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Abstract. It is well-known that any pair of closed orientable 3-manifolds are related by a finite sequence of
Dehn surgeries on knots. Furthermore Kawauchi showed that such knots can be taken to be hyperbolic. In this
article, we consider the minimal length of such sequences connecting a pair of 3-manifolds, in particular, a pair of
lens spaces.

1. Introduction

As a consequence of the famous Geometrization Conjecture raised by Thurston in [28,
section 6, question 1], all closed orientable 3-manifolds are classified as follows: They should
be: reducible (i.e., containing essential 2-spheres), toroidal (i.e., containing essential tori),
Seifert fibered (i.e., foliated by circles), or hyperbolic manifolds (i.e., admitting a complete
Riemannian metric with constant sectional curvature −1). Also see [13, Problem 3.45], and
see [26] for a survey.

Now, by the celebrated Perelman’s works [17, 18, 19], an affirmative answer to this Ge-
ometrization Conjecture could be given. Beyond the classification, one of the next directions
in the study of 3-manifolds would be to consider relationships between 3-manifolds. One
of the important operations describing such relationships must be Dehn surgery. This is an
operation to create a new 3-manifold from a given one and a given knot (i.e., an embedded
simple closed curve) in the following way: Remove an open tubular neighborhood of the knot,
and glue a solid torus back. It gives an interesting subject to study; because, for instance, it
is known that any pair of connected closed orientable 3-manifolds are related by a finite se-
quence of Dehn surgeries on knots, proved by Lickorish [15] and Wallace [29] independently.
See also Fact 1 below.

In this article, in terms of Dehn surgery on knots, we introduce a distance between pairs
of 3-manifolds. Furthermore, by considering the surgery on hyperbolic knots, another distance
function is also defined, and we report the study of its restriction on the set of lens spaces.
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Throughout the article, for convenience, we denote by M the set of orientation preserv-
ing homeomorphism types of connected closed orientable 3-manifolds.

2. Backgrounds

In this section, we will introduce some new definitions about Dehn surgery, and review
backgrounds and known results about them. Also we will state a number of open problems
which we will consider.

2.1. Surgical distance. First of all, we introduce a function d : M × M → Z≥0

defined as follows; for [M], [M ′] ∈ M, d([M], [M ′]) is defined as the minimal length of the
sequence [M] = [M0], [M1], . . . , [Mn] = [M ′] ∈ M such that Mi+1 is obtained from Mi by
Dehn surgery on a knot.

It is easy to verify that if the function d is well-defined, then it satisfies the axiom of
distance function. Further, as we cited above, the following is known:

FACT 1 (Lickorish [15], Wallace [29]). The function d : M × M → Z≥0 is well-
defined. That is, for any pair [M], [M ′] ∈ M, there exists a finite sequence [M] =
[M0], [M1], . . . , [Mn] = [M ′] ∈ M such that Mi+1 is obtained from Mi by Dehn surgery on
a knot.

Remark that, in [1], Auckly defined a similar notion: “surgery number" of [M] ∈ M.
This is equal to d([S3], [M]) in our definition. Also see [13, Problem 3.102].

Also remark that, by a Dehn surgery on a knot, the first betti number β1 of a 3-manifold
can be changed only by ±1. So d([M], [M ′]) ≥ |β1(M)−β1(M

′)| holds for [M], [M ′] ∈ M.
Thus it would be natural to ask:

PROBLEM 1. For any given N > 0, can we find a pair [M], [M ′] ∈ M such that
β1(M) = β1(M

′) but d([M], [M ′]) ≥ N?

Here we collect several related known facts:

• All lens spaces have the first betti number at most one. And d([L], [L′]) = 1 for
any lens spaces L,L′. See later for definitions of lens spaces.

• In [11, Theorem 3], Gordon and Luecke showed d([S3], [M]) > 1 if M is non-prime
without lens space summands. Thus we can obtain infinitely many 3-manifolds M

with β1(M) = β1(S
3) = 0 with d([S3], [M]) > 1.

• In [1], Auckly found the first hyperbolic example [M] ∈ M with β1(M) = 0 such

that d([S3], [M]) > 1.

As far as the authors know, there are no explicit examples of pairs of manifolds for which
the surgical distance is determined to be three or more.
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2.2. Hyperbolic surgical distance. Next we consider Dehn surgery on hyperbolic
knots, that is, the knots with complements which admit complete hyperbolic metrics of finite
volume. In fact, we introduce a function dH : M × M → Z≥0 defined as follows; for
[M], [M ′] ∈ M, dH ([M], [M ′]) is defined as the minimal length of the sequence [M] =
[M0], [M1], . . . , [Mn] = [M ′] ∈ M such that Mi+1 is obtained from Mi by Dehn surgery on
a hyperbolic knot.

One reason why we choose to consider hyperbolic knots is as follows: Following the
classification of 3-manifolds, all knots are also classified into several types. When one con-
siders only knots in types of hyperbolic, the next was established by Kawauchi using his
“Imitation Theory”. See [12, Theorem 3.1] for example.

FACT 2 (Kawauchi). dH : M × M → Z≥0 is well-defined. That is, for any pair
[M], [M ′] ∈ M, there exists a finite sequence [M] = [M0], [M1], . . . , [Mn] = [M ′] ∈ M
such that Mi+1 is obtained from Mi by Dehn surgery on a hyperbolic knot.

It is then easy to verify that this function also satisfies the axiom of distance function.
Furthermore, Kawauchi showed the following:

FACT 3 (Kawauchi). For [M], [M ′] ∈ M,

dH ([M], [M ′]) =
{

1 or 2 if d([M], [M ′]) = 1
d([M], [M ′]) otherwise

Then it seems to be natural to ask:

PROBLEM 2. When can d([M], [M ′]) �= dH ([M], [M ′]) occur ?

Concerning this question, there are several known facts. We collect them in the follow-
ing.

• d([S3], [L(p, q)]) = 1 and dH ([S3], [L(p, q)]) = 2 if q is not a quadratic residue
modulo p; i.e., x2 �≡ ±q mod p for any x. (Fintushel-Stern [6, Proposition 1])

• dH ([S3], [S2 × S1]) = 2, while d([S3], [S2 × S1]) = 1. (Gabai [7])
• There is a pair of lens spaces L,L′ such that dH ([L], [L′]) = 1 and L and L′

are orientation-reversingly homeomorphic. (Bleiler-Hodgson-Weeks [4]) There is
only one known example with such a property. See [13, Problem 1.81] for related
conjectures.

• d([S3], [L(p, q)]) = 1 and dH ([S3], [L(p, q)]) = 2 if |p| < 9. In particular,

d([S3], [RP 3]) = 1 and dH([S3], [RP 3]) = 2. (Kronheimer-Mrowka-Ozsváth-Z.
Szabó [14, Theorem 1.1.], Ozsváth-Szabó [20])

• For the Poincaré homology sphere P , d([S3], [P ]) = 1 and dH ([S3], [P ]) = 2.
(Ghiggini [9])

• There is a sufficient condition to be dH ([S2 × S1], [L]) = 2 for a lens space L.
(Lisca [16])
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We remark that the facts above could be obtained mainly from the results in the refer-
ences.

3. On the set of lens spaces

In the rest of the article, we will concentrate on the set of lens spaces. We here call a
3-manifold L with Heegaard genus at most one (i.e., constructed by gluing two solid tori) a

lens space. Thus, in this article, we say that S3, S2 × S1 and RP 3 are all lens spaces. Denote
by L the set of orientation preserving homeomorphism types of lens spaces. Then note that
d([L], [L′]) = 1 and dH ([L], [L′]) ≤ 2 for any [L], [L′] ∈ L

By regarding L as a subset of M, we can consider the following definition naturally.

DEFINITION 1. For [L], [L′] ∈ L, suppose that there exists a sequence [L] =
[L0], [L1], . . . , [Ln] = [L′] ∈ L such that Li+1 is obtained from Li by Dehn surgery on
a hyperbolic knot. Then we define dH ([L], [L′])L as the minimal length of such sequence.

However, as far as the authors know, it is unknown whether the definition above could
give a distance function on L:

PROBLEM 3. Can dH ([L], [L′])L be well-defined for any [L], [L′] ∈ L? Equiv-
alently, for any pair [L], [L′] ∈ L, does there exist a finite sequence [L] =
[L0], [L1], . . . , [Ln] = [L′] ∈ L such that Li+1 is obtained from Li by Dehn surgery on
a hyperbolic knot?

Recall that: If dH ([L], [L′]) = 1, then dH ([L], [L′])L = 1 by definition. However
dH ([L], [L′])L ≥ dH ([L], [L′]) = 2 in general. Thus we can consider the following problem,
which gives one of the motivations for our study:

PROBLEM 4. Are there [L], [L′] ∈ L such that dH ([L], [L′])L > dH([L], [L′])?
Equivalently, are there [L], [L′] ∈ L such that dH([L], [L′])L > 2?

Here we include basic facts on lens spaces. Usually, lens spaces are parametrized by a
pair of coprime integers as follows. Let V1 be a regular neighborhood of a trivial knot in S3,

m a meridian of V1 and � a longitude of V1 such that � bounds a disk in cl(S3 \V1). We fix an
orientation of m and � as illustrated in Figure 3. By attaching a solid torus V2 to V1 so that m̄

is isotopic to a representative of p[�] + q[m] in ∂V1, we obtain a lens space, which is denoted
by L(p, q), where p and q are integers with p > 0 and (p, q) = 1, and m̄ is a meridian of
V2. It is known that two lens spaces L(p, q) and L(p′, q ′) are (possibly orientation reversing)
homeomorphic, i.e., L(p, q) ∼= L(p′, q ′) if and only if |p| = |p′|, and q ≡ ±q ′ (mod p) or
qq ′ ≡ ±1 (mod p). See [22] for example.

4. Results

In this section, we will give our results concerning to Problems 2 and 4.
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FIGURE 1. β = W−1
3 W3

7 .

Recall that d([L], [L′]) = 1 and dH ([L], [L′]) ≤ 2 for any [L], [L′] ∈ L. So consider
the question: For which [L], [L′] ∈ L, dH ([L], [L′]) = 1?

We here recall that basic terminology about Dehn surgery on knots in the 3-sphere. See
[22] in details for example. As usual, by a slope, we call an isotopy class of a non-trivial
unoriented simple closed curve on a torus. Then Dehn surgery on a knot K is characterized
by the slope on the peripheral torus of K which is represented by the simple closed curve
identified with the meridian of the attached solid torus via the surgery. When K is a knot

in S3, by using the standard meridian-longitude system, slopes on the peripheral torus are
parametrized by rational numbers with 1/0. For example, the meridian of K corresponds to

1/0 and the longitude to 0. We say that a Dehn surgery on K in S3 is p/q-surgery if it is
along the slope p/q . This means that the curve representing the slope runs meridionally p

times and longitudinally q times.
Let V be a solid torus standardly embedded in S3, K1 the closure of an n-string braid

in V ⊂ S3, and K0 a core loop of the solid torus which is the exterior of V in S3. Set
K := K0 ∪ K1, and let K(p/q, r/s) denotes the 3-manifold obtained by the p/q-surgery
on K0 and the r/s-surgery on K1. In this paper, K(p/q,−) (resp. K(−, r/s)) denotes the
3-manifold obtained by the p/q-surgery on K0 (resp. the r/s-surgery on K1) and removing
an open tubular neighborhood of K1 (resp. K0).

PROPOSITION 1. Suppose that K(−, r/s) ∼= D2 × S1. Then K(p/q, r/s) ∼= L(pr −
(n2s)q, xq − yp), where x and y are coprime integers satisfying y(n2s) − xr = 1.

PROOF. Since we suppose that K(−, r/s) ∼= D2 × S1, it follows from [10, Lemma
3.3(ii)] that the meridian of the new solid torus is given by the slope r/(n2s). Hence the
conclusion immediately follows from [4, Lemma 3]. �

In the following of this section, let β be the 7-string braid and K1 its closure in the solid

torus V illustrated in Figure 1. We note that K1 is denoted by W−1
3 W 3

7 in [3]. It follows

from [3] and [4] that K(−, 18/1) ∼= D2 × S1. Since K1 is a 7-string braid, we see that
K(p/q, 18/1) is orientation preservingly homeomorphic to L(18p − 49q, 19q − 7p), denote
by K(p/q, 18/1) ≡ L(18p − 49q, 19q − 7p).



158 KAZUHIRO ICHIHARA AND TOSHIO SAITO

PROPOSITION 2. Let K ′
1 be the image of K1 in the lens space obtained by the p/q-

surgery on K0 with p > 0. Then there exists an integer c > 0 such that K ′
1 is hyperbolic in

the lens space for any integer q with (p, q) = 1 and |q| ≥ c.

PROOF. Since the number of strands of the braid β is 7, which is a prime, and the
exponent sum of β is 16, which is not a multiple of 7 − 1 = 6, it follows from [5, Proposition
9.4] that the braid β is pseudo-Anosov. Let ϕβ be the pseudo-Anosov homeomorphism of
a punctured disk obtained from the braid β. See [5] for the definition of pseudo-Anosov
homeomorphisms for example. By the definition, there exits a measured foliation τβ on the
punctured disk, which is invariant for ϕβ . Let E(K1) be the exterior of K1 in V , that is,
E(K1) = cl(V −N(K1)), where N(K1) denotes a tubular neighborhood of K1. By regarding
this E(K1) as the surface bundle over the circle with monodromy ϕβ , we find an essential
lamination Lβ in the exterior as a suspension of τβ . See [8] for example.

In the complement of Lβ , we have an annulus A connecting from a leaf of Lβ to the
boundary ∂N(K0), which comes from the suspension of the arc on the punctured disk con-
necting a leaf of τβ to a boundary circle. The boundary component of A on ∂N(K0) de-
termines a slope, which is so-called degeneracy slope for Lβ . Denote it by γ = u/v with
u > 0.

It then follows from [31, Theorem 2.5] that K ′
1 is hyperbolic if ∆(p/q, γ ) = |pv−qu| ≥

3.
Since p, u and v are constant and u > 0, if we take an integer q with q ≤ pv + 3, we

see that pv − qu ≤ pv − (pv + 3)u = −3u ≤ −3 and hence K ′
1 is hyperbolic. �

For a given lens space L(p, q) and an integer c > 0, we can always find an integer q ′
0

with q ′
0 > c and L(p, q ′

0) ≡ L(p, q), because we, if necessary, can replace q by q ′
0 := q +pn

(n ∈ Z). Moreover, there is an infinite set of integers Q = {q ′ | q ′ > c, q ′ = q+pn(n ∈ Z)}.
Then it follows from Proposition 2 that K ′

1 is hyperbolic in the lens space L(p, q ′) ≡ L(p, q)

for any q ′ ∈ Q. Since K(p/q ′, 18/1) ≡ L(18p − 49q ′, 19q ′ − 7p) and L(p, q ′) ≡ L(p, q),
we have:

THEOREM 1. For every [L] ∈ L, there exists an infinite family [Li ] ∈ L such that
dH ([L], [Li]) = 1 for any i ∈ N.

Using arguments similar to the above, we also have:

THEOREM 2. For every p ∈ N, there exist two pairs of coprime integers (r, s) and
(r ′, s′) such that dH ([L(r, s)], [L(r ′, s′)]) = 1 and |r − r ′| = p.

PROOF. We use the same link K = K0 ∪ K1 as above, and let K ′
1 be again the image

of K1 in the lens space obtained by the p/q-surgery on K0 with p > 0. Then it follows

from [3] that K(−, 19/1) ∼= D2 × S1. Also see [4]. Hence we see that K(p/q, 19/1) ≡
L(19p − 49q, 18q − 7p). As mentioned above, K(p/q, 18/1) ≡ L(18p − 49q, 19q − 7p).
This implies that the dual knot of K ′

1 in L(19p − 49q, 18q − 7p) admits a Dehn surgery
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FIGURE 2. K := K0 ∪ K1.

yielding L(18p − 49q, 19q − 7p). Hence we have

d([L(18p − 49q, 19q − 7p)], [L(19p − 49q, 18q − 7p)]) = 1 .

Moreover, retaking q with an appropriate integer q ′ with q ′ > c, we see that

dH ([L(18p − 49q ′, 19q ′ − 7p)], [L(19p − 49q ′, 18q ′ − 7p)]) = 1 .

Setting (r, s) = (18p − 49q ′, 19q ′ − 7p) and (r ′, s′) = (19p − 49q ′, 18q ′ − 7p), we obtain
the desired conclusion. �

5. Sample calculations

Recall that if dH ([L], [L′]) = 1, then dH([L], [L′])L = 1 by definition; however, if
dH ([L], [L′]) = 2, then dH ([L], [L′])L ≥ 2 in general. Consider the question: For which
[L], [L′] ∈ L, dH ([L], [L′]) = dH ([L], [L′])L = 2. In this section, we give some examples
concerning this question.

In the following, the link K := K0 ∪ K1 illustrated in Figure 2 plays an important role.
We note that K is introduced by Yamada and is denoted by k(3, 5) ∪ u in [27].

5.1. dH ([S3], [S2 × S1]) = dH ([S3], [S2 × S1])L = 2. By an argument similar to
that in [27], we have K(r/1, 15/1) ≡ L(64−15r, 23−5r). This implies that K(0/1, 15/1) ≡
L(64, 23) and hence d([S2 × S1], [L(64, 23)]) = 1. Let K ′

1 be the image of K1 in S2 × S1

which is obtained by the 0/1-surgery on K0. Then it is verified by using computer program

SnapPea [30] that K ′
1 is hyperbolic in S2 × S1. Hence dH ([S2 × S1], [L(64, 23)]) = 1.

On the other hand, we have dH ([S3], [L(64, 23)]) = 1 as follows. Let K ′′ be the knot
in L(64, 23) denoted by K(L(64, 23); 19) (see the Appendix for the definition). Then we see

that K ′′ admits a Dehn surgery yielding S3. Moreover, it follows from [25, Theorem 1.3] that
K ′′ is hyperbolic in L(64, 23) (see the appendix for detail).



160 KAZUHIRO ICHIHARA AND TOSHIO SAITO

It is remarked by the referee that the knot K(L(64, 23); 19) coming from the closure of

the braid W 2
5 W 8

7 described in [3], which corresponds to Sporadic (b) (P = 22j 2 + 13j + 2
with j = −2) in Berge’s list [2].

5.2. dH ([S3], [RP 3]) = dH ([S3], [RP 3])L = 2. In the same way as above, we

have that K(2/1, 15/1) ≡ L(34, 13) and hence d([RP 3], [L(34, 13)]) = 1. Let K ′
1 be the

image of K1 in RP 3 which is obtained by the 2/1-surgery on K0.
Again it is verified by using computer program SnapPea [30] that K ′

1 is hyperbolic in

RP 3. Hence dH ([RP 3], [L(34, 13)]) = 1.
On the other hand, we see dH ([S3], [L(34, 13)]) = 1 as follows. Let K ′′ be the knot in

L(34, 13) denoted by K(L(34, 13); 9). Then we see that K ′′ admits a Dehn surgery yielding

S3. Moreover, it follows from [25, Theorem 1.3] that K ′′ is hyperbolic in L(34, 13).
It is also remarked by the referee that the knot K(L(34, 13); 9) coming from the mirror

image of the closure of the braid W7W
3
9 described in [3], which corresponds to Type III in

Berge’s list [2].
These examples would be of interest independently, for the surgeries yielding lens spaces

are different “type” from that in Section 4. In fact, for example, the formula K(r/1, 15/1) =
L(64 − 15r, 23 − 5r) is not derived from Proposition 1.
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A. Definition and properties of K(L(p, q); u)

Recall the definition and the parametrization of lens spaces as follows. Let V1 be a

regular neighborhood of a trivial knot in S3, m a meridian of V1 and � a longitude of V1 such

that � bounds a disk in cl(S3 \ V1). We fix an orientation of m and � as illustrated in Figure 3.
By attaching a solid torus V2 to V1 so that m̄ is isotopic to a representative of p[�] + q[m] in
∂V1, we obtain a lens space L(p, q), where p and q are integers with p > 0 and (p, q) = 1,
and m̄ is a meridian of V2. Then the intersection points of m and m̄ are labeled P0, . . . , Pp−1

successively along the positive direction of m. Let tui (i = 1, 2) be a simple arc in Di joining
P0 to Pu (u = 1, 2, . . . , p − 1). Then the notation K(L(p, q); u) denotes the knot tu1 ∪ tu2 in
L(p, q) (cf. Figure 3).

We then prepare the following notations. Let p and q be integers with p > 0 and
(p, q) = 1. Let {sj }1≤j≤p be the finite sequence, which we call the basic sequence, such that
0 ≤ sj < p and sj ≡ jq (mod p). For an integer u with 0 < u < p, Ψp,q(u) denotes the
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FIGURE 3. Here, t ′u2 is a projection of tu2 on ∂V1.

FIGURE 4

integer satisfying Ψp,q(u) · q ≡ u (mod p) and Φp,q(u) denotes the number of elements of
the following set (possibly, the empty set):

{sj | 1 ≤ j < Ψp,q(u), sj < u}.
Also, Φ̃p,q (u) denotes the following:

Φ̃p,q(u) = min

{
Φp,q(u), Φp,q(u) − Ψp,q(u) + p − u,

Ψp,q(u) − Φp,q(u) − 1, u − Φp,q(u) − 1

}
.

Set V ′
1 = V1∪η(tu2 ; V2), V ′

2 = cl(V2\η(tu2 ; V2)) and S′ = ∂V ′
1 = ∂V ′

2. Then (V ′
1, V

′
2; S′)

is a genus two Heegaard splitting of L(p, q). Let D′
2 ⊂ (D2 ∩ V ′

2) be a meridian disk of V ′
2

with ∂D′
2 ⊃ (t ′u2 ∩ S′). Let m′ be a meridian of K = tu1 ∪ tu2 in the annulus S′ ∩ ∂η(tu2 ; V2).
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Let �′ be an essential loop in S′ which is a union of t ′u1 ∩S′ and an essential arc in the annulus
S′ ∩ ∂η(tu2 ; V2) disjoint from ∂D′

2

Let m∗ be a meridian of K in ∂η(K; V ′
1) and �∗ a longitude of ∂η(K; V ′

1) such that

�′ ∪ �∗ bounds an annulus in cl(V ′
1 \ η(K; V ′

1)). The loops m∗ and �∗ are oriented as illus-

trated in Figure 4. Then {[m∗], [�∗]} is a basis of H1(∂η(K; V ′
1); Z). Let V ′′

1 be a genus two

handlebody obtained from cl(V ′
1 \ η(K; V ′

1)) by attaching a solid torus V̄ so that the bound-

ary of a meridian disk D̄ of V̄ is identified with a loop represented by r[m∗] + s[�∗]. Set
M ′ = V ′′

1 ∪S ′ V ′
2. Then we say that M ′ is obtained by (r/s)∗-surgery on K . We note that

(r/s)∗-surgery is longitudinal if and only if r/s is an integer.

A.1. The fundamental group. Since K(L(p, q); u) is a (1, 1)-knot in L(p, q), par-
ticularly is a so-called 1-bridge braid, we can easily obtain a presentation of the fundamental
group of a surgered manifold as follows.

PROPOSITION 3 ([24, Theorem 5.1]). Set K = K(L(p, q); u) and let {sj }1≤j≤p be
the basic sequence for (p, q). Let N ′ be the 3-manifold obtained by r∗-surgery on K , where
r be an integer. Then we have:

π1(N
′) ∼=

〈
a, b

∣∣∣∣
Ψp,q (u)∏

j=1

W1(j) = 1,

p∏
j=1

W2(j) = 1

〉
,

where

W1(j) =



a if sj > u

abr if sj = u

ab otherwise
and W2(j) =

{
a if sj ≥ u

ab otherwise
.

A.2. Hyperbolicity. Though K = K(L(p, q); u) admits several representation (cf.
[25, Proposition 4.5]), it is proven that Φ̃p,q(u) is an invariant for K if K admits a longitudinal

surgery yielding S3 (cf. [25, Corollary 4.6]). Hence when K admits a longitudinal surgery
yielding S3, Φ̃p,q(u) is denoted by Φ(K). Moreover, we have a necessary and sufficient
condition for such knots to be hyperbolic.

PROPOSITION 4 ([25, Theorem 1.3]). Set K = K(L(p, q); u). Suppose that K ad-

mits a longitudinal surgery yielding S3. Then we have the following:

1. Φ(K) = 0 if and only if K is a torus knot.
2. Φ(K) = 1 if and only if K contains an essential torus in its exterior.
3. Φ(K) ≥ 2 if and only if K is a hyperbolic knot.

A.3. Example. Set K = K(L(64, 23); 19). The basic sequence for (64, 23) is:
{sj }1≤j≤64 : 23, 46, 5, 28, 51, 10, 33, 56, 15, 38, 61, 20, 43, 2, 25, 48, 7, 30, 53, 12, 35, 58,

17, 40, 63, 22, 45, 4, 27, 50, 9, 32, 55, 14, 37, 60, 19, 42, 1, 24, 47, 6, 29, 52,

11, 34, 57, 16, 39, 62, 21, 44, 3, 26, 49, 8, 31, 54, 13, 36, 59, 18, 41, 0.
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Let N ′ be the 3-manifold obtained by 1∗-surgery on K . Then we have:

π1(N
′) ∼=

〈
a, b

∣∣∣∣ (a3b)3a5b(a3b)3a5b(a3b)3,

(a3b)3a5b(a3b)3a5b(a3b)2a5b(a3b)3a5b(a3b)3a2b

〉
.

Repeating word reduction, we see that π1(N
′) is trivial. This implies that N ′ ∼= S3 since

Geometrization Conjecture is true [17, 18, 19]. Moreover, K is hyperbolic since Φ(K) = 8.
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