Токуо J. Матн. Vol. 34, No. 2, 2011

# The Adams Inequality on Weighted Morrey Spaces

Takeshi IIDA, Yasuo Komori-FURUYA and Enji SATO

Yamagata University, Tokai University, and Yamagata University

**Abstract.** We introduce new weight classes, and extend the Adams inequality to weighted Morrey spaces. We also investigate the boundedness of the modified fractional integral operator from weighted Morrey spaces to Lipschitz or BMO spaces.

## 1. Introduction

Hardy, Littlewood, and Sobolev proved the boundedness of the fractional integral operator  $I_{\alpha}$  from  $L^p$  to  $L^q$  on Euclidean spaces, where  $1/q = 1/p - \alpha/n$ , 1 . Peetre [8] $studied the boundedness of <math>I_{\alpha}$  on classical Morrey spaces. Adams [1] showed the boundedness of  $I_{\alpha}$  on classical Morrey spaces whose result improved the Spanne and Peetre inequality (see Chiarenza and Frasca [2]). In this paper, we will extend the Adams result to weighted Morrey spaces. Komori and Shirai [4] proved the Spanne and Peetre inequality on weighted Morrey spaces only for subcritical indices. We will introduce new weight classes and prove the Adams inequality on weighted Morrey spaces. Furthermore we consider the boundedness of the modified fractional integral operator from weighted Morrey spaces to Lipschitz or BMO spaces.

This article is organized as follows. In Section 2 we define the ordinary fractional integral operator, the weighted Morrey space, new weight classes, and recall some known results. In Section 3 we will state the main result. In Section 4 we give some lemmas. In Section 5 we prove these main results.

The following notation is used: Let  $\mathbf{R}^n$  be the *n*-dimensional Euclidean space. For a set  $E \subset \mathbf{R}^n$  we denote the Lebesgue measure of *E* by |E|. We denote the characteristic function of *E* by  $\chi_E$ . We write a ball of radius *R* centered at  $x_0$  by  $B = B(x_0, R) := \{x; |x - x_0| < R\}$  and  $aB := \{x; |x - x_0| < aR\}$ , for any a > 0. We call a nonnegative locally integrable function *w* on  $\mathbf{R}^n$  a weight function. Also we write  $w(E) = \int_E w(x) dx$ . For 1 , <math>p' is the conjugate index if satisfies 1/p + 1/p' = 1. The letter *C* shall always denote a positive

Mathematics Subject Classification: 42B20, 42B25

Received May 30, 2010; revised September 21, 2010

*Key words and phrases*: The Adams inequality, weighted Morrey space, fractional integral operator, Lipschitz space, BMO space

constant which is independent of essential parameters and not necessarily the same at each occurrence.

### 2. Definitions and known results

We define two fractional integral operators and weighted Morrey, Lipschitz and BMO spaces.

DEFINITION 2.1 (Fractional integral operators). Let  $0 < \alpha < n$ . One define fractional integral operator  $I_{\alpha}$  and modified fractional integral operator  $\tilde{I}_{\alpha}$ :

$$I_{\alpha}f(x) := \int_{\mathbf{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} dy,$$
$$\tilde{I}_{\alpha}f(x) := \int_{\mathbf{R}^{n}} \left(\frac{1}{|x-y|^{n-\alpha}} - \frac{1}{|y|^{n-\alpha}} \chi_{\{|y| \ge 1\}}(y)\right) f(y) dy$$

Next we define weighted Morrey spaces.

DEFINITION 2.2 (Weighted Morrey spaces). Let  $1 \le p < \infty$  and  $0 \le \lambda < 1$ . Suppose that *u* and *v* are weight functions on  $\mathbb{R}^n$ . We define weighted Morrey space  $L^{p,\lambda}(u, v)$ :

$$L^{p,\lambda}(u,v) := \left\{ f \in L^1_{loc}(\mathbf{R}^n) : \|f\|_{L^{p,\lambda}(u,v)} < \infty \right\},\,$$

where

$$\|f\|_{L^{p,\lambda}(u,v)} := \sup_{B \subset \mathbf{R}^n, B: ball} \left(\frac{1}{v(B)^{\lambda}} \int_B |f(x)|^p u(x) dx\right)^{\frac{1}{p}}$$

REMARK 1. When u = 1 and v = 1, weighted Morrey spaces are classical Morrey spaces.

DEFINITION 2.3 (Lipschitz and BMO spaces). Let  $0 \le \varepsilon < 1$ .

$$Lip_{\varepsilon}(\mathbf{R}^{n}) := \left\{ f \in L^{1}_{loc}(\mathbf{R}^{n}) : \|f\|_{Lip_{\varepsilon}(\mathbf{R}^{n})} < \infty \right\},\$$

where

$$\|f\|_{Lip_{\varepsilon}(\mathbf{R}^n)} := \sup_{B \subset \mathbf{R}^n, B: ball} \inf_{c \in \mathbf{C}} \frac{1}{|B|^{1+\frac{\varepsilon}{n}}} \int_B |f(x) - c| dx.$$

We denote  $BMO(\mathbf{R}^n) := Lip_0(\mathbf{R}^n)$ .

Hardy, Littlewood and Sobolev(cf. Lu, Ding and Yan [5]) proved the boundedness of  $I_{\alpha}$  from  $L^p$  to  $L^q$  where  $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ . Adams [1] proved the boundedness on Morrey spaces.

THEOREM A (Adams). Let  $0 < \alpha < n$ ,  $0 \le \lambda < 1$ ,  $1 . If <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n(1-\lambda)}$ , then there exists a constant C > 0 such that

$$\|I_{\alpha}f\|_{L^{q,\lambda}(\mathbf{R}^{n})} \le C \,\|f\|_{L^{p,\lambda}(\mathbf{R}^{n})} \,. \tag{1}$$

When  $p \ge \frac{n}{\alpha}(1-\lambda)$ , Spanne and Peetre(cf. Peetre [8]) proved the following.

THEOREM B (Spanne and Peetre). Let  $0 < \alpha < n$  and  $0 \le \lambda < 1$ . If  $0 \le \varepsilon = n\left(\frac{\alpha}{n} - \frac{1-\lambda}{p}\right) < 1$ , then there exists a constant C > 0 such that

$$\left|\tilde{I}_{\alpha}f\right\|_{Lip_{\varepsilon}(\mathbf{R}^{n})} \leq C \|f\|_{L^{p,\lambda}(\mathbf{R}^{n})}$$

Let w be a non-negative function. We will recall the Muckenhoupt class.

DEFINITION 2.4. Let  $1 and <math>0 < \lambda < 1$ . We say  $w \in A_p(\mathbf{R}^n)$  if

$$\sup_{B\subset \mathbf{R}^n, B: ball} \left(\frac{1}{|B|} \int_B w(x) dx\right) \left(\frac{1}{|B|} \int_B w(x)^{-\frac{p'}{p}} dx\right)^{\frac{p}{p'}} < \infty.$$

We say  $w \in A_1(\mathbf{R}^n)$  if there exists a constant C > 0 such that for every ball  $B \subset \mathbf{R}^n$ 

$$\frac{1}{|B|} \int_B w(x) dx \le C \operatorname{ess.inf}_{x \in B} w(x) \,.$$

We put  $A_{\infty}(\mathbf{R}^n) := \bigcup_{p \ge 1} A_p(\mathbf{R}^n)$ . We say  $\tilde{A}_{p,\lambda}(\mathbf{R}^n)$  if

$$\sup_{B\subset\mathbf{R}^n,B:ball}\left(\frac{1}{|B|}\int_B w(x)dx\right)^{\frac{\lambda}{p}}\left(\frac{1}{|B|}\int_B w(x)^{-\frac{\lambda p'}{p}}dx\right)^{\frac{1}{p'}}<\infty.$$

REMARK 2.  $w \in \tilde{A}_{p,\lambda}(\mathbf{R}^n)$  if and only if  $w \in A_{1+\frac{p-1}{\lambda}}(\mathbf{R}^n)$ .

DEFINITION 2.5. Let  $1 < p, q < \infty$ . We say  $w \in A_{p,q}(\mathbf{R}^n)$  if

$$\sup_{B\subset\mathbf{R}^n,B:ball}\left(\frac{1}{|B|}\int_B w(x)^q dx\right)^{\frac{1}{q}}\left(\frac{1}{|B|}\int_B w(x)^{-p'} dx\right)^{\frac{1}{p'}} < \infty$$

We say  $w \in A_{p,\infty}(\mathbf{R}^n)$  if

$$\sup_{B\subset \mathbb{R}^n, B: ball} \operatorname{ess. sup}_{x\in B} w(x) \left(\frac{1}{|B|} \int_B w(x)^{-p'} dx\right)^{\frac{1}{p'}} < \infty.$$

REMARK 3.  $w \in A_{p,\infty}(\mathbf{R}^n)$  if and only if  $w^{-p'} \in A_1(\mathbf{R}^n)$ .

Muckenhoupt and Wheeden [7] proved the weighted boundedness of  $I_{\alpha}$ .

THEOREM C (Muckenhoupt and Wheeden). Let  $0 < \alpha < n$ ,  $1 and <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ . If  $w \in A_{p,q}(\mathbf{R}^n)$ , then there exists a constant C > 0 such that

$$\|I_{\alpha}f\|_{L^{q}(w^{q})} \leq C \|f\|_{L^{p}(w^{p})},$$

that is,

$$\left(\int_{\mathbf{R}^n} |I_{\alpha}f(x)|^q w(x)^q dx\right)^{\frac{1}{q}} \leq C \left(\int_{\mathbf{R}^n} |f(x)|^p w(x)^p dx\right)^{\frac{1}{p}}.$$

### TAKESHI IIDA, YASUO KOMORI-FURUYA AND ENJI SATO

## 3. Main results

Our results are the following. Note that our results are true for  $\lambda = 0$ . We only treat the weighted case of  $0 < \lambda < 1$ , because the unweighted case of  $\lambda = 0$  follows from the weighted case (see Remark 4 (1) below). In the following we assume that 1 .

THEOREM 1. Let 
$$0 < \alpha < n$$
,  $0 < \lambda < 1 - \frac{\alpha}{n}$  and  $1 . Assume that
 $w \in \tilde{A}_{p,\lambda}(\mathbf{R}^n)$ . (2)$ 

Then there exists a constant C > 0 such that

$$\|I_{\alpha}f\|_{L^{q,\lambda}(w^{\lambda},w)} \le C \|f\|_{L^{p,\lambda}(w^{\lambda},w)}$$

where

$$\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n(1-\lambda)} \,.$$

REMARK 4. (1) The condition  $0 < \lambda < 1 - \frac{\alpha}{n}$  is necessary for  $\frac{n}{\alpha}(1-\lambda) > 1$ . When w = 1 in Theorem 1, we obtain Theorem A. When  $\lambda$  tends to 0, the result corresponds to the Hardy, Littlewood and Sobolev theorem.

(2) We can obtain the Spanne and Peetre inequality on weighted Morrey spaces by Theorem 1(see Chiarenza and Frasca [2]). We omit the details.

When  $p \ge \frac{n}{\alpha}(1 - \lambda)$ , we obtain the following. Let

$$\varepsilon = \alpha - \frac{n(1-\lambda)}{p} \,. \tag{3}$$

THEOREM 2. Let  $0 < \alpha < n$ ,  $0 \le \lambda < 1$ ,  $\frac{n}{\alpha}(1 - \lambda) \le p < \frac{n}{\alpha}$  and  $0 \le \varepsilon < 1$ . Assume that

$$w^{\frac{\lambda}{p}} \in A_{p,q}(\mathbf{R}^n) \quad where \quad \frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}.$$
 (4)

Then there exists a constant C > 0 such that

$$\left\|\tilde{I}_{\alpha}f\right\|_{Lip_{\varepsilon}(\mathbf{R}^{n})} \leq C \left\|f\right\|_{L^{p,\lambda}(w^{\lambda},w)}.$$

Especially

$$\|\tilde{I}_{\alpha}f\|_{BMO(\mathbf{R}^n)} \leq C \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \quad when \quad p = \frac{n}{\alpha}(1-\lambda).$$

REMARK 5. In Theorem 1, the condition (2) is stronger than (4), since  $\frac{\lambda q}{p} < 1$ . However (2) can not be replaced with (4). Because the weight w which satisfies (4) may not be locally integrable when  $\frac{\lambda q}{p} < 1$ .

Note that (2) and (4) are mutually equivalent when  $p = \frac{n}{\alpha}(1 - \lambda)$ .

THEOREM 3. Let  $0 < \alpha < n$ ,  $0 < \lambda < 1$ ,  $p \ge \frac{n}{\alpha}$  and  $0 \le \varepsilon < 1$ . Assume that

$$w^{\frac{h}{p}} \in A_{\frac{n}{\alpha},\infty}(\mathbf{R}^n).$$
(5)

Then there exists a constant C > 0 such that

$$\left|\tilde{I}_{\alpha}f\right\|_{Lip_{\varepsilon}(\mathbf{R}^{n})} \leq C \|f\|_{L^{p,\lambda}(w^{\lambda},w)}.$$

REMARK 6. The  $A_{\frac{n}{\alpha},\infty}(\mathbf{R}^n)$  condition can be regarded as limiting case of the  $A_{p,q}(\mathbf{R}^n)$  condition when p tends to  $n/\alpha$ .

### 4. Some lemmas

The following two lemmas are important to prove Theorem 3.

LEMMA 4.1. Let 
$$0 < \alpha < n, 0 < \lambda < 1$$
 and  $\frac{n}{\alpha} \le p < \infty$ . If  $w^{\frac{\lambda}{p}} \in A_{\frac{n}{\alpha},\infty}(\mathbb{R}^n)$  then  
 $w \in \tilde{A}_{p,\lambda}(\mathbb{R}^n)$ .

PROOF. Since  $p \ge \frac{n}{\alpha}$ , by Hölder's inequality and definition of  $A_{\frac{n}{\alpha},\infty}(\mathbf{R}^n)$ , we have for every ball  $B \subset \mathbf{R}^n$ ,

$$\left(\frac{1}{|B|} \int_{B} w(x) dx\right)^{\frac{\lambda}{p}} \left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{\lambda p'}{p}} dx\right)^{\frac{1}{p'}}$$

$$\leq \left(\frac{1}{|B|} \int_{B} w(x) dx\right)^{\frac{\lambda}{p}} \left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{\lambda}{p}} \left(\frac{n}{\alpha}\right)' dx\right)^{\frac{1}{(\frac{n}{\alpha})'}}$$

$$\leq \operatorname{ess. sup}_{x \in B} w(x)^{\frac{\lambda}{p}} \left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{\lambda}{p}} \left(\frac{n}{\alpha}\right)' dx\right)^{\frac{1}{(\frac{n}{\alpha})'}}$$

$$\leq C.$$

LEMMA 4.2. Let  $0 < \alpha < n$ ,  $0 < \lambda < 1$  and  $\frac{n}{\alpha} \le p < \infty$ . If  $w^{\frac{\lambda}{p}} \in A_{\frac{n}{\alpha},\infty}(\mathbb{R}^n)$  then there exist  $p_0 < \frac{n}{\alpha}$  and a constant C > 0 such that for every ball  $B \subset \mathbb{R}^n$ ,

$$w^{\frac{\lambda}{p}} \in A_{p_0,q_0}(\mathbf{R}^n), \qquad (6)$$

$$\left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{\lambda q'_{0}}{p}} dx\right)^{\frac{1}{q'_{0}}} \le C \left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{\lambda p'}{p}} dx\right)^{\frac{1}{p'}},$$
(7)

where  $\frac{1}{q_0} = \frac{1}{p_0} - \frac{\alpha}{n}$ .

**PROOF.** Note that if  $p_0$  is near  $\frac{n}{\alpha}$  then  $q_0$  is large, that is,  $q'_0$  is near 1 and  $\frac{n-\alpha}{n} \cdot p'_0$  is near 1. First we prove (6). Since  $w^{-\frac{\lambda}{p}(\frac{n}{\alpha})'} \in A_1(\mathbf{R}^n)$ , by the reverse Hölder inequality (cf. Lu, Ding and Yan [5]) we can take  $p_0$  sufficiently near  $\frac{n}{\alpha}$  such that

$$\begin{split} \left(\frac{1}{|B|} \int_B w(x)^{-\frac{\lambda p'_0}{p}} dx\right)^{\frac{1}{p'_0}} &= \left(\frac{1}{|B|} \int_B w(x)^{-\frac{\lambda}{p}(\frac{n}{\alpha})' \cdot \frac{n-\alpha}{n} \cdot p'_0} dx\right)^{\frac{n}{n-\alpha} \cdot \frac{1}{p'_0} \cdot \frac{n-\alpha}{n}} \\ &\leq C \left(\frac{1}{|B|} \int_B w(x)^{-\frac{\lambda}{p} \cdot (\frac{n}{\alpha})'} dx\right)^{\frac{n-\alpha}{n}} \\ &= C \left(\frac{1}{|B|} \int_B w(x)^{-\frac{\lambda}{p} \cdot (\frac{n}{\alpha})'} dx\right)^{\frac{1}{(\frac{n}{\alpha})'}} \,. \end{split}$$

On the other hand, we have

$$\left(\frac{1}{|B|}\int_B w(x)^{\frac{\lambda q_0}{p}} dx\right)^{\frac{1}{q_0}} \le \operatorname{ess.\,sup}_{x \in B} w(x)^{\frac{\lambda}{p}}.$$

Therefore we obtain

$$\left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{\lambda p'_{0}}{p}} dx\right)^{\frac{1}{p'_{0}}} \left(\frac{1}{|B|} \int_{B} w(x)^{\frac{\lambda q_{0}}{p}} dx\right)^{\frac{1}{q_{0}}}$$
$$\leq C \left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{\lambda}{p} \cdot \left(\frac{n}{\alpha}\right)'} dx\right)^{\frac{1}{\binom{n}{\alpha}'}} \operatorname{ess. sup}_{x \in B} w(x)^{\frac{\lambda}{p}}$$
$$\leq C.$$

Next we prove (7). Since  $w^{-\frac{\lambda}{p}(\frac{n}{\alpha})'} \in A_1(\mathbf{R}^n)$ , we have  $w^{-\frac{\lambda}{p}} \in A_1(\mathbf{R}^n)$ . By the reverse Hölder inequality we can take  $p_0$  slightly less than  $\frac{n}{\alpha}$  so that

$$\left(\frac{1}{|B|}\int_{B}w(x)^{-\frac{\lambda}{p}q_{0}'}dx\right)^{\frac{1}{q_{0}'}} \leq \frac{C}{|B|}\int_{B}w(x)^{-\frac{\lambda}{p}}dx \leq C\left(\frac{1}{|B|}\int_{B}w(x)^{-\frac{\lambda p'}{p}}dx\right)^{\frac{1}{p'}}.$$
  
Lemma 4.2 is proved.

Thus, Lemma 4.2 is proved.

The following two lemmas are due to Adams [1]. Let  $M_{\mu}$  be the fractional maximal function

$$M_{\mu}f(x) := \sup_{B \ni x} \frac{1}{|B|^{\mu}} \int_{B} |f(y)| \, dy \,, \quad 0 \le \mu \le 1 \,.$$

LEMMA 4.3. Let  $0 < \alpha < n, 1 \le p < \frac{n(1-\lambda)}{\alpha}$  and  $0 \le \lambda < 1$ . Then there exists a constant C > 0 such that

$$|I_{\alpha}f(x)| \le C \left( M_{1+\frac{\lambda-1}{p}} f(x) \right)^{\frac{\alpha}{n} \cdot \frac{p}{1-\lambda}} M_1 f(x)^{1-\frac{\alpha}{n} \cdot \frac{p}{1-\lambda}} .$$
(8)

LEMMA 4.4. Suppose that  $0 < \alpha < n, x_0 \in \mathbb{R}^n, r > 0, B = B(x_0, r)$  and  $x \in B$ . Then the following inequality holds:

$$|I_{\alpha}f_{\infty}(x)| \leq \int_{r}^{\infty} \rho^{\alpha-n} \left( \int_{B(x,\rho)} |f(y)| \, dy \right) \frac{d\rho}{\rho} \,. \tag{9}$$

where  $f_{\infty}(x) := f(x)\chi_{(2B)^{c}}(x)$ .

We derive the following pointwise inequality from Hölder's inequality. This approach has the advantage that can be also used in the weighted context:

LEMMA 4.5. If  $w \in \tilde{A}_{p,\lambda}(\mathbf{R}^n)$ , then

$$M_{1+\frac{\lambda-1}{p}}f(x) \le C \|f\|_{L^{p,\lambda}(w^{\lambda},w)}$$

PROOF. Let  $x \in \mathbf{R}^n$  fix. for every  $B \ni x$ , we have the following:

$$\begin{split} \frac{1}{|B|^{1+\frac{\lambda-1}{p}}} \int_{B} |f(y)| \, dy &= \frac{1}{|B|^{1+\frac{\lambda-1}{p}}} \int_{B} |f(y)| \, w(y)^{\frac{\lambda}{p}} w(y)^{-\frac{\lambda}{p}} \, dx \\ &\leq \frac{1}{|B|^{1+\frac{\lambda-1}{p}}} \left( \int_{B} |f(y)|^{p} \, w(y)^{\lambda} \, dy \right)^{\frac{1}{p}} \cdot \left( \int_{B} w(y)^{-\frac{\lambda p'}{p}} \, dy \right)^{\frac{1}{p'}} \\ &= \frac{1}{|B|^{1+\frac{\lambda-1}{p}}} \left( \frac{1}{w(B)^{\lambda}} \int_{B} |f(y)|^{p} \, w(y)^{\lambda} \, dy \right)^{\frac{1}{p}} \cdot w(B)^{\frac{\lambda}{p}} \cdot w^{-\frac{\lambda p'}{p}} (B)^{\frac{1}{p'}} \\ &\leq \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \left( \frac{1}{|B|} \int_{B} w(y) \, dy \right)^{\frac{\lambda}{p}} \cdot \left( \frac{1}{|B|} \int_{B} w(y)^{-\frac{\lambda p'}{p}} \, dy \right)^{\frac{1}{p'}} \\ &\leq C \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \, . \end{split}$$

### 5. Proof of main theorems

We will prove Theorem 1 by using two pointwise inequalities obtained in the previous section.

PROOF OF THEOREM 1. For every  $x_0 \in \mathbf{R}^n$  and r > 0, let  $B = B(x_0, r)$  and

$$f(x) = f(x)\chi_{2B}(x) + f(x)\chi_{(2B)^c}(x) = f_0(x) + f_\infty(x).$$

First we estimate  $I_{\alpha} f_0$ . Because of Lemmas 4.3 and 4.5 we obtain

$$|I_{\alpha} f_0(x)| \le C \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)}^{1-\frac{p}{q}} \cdot M_1 f_0(x)^{\frac{p}{q}}.$$

On the other hand, since  $w \in \tilde{A}_{p,\lambda}(\mathbb{R}^n)$ , by Hölder's inequality we have  $w^{\lambda} \in A_p(\mathbb{R}^n)$ . By the weighted  $L^p$  boundedness of  $M_1(cf. Lu, Ding and Yan [5])$  and doubling condition on  $\tilde{A}_{p,\lambda}(\mathbf{R}^n)$  we obtain

$$\begin{split} &\int_{B} |I_{\alpha} f_{0}(x)|^{q} w(x)^{\lambda} dx \\ &\leq C \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)}^{q-p} \int_{B} M_{1} f_{0}(x)^{p} w(x)^{\lambda} dx \\ &\leq C \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)}^{q-p} \cdot \left(\frac{1}{w(2B)^{\lambda}} \int_{2B} |f(x)|^{p} w(x)^{\lambda} dx\right) \cdot w(2B)^{\lambda} \\ &\leq C \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)}^{q} \cdot w(B)^{\lambda} \,. \end{split}$$

Thus we have

$$\|I_{\alpha}f_0\|_{L^{q,\lambda}(w^{\lambda},w)} \leq C \|f\|_{L^{p,\lambda}(w^{\lambda},w)}.$$

Next we estimate  $|I_{\alpha} f_{\infty}(x)|$ . By Lemma 4.4, we have for  $x \in B$ 

$$|I_{\alpha}f_{\infty}(x)| \leq \int_{r}^{\infty} \rho^{\alpha-n} \left( \int_{B(x,\rho)} |f(y)| \, dy \right) \frac{d\rho}{\rho} \, .$$

Moreover by the same method as the proof of Lemma 4.5, we have

$$\int_{B(x,\rho)} |f(y)| \, dy \leq C \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \, \rho^{n(\frac{\lambda}{p}+\frac{1}{p'})} \, .$$

Hence we obtain

$$\begin{aligned} |I_{\alpha} f_{\infty}(x)| &\leq C \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \int_{r}^{\infty} \rho^{\alpha-n+n(\frac{\lambda}{p}+\frac{1}{p'})} \frac{d\rho}{\rho} \\ &\leq C \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \, r^{\alpha+\frac{n\lambda}{p}-\frac{n}{p}} \\ &\leq C \, |B|^{\frac{\lambda-1}{q}} \, \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \, . \end{aligned}$$

Therefore we have

$$\begin{split} \left(\frac{1}{w(B)^{\lambda}} \int_{B} |I_{\alpha} f_{\infty}(x)|^{q} w(x)^{\lambda} dx\right)^{\frac{1}{q}} \\ &\leq C |B|^{\frac{\lambda-1}{q}} \cdot w^{\lambda}(B)^{\frac{1}{q}} \cdot w(B)^{-\frac{\lambda}{q}} \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \\ &\leq C \|f\|_{L^{p,\lambda}(w^{\lambda},w)} . \end{split}$$

That is, we obtain the desired result.

Theorems 2 and 3 are obtained from the following proposition.

PROPOSITION 1. Let 
$$0 < \alpha < n, 0 \le \lambda < 1$$
 and  $\frac{n}{\alpha}(1 - \lambda) \le p$ . Assume that  
 $w \in \tilde{A}_{p,\lambda}(\mathbf{R}^n)$ , (10)

and there exists  $p_0$  such that  $1 < p_0 < \frac{n}{\alpha}$ ,  $p_0 \le p$  and

$$w^{\frac{n}{p}} \in A_{p_0,q_0}(\mathbf{R}^n), \qquad (11)$$

$$\sup_{B\subset\mathbf{R}^n,B:ball} \left(\frac{1}{|B|} \int_B w(x)dx\right)^{\frac{\lambda}{p}} \left(\frac{1}{|B|} \int_B w(x)^{-\frac{\lambda q_0'}{p}}dx\right)^{\frac{1}{q_0'}} < \infty,$$
(12)

where  $\frac{1}{q_0} = \frac{1}{p_0} - \frac{\alpha}{n}$ . Then there exists a constant C > 0 such that

$$\left\|\tilde{I}_{\alpha}f\right\|_{Lip_{\varepsilon}(\mathbf{R}^{n})} \leq C \,\|f\|_{L^{p,\lambda}(w^{\lambda},w)} ,$$

where  $0 \le \varepsilon = \alpha - \frac{n(1-\lambda)}{p} < 1$ .

Assuming this proposition temporarily, we shall prove Theorems 2 and 3. First we prove Theorem 2.

PROOF OF THEOREM 2. Under the assumption of Theorem 2, we can take  $p_0 = p$  in Proposition 1. In fact, because  $w^{\frac{\lambda}{p}} \in A_{p,q}(\mathbf{R}^n)$  and  $\frac{\lambda q}{p} > 1$ , we have  $w \in \tilde{A}_{p,\lambda}(\mathbf{R}^n)$ . Since p'/q' > 1, we have

$$\sup_{B\subset \mathbf{R}^n, B: ball} \left(\frac{1}{|B|} \int_B w(x) dx\right)^{\frac{\lambda}{p}} \left(\frac{1}{|B|} \int_B w(x)^{-\frac{\lambda}{p}q'} dx\right)^{\frac{1}{q'}} < \infty,$$

by the Hölder inequality. Therefore w satisfies the conditions in Proposition 1.

Next we prove Theorem 3.

PROOF OF THEOREM 3. We can apply Lemma 4.1 and Lemma 4.2 by the assumptions of Theorem 3. Hence by Lemma 4.1 w satisfies (10), and by Lemma 4.2, we can find  $p_0$  which satisfies (6) and (7). Therefore w satisfies (11). By (7) and (10), w satisfies (12). Therefore by using Proposition 1, we obtain the desired result.

Finally we prove Proposition 1.

PROOF OF PROPOSITION 1. For every  $x_0 \in \mathbf{R}^n$  and r > 0, let  $B = B(x_0, r)$  and

$$f(x) = f(x)\chi_{2B}(x) + f(x)\chi_{(2B)^c}(x) = f_0(x) + f_\infty(x),$$
  

$$c_0 := -\int_{|y|\ge 1} \frac{f_0(y)}{|y|^{n-\alpha}} dy,$$
  

$$c_1 := \tilde{I}_\alpha(f_\infty)(x_0),$$
  

$$c := c_0 + c_1.$$

We obtain the pointwise inequality:

$$\left|\tilde{I}_{\alpha}f(x) - c\right| \le |I_{\alpha}f_{0}(x)| + \int_{\mathbf{R}^{n}} \left|\frac{1}{|x - y|^{n - \alpha}} - \frac{1}{|x_{0} - y|^{n - \alpha}}\right| |f_{\infty}(y)| \, dy = I + II \, .$$

First we estimate *I*. Note that by the condition (10) *w* satisfies the doubling condition. Since  $w^{\frac{\lambda}{p}} \in A_{p_0,q_0}(\mathbf{R}^n)$ , by Theorem C and (12), we have

$$\begin{split} \int_{B} Idx &= \int_{B} |I_{\alpha} f_{0}(x)| \, dx \\ &\leq \left( \int_{B} |I_{\alpha} f_{0}(x)|^{q_{0}} \, w(x)^{\frac{\lambda}{p}q_{0}} dx \right)^{\frac{1}{q_{0}}} \left( \int_{B} w(x)^{-\frac{\lambda}{p}q_{0}'} dx \right)^{\frac{1}{q_{0}'}} \\ &\leq C \left( \int_{2B} |f(x)|^{p_{0}} \, w(x)^{\frac{\lambda}{p}p_{0}} dx \right)^{\frac{1}{p_{0}}} \left( \int_{B} w(x)^{-\frac{\lambda q_{0}'}{p}} dx \right)^{\frac{1}{q_{0}'}} \\ &\leq C \left( \int_{2B} |f(x)|^{p} \, w(x)^{\lambda} dx \right)^{\frac{1}{p}} \, w^{-\frac{\lambda q_{0}'}{p}} (B)^{\frac{1}{q_{0}'}} \cdot |B|^{\frac{1}{p_{0}} - \frac{1}{p}} \\ &\leq C \left\| f \|_{L^{p,\lambda}(w^{\lambda},w)} \cdot w(B)^{\frac{\lambda}{p}} \cdot w^{-\frac{\lambda q_{0}'}{p}} (B)^{\frac{1}{q_{0}'}} \cdot |B|^{\frac{1}{p_{0}} - \frac{1}{p}} \\ &\leq C \, \| f \|_{L^{p,\lambda}(w^{\lambda},w)} \, |B|^{1 + \frac{\varepsilon}{n}} \, . \end{split}$$

Next we estimate II. Let  $x \in B$ . By the condition (10) we have

$$\begin{split} II &\leq C \sum_{k=1}^{\infty} \int_{2^{k}r \leq |x_{0}-y| < 2^{k+1}r} \frac{|x-x_{0}|}{|x_{0}-y|^{n-\alpha+1}} |f(y)| \, dy \\ &\leq C \sum_{k=1}^{\infty} \frac{r}{(2^{k}r)^{n-\alpha+1}} \int_{2^{k+1}B} |f(y)|^{p} w(y)^{\lambda} dy \Big)^{\frac{1}{p}} \cdot \left( \int_{2^{k+1}B} w(y)^{-\frac{\lambda p'}{p}} dy \right)^{\frac{1}{p'}} \\ &\leq C \sum_{k=1}^{\infty} \frac{r}{(2^{k}r)^{n-\alpha+1}} \left( \frac{1}{w(2^{k+1}B)^{\lambda}} \int_{2^{k+1}B} |f(y)|^{p} w(y)^{\lambda} dy \right)^{\frac{1}{p}} \\ &= C \sum_{k=1}^{\infty} \frac{r}{(2^{k}r)^{n-\alpha+1}} \left( \frac{1}{w(2^{k+1}B)^{\lambda}} \int_{2^{k+1}B} |f(y)|^{p} w(y)^{\lambda} dy \right)^{\frac{1}{p}} \\ &\times w(2^{k+1}B)^{\frac{\lambda}{p}} \cdot w^{-\frac{\lambda p'}{p}} (2^{k+1}B)^{\frac{1}{p'}} \\ &\leq C \sum_{k=0}^{\infty} \frac{r}{(2^{k+1}r)^{n-\alpha+1}} \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \cdot \left| 2^{k+1}B \right|^{\frac{\lambda}{p}+\frac{1}{p'}} \\ &\times \left( \frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} w(y) dy \right)^{\frac{\lambda}{p}} \cdot \left( \frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} w(y)^{-\frac{\lambda p'}{p}} dy \right)^{\frac{1}{p'}} \\ &\leq C \|f\|_{L^{p,\lambda}(w^{\lambda},w)} \|B\|^{\frac{\alpha}{n}-1+\frac{\lambda}{p}+1-\frac{1}{p}} \sum_{k=1}^{\infty} 2^{-kn} \left( 1-\frac{\alpha}{n}+\frac{1}{n}-\frac{\lambda}{p}-1+\frac{1}{p} \right) \\ &\leq C \|B\|^{\frac{k}{n}} \|f\|_{L^{p,\lambda}(w^{\lambda},w)} , \end{split}$$

since 
$$-\frac{\alpha}{n} + \frac{1}{n} - \frac{\lambda}{p} + \frac{1}{p} > 0$$
. Thus we have  

$$\|\tilde{I}_{\alpha}f\|_{Lip_{\varepsilon}(\mathbf{R}^{n})} \leq C \sup_{B \subset \mathbf{R}^{n}, B: ball} \frac{1}{|B|^{1+\frac{\varepsilon}{n}}} \int_{B} |\tilde{I}_{\alpha}f(x) - c| dx$$

$$\leq C \sup_{B \subset \mathbf{R}^{n}, B: ball} \frac{1}{|B|^{1+\frac{\varepsilon}{n}}} \left( \int_{B} I dx + \int_{B} I I dx \right)$$

$$\leq C \|f\|_{L^{p,\lambda}(w^{\lambda}, w)}.$$

This is the desired result.

ACKNOWLEDGEMENT. The authors would like to thank the referee for his/her helpful suggestions.

#### References

- [1] D. R. ADAMS, A note on Riesz potentials, Duke Math. J., 42 (1975), 765–778.
- [2] F. CHIARENZA and M. FRASCA, Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. Appl., 7 (1987), 273–279.
- [3] L. GRAFAKOS, Classical and modern Fourier analysis, Prentice Hall, Upper Saddle River, NJ, 2003.
- [4] Y. KOMORI and S. SHIRAI, Weighted Morrey spaces and a singular integral operator, Math. Nachr. 282 (2009), 219–231.
- [5] S. LU, Y. DING and D. YAN, Singular integrals and related topics, World Scientific, 2007.
- [6] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, Trans. of the Amer. Math. Soc., 165, 1972.
- B. MUCKENHOUPT and R. WHEEDEN, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.
- [8] J. PEETRE, On the theory of  $\mathcal{L}_{p,\lambda}$  spaces, J. Funct. Anal., 4 (1969), 71–87.

Present Addresses: TAKESHI IIDA DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, YAMAGATA UNIVERSITY, YAMAGATA, 990–8560 JAPAN. *e-mail*: s07m101m@st.yamagata-u.ac.jp

YASUO KOMORI-FURUYA SCHOOL OF HIGH TECHNOLOGY FOR HUMAN WELFARE, TOKAI UNIVERSITY, 317, NISHINO NUMAZU, SHIZUOKA, 410–0395 JAPAN. *e-mail*: komori@wing.ncc.u-tokai.ac.jp

ENJI SATO DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, YAMAGATA UNIVERSITY, YAMAGATA, 990–8560 JAPAN. *e-mail*: esato@sci.kj.yamagata-u.ac.jp