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Abstract. In this paper, we will give a new proof of the Deuring-Shafarevich formula, which asserts a relation
between the p-ranks of Jacobi varieties. We analyze the zeta functions of global function fields to prove the formula,
without using tools of the algebraic geometry.

1. Introduction

Let K be a function field with one variable over a field F of characteristic p > 0. Let
gK be the genus of K . Fix an algebraic closure F̄ of F . It is known that the p-primary
subgroup of Jacobian of KF̄ is isomorphic to the direct sum of λK copies of Qp/Zp , where
0 ≤ λK ≤ gK . The integer λK is called the Hasse-Witt invariant of K . The following relation
for Hasse-Witt invariants is called the Deuring-Shafarevich formula.

THEOREM 1.1. Let K be a function field with one variable over an algebraic closure
F of characteristic p > 0. Let L/K be a cyclic extension of degree p. Then,

λL − 1 = p(λK − 1) + iL/K(p − 1) , (1)

where iL/K is the number of primes of K ramifying in L/K .

The above formula was first stated by Deuring [De] when iL/K ≥ 1. However, his proof
contained some mistakes. In 1954, by studying the rank of Hasse-Witt matrix, Shafarevich
[Sha] proved the formula in the case of iL/K = 0. Subrao [Su] finally gave a complete proof
by using Artin-Schreier curves. Up to now, several proofs have been given (cf. [Cr], [Ma]).

In this paper, we will give a new proof of the Deuring-Shafarevich formula when F is
a finite field. We analyze the zeta functions of global function fields to prove the formula,
without using tools of the algebraic geometry. Let K be a global function field over a finite
field Fq of characteristic p > 0. Then we will show the following formula.

Received February 26, 2010; revised Janurary 26, 2011
2010 Mathematics Subject Classification: 14H40, 11M38



314 DAISUKE SHIOMI

THEOREM 1.2. Let L/K be a geometric cyclic extension of degree p. Let λL and λK

be Hasse-Witt invariants of L and K , respectively. Let SK be the set of all primes of K . Then

λL − 1 = p(λK − 1) +
∑

P∈SK

(eP − 1) degK P , (2)

where eP is the ramification index of P in L/K , and degK P is the degree of P .

We shall call a function field K supersingular if λK = 0 (Note that some authors use the

word "supersingular" in a different sense.). This means that the Jacobian of KF̄q has no p-

torsion points, where F̄q is an algebraic closure of Fq . As an application of the above formula,
we will construct an infinite family of supersingular function fields (see Proposition 4.1).

REMARK 1.1. By a standard argument of specialization, we can deduce Theorem 1.1
from Theorem 1.2 (cf. [K-M], [Suw]). We give a sketch of the proof.

1. Let π : Y → X be a cyclic covering of degree p of smooth projective curves over
an algebraic closed field k of characteristic p. Then there are sub Fp-algebra A of k

of finite type, and a cyclic covering Π : Y → X of degree p of smooth projective
curves over A such that Π ⊗A k = π .

2. There is a non-empty open subset U of SpecA such that for each geometric point s

of U , the p-ranks of Jacobian of Ys and Xs equal to those of Y and X, respectively.
3. On the other hand, by applying the semi-continuity theorem for the sheaf ΩY/X of

relative differential of Y/X , we can take a non-empty open subset V such that for
each geometric point s of V , the ramification data of Ys/Xs equals to that of Y/X.

It follows that Theorem 1.2 leads Theorem 1.1.

2. Preparation

Let K be a global function field over a finite field Fq . The zeta function of K is defined
as

ζ(s,K) =
∏

P :prime

(
1 − 1

NP s

)−1
,

where P runs through all primes of K , and NP is the number of elements of the residue
class field of P . Let gK be the genus of K . Then there is a polynomial ZK(X) with integral
coefficients of degree 2gK , satisfying

ζ(s,K) = ZK(q−s)

(1 − q1−s)(1 − q−s)
.

Since we see that ZK(0) = 1, we have

ZK(X) =
2gK∏
i=1

(1 − πi,KX)
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where πi,K is an algebraic integer. Let Z̄K(X) ∈ Fp[X] be the reduction of ZK(X) modulo
p. It is well-known that

λK = deg Z̄K(X) (3)

(see [Ro] Proposition 11.20). In particular, Z̄K(X) = 1 if and only if K is supersingular.

Let Qp denote the p-adic field. Fix an algebraic closure Q̄ of Q, an algebraic closure

Q̄p of Qp, and an embedding σ : Q̄ → Q̄p. By this embedding, we regard Q̄ ⊆ Q̄p. We

fix also a p-adic valuation ordp of Q̄p with ordp(p) = 1. Let TK denote the set of all πi,K

satisfying ordp(πi,K) = 0. By the equality (3), we can see that #TK = λK . We can take a

positive integer dK such that gcd(dK, p) = 1, and ordp((πi,K)dK − 1) > 0 for all πi,K ∈ TK

(see [Ro] p.171). Then we have the following result.

PROPOSITION 2.1. Let m be a positive integer with dK |m. Then we have

2gK∑
i=1

(πi,K)mps −→λK (s → ∞)

in Q̄p.

PROOF. From the definition of dK , we have
{

(πi,K)mps −→1 (s → ∞) if πi,K ∈ TK,

(πi,K)mps −→0 (s → ∞) otherwise,

in Q̄p. Since #TK = λK , we obtain the Proposition 2.1. �

3. A Proof of Theorem 1.2

Let L/K be a geometric cyclic extension of degee p. Let SL and SK be sets of all primes
of L and K , respectively. Let IK(⊆ SK) be the set of all primes of K ramifying in L/K .

LEMMA 3.1. Let m be a positive integer such that degK P |m for all P ∈ IK . Then,
for each integer s ≥ 0, we have

∑
P∈SL

degL P|mps

degL P ≡ p
∑
P∈SK

degK P |mps

degK P −
∑

P∈SK

(eP − 1) degK P mod ps+1 ,

where eP is the ramification index of P in L/K .

PROOF. Let P ∈ SK . Then we have the following three cases:
(i) eP = 1, fP = 1, gP = p if P is decomposed completely in L/K ,
(ii) eP = 1, fP = p, gP = 1 if P inerts in L/K ,
(iii) eP = p, fP = 1, gP = 1 if P ramified in L/K ,
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where fP is the relative degree of P in L/K , and gP is the number of primes of L lying over
P . It follows that ∑

P∈SL
degL P|mps

degL P = p
∑
P∈SK

degK P |mps

degK P − p
∑
P∈SK
P inerts

degK P=mps

degK P

+(1 − p)
∑
P∈SK

P is ramified
degK P |mps

degK P .

By the choice of m, we have

(1 − p)
∑
P∈SK

P is ramified
degK P |mps

degK P = −
∑

P∈SK

(eP − 1) degK P .

These imply the conclusion. �

Let ZK(X), ZL(X) be the polynomials corresponding to the zeta functions for K and
L, respectively. We put

ZK(X) =
2gK∏
i=1

(1 − πi,KX) (πi,K ∈ C) ,

ZL(X) =
2gL∏
i=1

(1 − πi,LX) (πi,L ∈ C) .

It is well-known that

qN + 1 −
2gK∑
i=1

(πi,K)N =
∑
P∈SK

degK P | N

degK P ,

qN + 1 −
2gL∑
i=1

(πi,L)N =
∑
P∈SL

degL P | N

degL P ,

for all positive integer N (cf. [Ro] p.56). Let m be a positive integer such that dK | m, dL | m,
degK P |m for all P ∈ IK . By Lemma 3.1, we have

qmps + 1 −
2gL∑
i=1

(πi,L)mps ≡ p{qmps + 1 −
2gK∑
i=1

(πi,K)mps }

−
∑

P∈SK

(eP − 1) degK P mod ps+1 ,
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for each positive integer s. From Proposition 2.1, we complete the proof of Theorem 1.2.

4. Examples of supersingular function fields

In this section, we will construct supersingular function fields by using cyclotomic func-
tion fields. For definitions and properties of cyclotomic function fields, see [Ha], [Ro].

Let p be a prime. Let k be a field of rational functions over a finite field Fq with q = pe

elements. Fix a generator T of k, and let A = Fq [T ] be the polynomial subring of k. For a
monic polynomial m, we denote the m th cyclotomic function field by Km.

PROPOSITION 4.1. Let Q be a monic polynomial of degree one. Then KQn is super-
singular for any positive integer n.

PROOF. For any positive integer n with n ≥ 2, the field KQn is an abelian extension
over KQn−1 of degee q = pe. Hence we can construct a sequence of field extensions:

KQn−1 = KQn−1,0 ⊆ KQn−1,1 ⊆ · · · ⊆ KQn−1,e = KQn ,

satisfiying [KQn−1,i : KQn−1,i−1] = p for i = 1, 2, ..., e. By Proposition 2.2 in [Ha], only
one prime is ramified in KQn−1,i/KQn−1,i−1 and its degree is one. Hence, by Theorem 1.2,

λK
Qn−1,i

= p × λK
Qn−1,i−1

(4)

for any n and i. On the other hand, using the Riemann-Hurwitz formula, we find that the
genus of KQ is zero. Hence λKQ = 0. By equation (4), we obtain Proposition 4.1. �

REMARK 4.1. If Q is not a monic polynomial of degree one, then the Proposition

4.1 does not work. For example, let q = 3 and Q = T 2 + 1 ∈ F3[T ]. Then we see that

ZKQ(X) = 1 − 2X2 + 9X4. By equation (3), we have λKQ = 2.

Let Q be a monic polynomial of degree one. By the above proposition, we have

Z̄KQn (X) = 1. Let hKQn be the order of the divisor class group of KQn of degree zero.

By an analytic class number formula, we have ZKQn (1) = hKQn . Thus we have the following

Corollary.

COROLLARY 4.1. Let Q be a monic polynomial of degree one. Then we have hKQn ≡
1 mod p for all n ≥ 1.

The above corollary was first showed by Guo and Shu [G-S] studying a congruence of
an analytic class number formula.
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