify
(g, σ ) ∈ 〈ω〉n � Sn = Gn with the n× n matrix having (i, j)-entry giδiσ (j).

Let p be a prime number such thatm divides p−1, and a be an element of F×
p which has

orderm. Then we can define a modular representation ρ(n) : Gn → GLn(Fp) by replacing ω

with a. Fixing a nontrivial additive character e of Fp, we also define ψ(n) = e ◦ Trρ(n).
In this section for a complex-valued class function χ on Gn, we shall write the Gauss

sum τGn(χ) simply by τn(χ). Thus

τn(χ) =
∑
x∈Gn

χ(x)ψ(n)(x) .

The purpose of this section is to determine explicitly τn(χ) associated with any irre-
ducible character χ of Gn.

2.2. Let P be the set of all partitions and Pm the direct product of m copies of P . We
define

Pm(n) = {λ = (λ(0), λ(1), . . . , λ(m−1)) ∈ Pm |
m−1∑
j=0

|λ(j)| = n} .

Since the set of all irreducible characters ofGn is parametrized by Pm(n) (cf. [7], I, Appendix
B), we let χλ denote the irreducible character of Gn corresponding to λ ∈ Pm(n).

Let R(Gn) denote the vector space over C generated by the irreducible characters of Gn
and let R(G) = ⊕

n�0 R(Gn). If u ∈ R(Gn), v ∈ R(Gl), then we define

u � v = indGn+lGn×Gl (u× v) .



168 YASUSHI GOMI, TAIKI MAEDA AND KEN-ICHI SHINODA

With this multiplication, R(G) is a commutative, associative, graded C-algebra with identity
element (loc. cit. p. 171).

PROPOSITION 2.3. Let τ̃ be a C-linear mapping, τ̃ : R(G) → C, defined by

τ̃ (u) =
∑
n

τn(un)

|Gn| =
∑
n

〈un,ψ(n)〉Gn, (u =
∑

un with un ∈ R(Gn)) .

Then τ̃ is a ring homomorphism.

PROOF. If u ∈ R(Gn), v ∈ R(Gl), then by Frobenius reciprocity we have

τ̃ (u � v)= 〈indGn+lGn×Gl (u× v), ψ(n+l)〉Gn+l
= 〈u× v,ψ(n+l)|Gn×Gl 〉Gn×Gl
= 〈u× v,ψ(n) × ψ(l)〉Gn×Gl
= 〈u,ψ(n)〉Gn〈v,ψ(l)〉Gl
= τ̃ (u)τ̃ (v) ,

which proves (2.3). �

2.4. We define the characters η(j)n (j = 0, 1, . . . ,m− 1) of Gn of degree 1 as follows:

η
(j)
n (g, σ ) = (g1g2 . . . gn)j (g = (g1, g2, . . . , gn) ∈ 〈ω〉n, σ ∈ Sn) .

Notice that η(0)n is the trivial character of Gn. Let ζ = e(1) ∈ C. So ζ is a pth root of unity.

We can determine the Gauss sums associated with η(j)n in the following two theorems.

THEOREM 2.5. Let W(0)(t) be the generating function of
(
τ̃ (η

(0)
n )

)
n�0 : W(0)(t) =∑

n≥0 τ̃ (η
(0)
n )tn. Then

W(0)(t) = 1

1 − t
exp

(∑m−1
i=0 ζ

ai −m

m
t

)
.

PROOF. Although we took a from F×
p , in this proof we consider a to be a positive

integer, 0 < a < p, and define a function f , f : 〈ω〉 → Z, by

f (ωi) = ai (0 � i � m− 1) .

Using this function f , let F(x) = (f (gi )δiσ (j))1�i,j�n ∈ Mn(Z) for each x = (g, σ ) ∈ Gn.

Then ψ(n)(x) = ζTrF(x) for all x ∈ Gn, and we have τn(η
(0)
n ) = ∑

x∈Gn ζ
TrF(x).

Now, for a nonnegative integer r , we define

An(r) = {x ∈ Gn | TrF(x) = r} ,
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Bn(r) = {σ ∈ Sn | m(σ) = r} ,
where m(σ) is the number of fixed points of σ .

Applying Möbius inversion formula for a poset of finite set with inclusion as its partial
ordering, we can obtain

|Bn(r)| =
n−r∑
l=0

(−1)l
n!
r!l! .

Hence

|An(r)| =
∑

k0,...,km−1�0,∑m−1
i=0 aiki=r

∣∣∣∣∣Bn
(m−1∑
i=0

ki

)∣∣∣∣∣
( ∑m−1

i=0 ki
)!

k0! · · · km−1!m
n−∑m−1

i=0 ki

=
∑

k0,...,km−1�0,∑m−1
i=0 aiki=r

n−∑m−1
i=0 ki∑
l=0

n!
k0! · · · km−1!l!m

n−∑m−1
i=0 ki (−1)l .

Therefore

τn(η
(0)
n )=

am−1n∑
r=0

|An(r)| ζ r

=
am−1n∑
r=0

∑
k0,...,km−1�0 ,∑m−1

i=0 aiki=r

n−∑m−1
i=0 ki∑
l=0

n!
k0! · · · km−1!l!m

n−∑m−1
i=0 ki (−1)lζ r .

Thus

τn(η
(0)
n )−mnτn−1(η

(0)
n−1)

=
am−1n∑
r=0

∑
k0,...,km−1�0,∑m−1

i=0 aiki=r,∑m−1
i=0 ki�n

n!
k0! · · · km−1!(n− ∑m−1

i=0 ki)!
(−m)n−

∑m−1
i=0 ki ζ r

=
∑

k0,...,km�0,∑m
i=0 ki=n

n!
k0! · · · km−1!km!

(m−1∏
i=0

ζ a
iki

)
(−m)km

=
(m−1∑
i=0

ζ a
i −m

)n
.
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Consequently

(1 − t)W(0)(t) = 1 +
∑
n�1

(τ̃ (η(0)n )− τ̃ (η
(0)
n−1))t

n

=
∑
n�0

1

n!
(∑m−1

i=0 ζ
ai −m

m
t

)n

= exp

(∑m−1
i=0 ζ

ai −m

m
t

)
,

which proves (2.5). �

THEOREM 2.6. For j = 1, . . . ,m − 1, let W(j)(t) be the generating function of(
τ̃ (η

(j)
n )

)
n�0 :W(j)(t) = ∑

n≥0 τ̃ (η
(j)
n )tn. Then

W(j)(t) = exp

(∑m−1
i=0 ω

ij ζ a
i

m
t

)
.

PROOF. Let d be the greatest common divisor of m and j . Using the same notation as
in the preceding theorem, we have

τn(η
(j)
n ) =

∑
x∈Gn

η
(j)
n (x)ζTrF(x)

=
am−1n∑
r=0

∑
x∈An(r)

η
(j)
n (x)ζ r

=
am−1n∑
r=0

m/d−1∑
l=0

∑
x∈An(r)∩(η(j)n )−1(ωjl )

ωjlζ r

=
am−1n∑
r=0

∑
k0,...,km−1�0,∑m−1

i=0 aiki=r,∑m−1
i=0 ki�n−1

m/d−1∑
l=0

dωjl
∣∣∣∣Bn

(m−1∑
i=0

ki

)∣∣∣∣
( ∑m−1

i=0 ki
)!

k0! · · · km−1!m
n−∑m−1

i=0 ki−1ζ r

+
am−1n∑
r=0

m/d−1∑
l=0

∑
k0,...,km−1�0,∑m−1

i=0 aiki=r,∑m−1
i=0 ki=n,∑m−1

i=0 iki≡l (mod m/d)

n!
k0! · · · km−1!ω

jlζ r .
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Since 1 � j � m− 1, it follows that
∑m/d−1
l=0 ωjl = 0. Hence

τn(η
(j)
n ) =

∑
k0,...,km−1�0,∑m

i=0 ki=n

n!
k0! · · · km−1!

m−1∏
i=0

(ωij ζ a
i

)ki

=
(m−1∑
i=0

ωij ζ a
i

)n
.

Therefore W(j)(t) = exp
(
m−1 ∑m−1

i=0 ω
ij ζ a

i
t
)
. �

2.7. We shall use the following notation on partitions and symmetric functions (cf.
[7], I). Let λ be a partition. Then n(λ) = ∑

i�1(i − 1)λi , and for each point x = (i, j)

in the diagram of λ, c(x) = j − i, h(x) is the hook-length of x, and h(λ) is the product
of the hook-lengths of λ. Moreover let Λ be the ring of symmetric functions in countably
many independent variables x = (x1, x2, . . . ). Following functions are defined in Λ: the rth
elementary symmetric function er , the rth complete symmetric function hr , the rth power
sum pr , and the Schur function sλ corresponding to each λ ∈ P .

Let n be a nonnegative integer, z a nonzero complex number and let f ∈ Λ. We consider
the following specialization of xi :

xi = z

n

(
1 + z

n

)i−1

(1 � i � n) , xn+1 = xn+2 = · · · = 0 .

The specialized value of f in this way is denoted by f (n).

LEMMA 2.8. Let r be a nonnegative integer and λ ∈ P . Then

lim
n→∞(e

(n)
r ) = lim

n→∞(h
(n)
r ) = (ez − 1)r

r! , lim
n→∞(s

(n)
λ ) = (ez − 1)|λ|

h(λ)
.

PROOF. Let y = 1 + z/n. Then

e(n)r =
( z
n

)r
y
r(r−1)

2

[
n

r

]
y

,

h(n)r =
( z
n

)r [
n+ r − 1

r

]
y

,

s
(n)
λ =

( z
n

)|λ|
yn(λ)

∏
x∈λ

1 − yn+c(x)

1 − yh(x)
,

(cf. [7], I, 2. Ex.1 and 3. Ex.1) where

[
n

r

]
y

is the Gaussian polynomial in the variable y.
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Hence

e(n)r = zry
r(r−1)

2

( r−1∏
k=0

((
1 + z

n

)n−k
− 1

))( r∏
k=1

(
kz+

k∑
i=2

(
k

i

)
zi

ni−1

))−1

→ (ez − 1)r

r! (n → ∞) .

Similarly we have h(n)r → (ez − 1)r

r! , s
(n)
λ → (ez − 1)|λ|

h(λ)
(n → ∞). �

2.9. In this subsection, we shall follow the notation in ([7], I. Appendix B, 5 and 6).

Let x(j) = (x
(j)

1 , x
(j)

2 , . . . ) (j = 0, 1, . . . ,m− 1) be independent variables over C andΛ(G)

denote the graded C-algebra generated by pr(x(j)) (r � 1, j = 0, 1, . . . ,m− 1):

Λ(G) = C[pr(x(j)) : r � 1, j = 0, 1, . . . ,m− 1] .
An isomorphism c of graded C-algebras, c : Λ(G) → Λ(G), is defined by

c(pr(x
(j))) = 1

m

(m−1∑
k=0

ωjkpr(x
(k))

)
.

For ν = (ν1, ν2, . . . ) ∈ P , let pν(x(j)) = pν1(x
(j))pν2(x

(j)), . . . , l(ν) = #{j | νj > 0} and

zν = ∏
i�1 i

mi(ν)mi(ν)!, where mi(ν) = #{j | νj = i}. Also for ρ = (ρ(0), . . . , ρ(m−1)) ∈
Pm, let

Pρ =
m−1∏
j=0

pρ(j) (x
(j)), Zρ =

m−1∏
j=0

zρ(j)m
l(ρ(j)) .

Then {Pρ}ρ∈Pm is a C-basis of Λ(G). For f = ∑
ρ∈Pm aρPρ ∈ Λ(G), (aρ ∈ C), let

f =
∑
ρ∈Pm

aρPρ .

Then we can define a hermitian inner product on Λ(G) as follows:
if f = ∑

ρ aρPρ, g = ∑
ρ bρPρ, (aρ, bρ ∈ C), then

〈f, g〉 =
∑
ρ∈Pm

aρbρZρ .

Moreover, a C-linear mapping ch : R(G) → Λ(G) is defined by

ch(u) = 1

|Gn|
∑
x∈Gn

u(x)Pρ(x) ,
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where ρ(x) is the type of x, which generalizes the cycle type of the symmetric group Sn and
parametrizes the conjugacy classes of Gn (cf. [7], I. Appendix B, 3).

It is known that ch is an isometric isomorphism of graded C-algebras and satisfies

ch(χλ) =
m−1∏
j=0

c(sλ(j)(x
(j)))

(cf. loc. cit., (6.3)). In particular ch(η(j)n ) = c(hn(x
(j))).

By (2.3), (2.5), (2.6) and (2.8), we can obtain explicit expressions of Gauss sums on
G(m, 1, n) as follows:

THEOREM 2.10. Let χλ be the irreducible character corresponding to λ ∈ Pm. Then

τ̃ (χλ) =
∑
µ

1

h(µ)

(∑m−1
i=0 ζ

ai −m

m

)|µ| m−1∏
j=1

1

h(λ(j))

(∑m−1
i=0 ω

ij ζ a
i

m

)|λ(j)|
,

where the summation is over all partitions µ such that λ(0) − µ is a horizontal strip.

PROOF. We define an endomorphism φ of C-algebras, φ : Λ(G) → Λ(G), by

φ(hr(x
(0))) =

r∑
k=0

hk(x
(0)) ,

φ(hr(x
(j))) = hr(x

(j)) (j = 1, . . . ,m− 1) .

Let

z(0) = log

(
m−1

m−1∑
i=0

ζ a
i

)
,

z(j) = log

(
m−1

(m−1∑
i=0

ωij ζ a
i +m

))
, (j = 1, . . . ,m− 1) ,

and as in 2.7, we consider the following specialization of f ∈ Λ(G) obtained by putting

x
(j)
i =



z(j)

n

(
1 + z(j)

n

)i−1

(1 � i � n) ,

0 (i > n) ,

(j = 0, 1, . . . ,m− 1) .

The specialized value of f in this way is denoted by f (n). Moreover we define a homomor-

phism of algebras Φ, Φ : Λ(G) → C, by Φ(f ) = limn→∞ f (n). Then by (2.5), (2.6) and
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(2.8), we have the following commutative diagram:

φ

Λ(G)→ Λ(G)

ch−1 ◦ c ↓ ↓ Φ

R(G) → C
τ̃

Hence τ̃ (χλ) = Φ ◦ φ(∏m−1
j=0 sλ(j) (x

(j))).

From
∑r
k=0(−1)kekhr−k = 0 (r � 1), we obtain

φ(er (x
(0))) = er (x

(0))+ er−1(x
(0))

by induction on r . Hence, for each ν ∈ P , we have

φ(sν(x
(0)))= φ(det(eνi ′−i+j (x(0)))1�i,j�n)

= det(eνi ′−i+j (x(0))+ eνi ′−1−i+j (x(0)))1�i,j�n

=
∑

ε∈{0,1}n
det(eνi ′−εi−i+j (x(0)))1�i,j�n

=
∑

ε∈{0,1}n ,
ν ′−ε∈P

s(ν ′−ε)′(x(0))

=
∑
µ⊂ν ,

ν−µ:horizontal strip

sµ(x
(0)) ,

where ν′ is the conjugate of ν. Therefore

τ̃ (χλ)=
m−1∏
j=0

Φ ◦ φ(sλ(j) (x(j)))

=
∑

µ⊂λ(0) ,
λ(0)−µ:horizontal strip

Φ(sµ(x
(0)))

m−1∏
j=1

Φ(sλ(j) (x
(j)))

=
∑

µ⊂λ(0) ,
λ(0)−µ:horizontal strip

(ez
(0) − 1)|µ|

h(µ)

m−1∏
j=1

(ez
(j) − 1)|λ(j)|

h(λ(j))
(by (2.8))

=
∑

µ⊂λ(0) ,
λ(0)−µ:horizontal strip

1

h(µ)

(∑m−1
i=0 ζ

ai −m

m

)|µ| m−1∏
j=1

1

h(λ(j))

(∑m−1
i=0 ω

ij ζ a
i

m

)|λ(j)|
,
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which proves the assertion of our theorem. �

COROLLARY 2.11. Let G = Sn be the symmetric group of degree n and ρ be the
modular representation over Fp induced by the permutation representation of G on n letters.
Then the Gauss sum associated with the irreducible character λ ∈ P(n) is

τ̃Sn(χ
λ) =

∑
µ

1

h(µ)
(ζ − 1)|µ| ,

where the summation is over all partitions µ such that λ− µ is a horizontal strip.

PROOF. This is the special case of m = 1 in (2.10). �

REMARK 2.12. Since the permutation representation ρ(n) of Sn is the sum of the triv-
ial representation and the reflection representation ρ′, we have

Trρ(n)(σ ) = Trρ′(σ )+ 1 (σ ∈ Sn) .
Thus, if we use the reflection representation ρ′ instead of the permutation representation ρ(n)

to determine the Gauss sums on Sn, then we have

τ̃Sn(χ
λ,ψρ′ ) = ζ−1 τ̃Sn(χ

λ,ψ(n)) =
∑
µ

ζ−1

h(µ)
(ζ − 1)|µ| ,

where the summation is over all partitions µ such that λ− µ is a horizontal strip.

COROLLARY 2.13. Let G = W(Bn) be the finite Weyl group of type Bn with n ≥ 2,
and ρ be the modular representation of G over Fp induced by the reflection representation of

G. Then the Gauss sum associated with the irreducible character λ ∈ P2(n) is

τ̃W(Bn)(χ
λ) =

∑
µ

1

h(µ)h(λ(1))

(
ζ + ζ−1 − 2

2

)|µ| (
ζ − ζ−1

2

)|λ(1)|

where the summation is over all partitions µ such that λ(0) − µ is a horizontal strip.

PROOF. This is the special case of m = 2 in (2.10). �

REMARK 2.14. Applying (1.3) and Clifford’s theorem to An, the alternating group of
degree n, as a normal subgroup of Sn, we can obtain the Gauss sums on An too. In fact, if λ
is a partition of n which is not self-dual, then the restriction of the irreducible character χλ of
Sn to An is irreducible and

χλ|An
= χλ

′ |An
,

which is denoted by χλAn
. If λ is self-dual, the restriction of the character χλ to An splits into

two distinct irreducible characters which are denoted by χλ
+

An
and χλ

−
An

. Then the Gauss sums



176 YASUSHI GOMI, TAIKI MAEDA AND KEN-ICHI SHINODA

for the irreducible character of An are given as follows:

τ̃An
(χλAn

) = τ̃Sn(χλ)+ τ̃Sn(χλ
′
) , if λ is not self-dual,

τ̃An
(χλ

+
An
) = τ̃An

(χλ
−

An
) = τ̃Sn(χλ) , if λ is self-dual.

3. Gauss sums on complex reflection groupsG(m, r, n)

3.1. First, we summarize the character theory of G(m, r, n), following Kawanaka [3].

Let η = η
(1)
n be the linear character of G(m, 1, n) given in (2.4). For a natural number r

dividing m, the complex reflection group G(m, r, n) is defined by

G(m, r, n) = Ker ηm/r .

For each irreducible character χλ of G(m, 1, n), χλ ⊗ η is again irreducible. So the cyclic
group 〈η〉 of order m acts on the set of irreducible characters of G(m, 1, n), hence on the

parameter space Pm(n). More explicitly, for λ = (λ(0), λ(1), . . . , λ(m−1)) ∈ Pm(n),
χλ ⊗ η = χµ , λ, µ ∈ Pm(n) ,

is equivalent with

µ = (λ(m−1), λ(0), λ(1), . . . , λ(m−2)) .

By Clifford’s theorem, we obtain the irreducible characters of G(m, r, n) (cf.[3] Proposition
2.5).

PROPOSITION 3.2. Let r be a positive integer dividingm, and s(λ, r) the order of the
stabilizer of λ ∈ Pm(n) in 〈ηm/r 〉.

(1) The restriction χλ|G(m, r, n) is a sum of s(λ, r) distinct irreducible characters

χλi (i = 1, 2, . . . , s(λ, r)) of G(m, r, n), which are mutually conjugate underG(m, 1, n).

(2) For λ,µ ∈ Pm(n), χλ|G(m, r, n) and χµ|G(m, r, n) have a common constituent
of irreducible characters if and only if λ and µ are in the same orbit under 〈ηm/r 〉. In this
case, we have

χλ|G(m, r, n) = χµ|G(m, r, n) .
(3) Every irreducible character of G(m, r, n) is uniquely obtained as

χλi (i = 1, 2, . . . , s(λ, r)) ,

where λ runs over a complete set of representatives of the 〈ηm/r 〉-orbits in Pm(n).
PROPOSITION 3.3. Let [λ]r denote the 〈ηm/r 〉-orbit containing λ in Pm(n). Then for

an irreducible character χλi of G(m, r, n), we have

τ̃G(m,r,n)(χ
λ
i ) =

∑
µ∈[λ]r

τ̃G(m,1,n)(χ
µ) .
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PROOF. By (3.2), we have

indG(m,1,n)G(m,r,n) χ
λ
i =

∑
µ∈[λ]r

χµ ,

and hence by (1.3) and (2.10), we obtain the Gauss sums onG(m, r, n). �

REMARK 3.4. Above (3.3) includes the case of the dihedral group of order 2m, I2(m),
and the Weyl group of type Dn, since G(m,m, 2) is the dihedral group and G(2, 2, n) is the
Weyl group of type Dn.

4. Gauss sums on finite exceptional Weyl groups

4.1. LetW be an exceptional finite Weyl group. If we take simple roots as a basis of the
reflection representation space, then all components of representation matrices are integers
and the representation matrices can be considered as elements in GLn(Fp). So we define
Gauss sums on W , using this representation as a modular representation. We also fix a non-

trivial additive character e of Fp, e : Fp → C×, and put ζ = e(1): hence ζ = e2aπ
√−1/p

with an integer a prime to p.
The values of Gauss sums are obtained directly from the character table. We used

CHEVIE [2], in GAP. In case of type F4 andG2, we will show lists of all Gauss sums τW (χ),
but in case of type E6, E7 and E8, we show Gauss sums only for the trivial representation,
the sign representation and the reflection representation. The other values can be found in the
web page below:

http://pweb.sophia.ac.jp/y-gomi/Gauss-sum.html

In the table below,

y = ζ + ζ−1 − 2 = 2

(
cos

2aπ

p
− 1

)
, w = ζ − ζ−1 = 2

√−1 sin
2aπ

p
.

For the notation of irreducible characters of type F4 and G2 we follow [6].
4.2. TABLES OF τW (χ)

Type E6

triv. ζ 6 + 36ζ 4 + 240ζ 3 + 2430ζ 2 + 13104ζ + 20820 + 11664ζ−1 + 3465ζ−2 + 80ζ−3

sign ζ 6 − 36ζ 4 + 240ζ 3 − 810ζ 2 + 1584ζ − 1860 + 1296ζ−1 − 495ζ−2 + 80ζ−3

ref. 6ζ 6 + 144ζ 4 + 720ζ 3 + 4860ζ 2 + 13104ζ − 11664ζ−1 − 6930ζ−2 − 240ζ−3

Type E7

triv. y7 + 14y6 + 140y5 + 1512y4 + 20160y3 + 241920y2 + 1451520y + 2903040
sign w

(
y6 + 12y5 − 8y4 + 288y3

)
ref. w

(
7y6 + 84y5 + 700y4 + 6048y3 + 60480y2 + 483840y + 1451520

)
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Type E8

triv. y8 + 16y7 + 224y6 + 4032y5 + 120960y4 + 3870720y3 + 58060800y2 + 348364800y + 696729600

sign y8 + 16y7 − 16y6 + 1152y5 + 17280y4

ref. w
(

8y7 + 112y6 + 1344y5 + 20160y4 + 483840y3 + 11612160y2 + 116121600y + 348364800
)

φ w
(
8y7 + 112y6 − 96y5 + 5760y4 + 69120y3

)
(φ is the product of the sign character and the reflection character.)

Type F4

φ1,0 y4 + 8y3 + 96y2 + 576y + 1152
φ1,12′ , φ1,12′′ y4 + 8y3

φ1,24 y4 + 8y3 + 48y2

φ2,4′, φ2,4′′ 2y4 + 16y3 + 48y2

φ2,16′ , φ2,16′′ 2y4 + 16y3

φ4,8 4y4 + 32y3 + 96y2

φ9,2 9y4 + 72y3 + 288y2 + 576y
φ9,6′, φ9,6′′ , φ9,10 9y4 + 72y3 + 144y2

φ6,6′ 6y4 + 48y3 + 96y2

φ6,6′′ 6y4 + 48y3 + 240y2 + 576y
φ12,4 12y4 + 96y3 + 192y2

φ4,1 w
(
4y3 + 24y2 + 192y + 576

)
φ4,7′, φ4,7′′ w

(
4y3 + 24y2

)
φ4,13 w

(
4y3 + 24y2 + 96y

)
φ8,3′, φ8,3′′ w

(
8y3 + 48y2 + 96y

)
φ8,9′, φ8,9′′ w

(
8y3 + 48y2

)
φ16,5 w

(
16y3 + 96y2 + 192y

)
Type G2

φ1,0 y2 + 6y + 12
φ1,6 y2 + 6y

φ1,3′, φ1,3′′ wy

φ2,1 2w(y + 3)
φ2,2 2y2 + 6y

REMARK 4.3. If the scalar transformation −1 lies in W , then it is easy to show that
τW (χ) is real (resp. pure imaginary) when χ(−1) = χ(1) (resp. χ(−1) = −χ(1)), for an
irreducible character χ . This phenomena is similar to the original Gauss sum gp.

Moreover in the case of type E7, E8, F4 or G2, we can observe that if χ(−1) = χ(1)

(resp. χ(−1) = −χ(1)), then τW (χ) (resp. τW (χ)/(ζ − ζ−1)) is written as a polynomial in
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y(= ζ + ζ−1 − 2). Furthermore the coefficients of these polynomials in y are non-negative
integers except the case when χ is the sign character of type E7, or the sign character or φ,
the product of the sign character and the reflection character, of type E8.
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