
TOKYO J. MATH.
VOL. 33, NO. 2, 2010

The IH-complex of Spatial Trivalent Graphs

Atsushi ISHII and Kengo KISHIMOTO

University of Tsukuba and Osaka City University

(Communicated by J. Murakami)

Abstract. We define the IH-complex on the set of spatial trivalent graphs by using the IH-move, which is a
local spatial move appeared in a study of knotted handlebodies. The IH-distance between two spatial trivalent graphs
is defined by the minimal number of IH-moves needed to transform one into the other. It gives a distance function on
the IH-complex. We give a lower bound for the IH-distance, and evaluate it.

1. Introduction

A spatial graph is a finite graph embedded in the 3-sphere S3. Two spatial graphs are
assumed to be the same if they can be transformed into each other by an isotopy of S3. We
introduce the IH-complex, whose vertex set consists of all spatial trivalent graphs, and in-
vestigate it in the IH-complex. Some properties of a spatial trivalent graph come out in this
complex. For example, the trivial spatial θ -curveKθ and the trivial spatial handcuff graphKφ ,
which are the two simplest spatial graphs, are entirely different vertices in the IH-complex:
Although the vertex-degree of Kθ is infinite, that of Kφ is just one.

For a set of topological objects and a local move for the objects, we can construct a sim-
plicial complex whose vertex set consists of the topological objects. In the simplicial complex,
a family of n+ 1 vertices spans an n-simplex if and only if any two of them are related by the
single local move. Hirasawa and Uchida [2] introduced the Gordian complex which is defined
on the set of knots with the crossing change operation. The unknotting number of a knot is the
distance from the trivial knot in this complex. Such simplicial complexes are studied in [8],
[9] and [10]. We also note that the tunnel complex defined in [6] is closely related to the
IH-move.

The IH-complex is defined on the set of spatial trivalent graphs with the IH-move, which
is a local spatial move appeared in a study of knotted handlebodies. The first author [3]
showed that two spatial trivalent graphs are neighborhood equivalent [11] if and only if they
are related by IH-moves. We show some properties of the IH-complex, and give a lower
bound for the IH-distance, which gives a distance function on the IH-complex. We construct
a family which gives all IH-distances as a corollary of the evaluation.
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FIGURE 1

It is not easy to determine the IH-distance between two spatial trivalent graphs, like
the unknotting number for knots. The key to the evaluation of the IH-distance is the flow
expansion of the IH-complex. The flow expansion is a simplicial complex whose vertex set
consists of pairs of spatial trivalent graphs and their flows. We have a natural projection from
the flow expansion onto the IH-complex. We can lift a path in the IH-complex to its flow
expansion. The lower bound for the IH-distance is obtained by reducing it to the length of a
path in the flow expansion.

A connected component of the IH-complex represents a neighborhood equivalence class
of a spatial trivalent graph. We show that the greatest common divisor plays a large role in
the study of the connectivity of the flow expansion. Furthermore, we determine the connected
components containing the preimage of the trivial spatial handcuff graph with respect to the
natural projection.

In Section 2, we introduce the IH-complex, and show its properties. In Section 3, we
define the flow expansion of the IH-complex, and we see relationships between paths in the
IH-complex and its flow expansion. In Section 4, we investigate the connectivity of the flow
expansion. In Section 5, we define a map whose Lipschitz constant is equal to one, and
give a lower bound for the IH-distance. In Section 6, we construct a family which gives all
IH-distances.

2. The IH-complex of spatial trivalent graphs

We denote by K the set of spatial trivalent graphs. An IH-move is a local spatial move
on spatial trivalent graphs as described in Figure 1. ForK,K ′ ∈ K, we define the IH-distance
dIH(K,K

′) by the minimal number of IH-moves needed to transform K into K ′. We set
dIH(K,K

′) := ∞ if we do not have such a number. We remark that dIH is a distance function
on K.

The IH-complex CIH of spatial trivalent graphs is the simplicial complex defined by the
following condition:

• The vertex set of CIH consists of all spatial trivalent graphs.
• A family of n + 1 vertices {K0,K1, . . . ,Kn} spans an n-simplex if and only if

dIH(Ki,Kj ) = 1 for any i, j ∈ {0, 1, . . . , n} such that i �= j .
Two spatial graphs are neighborhood equivalent [11] if their regular neighborhoods can

be transformed into each other by an isotopy of S3. We denote by deg(v) the vertex-degree
of a vertex v. A simplicial complex is said to be locally finite if each vertex belongs only to



IH-COMPLEX OF SPATIAL TRIVALENT GRAPHS 525

FIGURE 2

finitely many simplices. The trivial spatial θ -curve Kθ and the trivial spatial handcuff graph
Kφ are the spatial trivalent graphs depicted in Figure 2.

PROPOSITION 1. The IH-complex CIH satisfies the following properties.
• Two spatial trivalent graphs belong to the same connected component of CIH if and

only if they are neighborhood equivalent.
• The trivial spatial θ -curve Kθ is the only spatial trivalent graph K such that

dIH(K,Kφ) = 1. Thus deg(Kφ) = 1.
• We have deg(Kθ) = ∞. Hence the IH-complex CIH is not locally finite.
• The dimension of CIH is greater than or equal to two.

PROOF. By Theorem 1 in [3], two spatial trivalent graphs K and K ′ are neighborhood
equivalent if and only if dIH(K,K

′) is finite, which implies the first statement.
Since an IH-move applied to the trivial spatial handcuff graph Kφ is unique up to iso-

topies of S3, we have

K = Kθ ⇔ dIH(K,Kφ) = 1 .

Thus deg(Kφ) = 1.
For an integer n > 1, let Kn be the spatial trivalent graph depicted in Figure 3. We

note that Kn andKm are distinct if n �= m, since their constituent links are distinct. Since the
trivial spatial θ -curveKθ is obtained fromKn by a single IH-move, we have dIH(Kn,Kθ) = 1,
which implies that deg(Kθ) = ∞. Hence the IH-complex CIH is not locally finite.

By Figure 4, we have dIH(Kn,Kn+1) = 1. Then a family of three vertices
{Kθ,Kn,Kn+1} spans a 2-simplex in CIH, which implies that dim(CIH) ≥ 2. �

In Proposition 10, we also have diam(CIH) = ∞ for the IH-complex, where the diameter
diam(CIH) is the largest IH-distance between all pairs of spatial trivalent graphs. By Proposi-
tion 1, each connected component of CIH indicates a handlebody-link [3], which is a disjoint
union of handlebodies embedded in the 3-sphere S3. Baader [1] showed that, for any pair of
two knots of Gordian distance two, there exist infinitely many non-equivalent knots whose
Gordian distance to each of the pair is one. On the other hand, by Proposition 1, there exists
a unique spatial trivalent graph K such that dIH(Kφ,K) = dIH(K,Kn) = 1, where we note
that dIH(Kφ,Kn) = 2.
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FIGURE 3

FIGURE 4

3. The flow expansion of the IH-complex

We recall a flow [4] of a spatial trivalent graph. Let E(K) be the set of edges of a
spatial trivalent graph K . Let Oe be the set of two orientations of an edge e ∈ E(K). A
map ϕe : Oe → Z is a flow of an edge e if ϕe(−o) = −ϕe(o), where −o is the inverse of the
orientation o. A flow ϕe is represented by a pair (o, s) ∈ Oe×Z up to the equivalence relation
(o, s) ∼ (−o,−s). See Figure 5, where an element of Z is represented with an underline.

We fix an orientation oe ∈ Oe for each edge e of a spatial trivalent graphK . A collection
ϕ = {ϕe}e∈E(K) is a flow of K if we have∑

e∈Ein(v)

ϕe(oe) =
∑

e∈Eout(v)

ϕe(oe)

at any vertex v, where

Ein(v) := {e | e is an edge incident to v such that oe points to v} ,
Eout(v) := {e | e is an edge incident to v such that −oe points to v} .

We remark that the definition of a flow ofK does not depend on the choice of the orientations
oe. We denote by Φ(K) the set of flows of K . We remark that a flow of K represents a
homology class in H1(K; Z). Then we have Φ(K) ∼= H1(K; Z).
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FIGURE 5

FIGURE 6

A flowed spatial trivalent graph (K, ϕ) is a pair of a spatial trivalent graph K and a flow
ϕ ∈ Φ(K). Two flowed spatial trivalent graphs are assumed to be the same if one can be
transformed into the other by an ambient isotopy preserving a flow. We denote by KΦ the set
of flowed spatial trivalent graphs. For ϕ ∈ Φ(K), we define −ϕ := {−ϕe}e∈E(K). Two flowed
spatial trivalent graphs (K, ϕ) and (K,−ϕ) are distinct in general.

A flowed IH-move is a local spatial move on flowed spatial trivalent graphs as de-
scribed in Figure 6. For (K, ϕ), (K ′, ϕ′) ∈ KΦ , we define the flowed IH-distance

dΦIH((K, ϕ), (K
′, ϕ′)) by the minimal number of flowed IH-moves needed to transform (K, ϕ)

into (K ′, ϕ′). We set dΦIH((K, ϕ), (K
′, ϕ′)) := ∞ if we do not have such a number. We remark

that dΦIH is a distance function on KΦ .

The flow expansion CΦIH of the IH-complex CIH is the simplicial complex defined by the
following condition:

• The vertex set of CΦIH consists of all flowed spatial trivalent graphs.

• A family of n + 1 vertices {(K0, ϕ
(0)), (K1, ϕ

(1)), . . . , (Kn, ϕ
(n))} spans an n-

simplex if and only if dΦIH((Ki, ϕ
(i)), (Kj , ϕ

(j))) = 1 for any i, j ∈ {0, 1, . . . , n}
such that i �= j .

A path between two vertices v and v′ in a simplicial complex C is a sequence
v0v1, v1v2, . . . , vn−1vn of 1-simplices such that v0 = v and vn = v′, where vivi+1 is a
1-simplex between the vertices vi and vi+1. We define the length l(ω) of a path ω =
v0v1, v1v2, . . . , vn−1vn by the number n. When vertices v and v′ are connected by a path
ω, we write v ∼ω v

′. Then we have

dIH(K,K
′) = min{l(ω) |K ∼ω K

′ in CIH} ,
dΦIH((K, ϕ), (K

′, ϕ′)) = min{l(ω) | (K, ϕ) ∼ω (K
′, ϕ′) in CΦIH .



528 ATSUSHI ISHII AND KENGO KISHIMOTO

Let C and C ′ be simplicial complexes. Let p : C → C ′ be a simplicial map.
For a path ω = v0v1, v1v2, . . . , vn−1vn in C, we define the path p(ω) in C ′ by the se-

quence p(v0)p(v1), p(v1)p(v2), . . . , p(vn−1)p(vn) of 1-simplices in C ′, where we delete

p(vi )p(vi+1) if p(vi) = p(vi+1).
Let p : CΦIH → CIH be the simplicial map induced by the map sending (K, ϕ) ∈ KΦ to

K ∈ K. We note that the map p is surjective.

LEMMA 2. Let ω be a path between spatial trivalent graphs K and K ′ in CIH. For a
flow ϕ ∈ Φ(K), there exists a flow ϕ′ ∈ Φ(K ′) and a path ω̃ between (K, ϕ) and (K ′, ϕ′) in
CΦIH such that p(ω̃) = ω and l(ω̃) = l(ω).

PROOF. Without loss of generality, we may assume that l(ω) = 1. For the path ω,
there exists an IH-move between K and K ′. (Such an IH-move is not unique in general.)
By applying the corresponding flowed IH-move, we obtain a flowed spatial trivalent graph

(K ′, ϕ′) from (K, ϕ). Let ω̃ be the 1-simplex (K, ϕ)(K ′, ϕ′) in CΦIH. Then p(ω̃) = ω and
l(ω̃) = l(ω). �

As a corollary of Lemma 2, we have the following lemma.

LEMMA 3. Let K and K ′ be spatial trivalent graphs. Fix ϕ′ ∈ Φ(K ′). Then we have

dIH(K,K
′) = min

ϕ∈Φ(K) d
Φ
IH((K, ϕ), (K

′, ϕ′)) .

PROOF. By Lemma 2, we have

dIH(K,K
′) ≥ min

ϕ∈Φ(K) d
Φ
IH((K, ϕ), (K

′, ϕ′)) .

Since p : CΦIH → CIH is a simplicial map, we have l(p(ω)) ≤ l(ω) for any path ω in CΦIH.
Therefore

dIH(K,K
′) = min

ϕ∈Φ(K) d
Φ
IH((K, ϕ), (K

′, ϕ′)) .

�

4. Connected components of the flow expansion

The volume |ϕe| of the flow ϕe of an edge e is defined by the absolute value |ϕe(o)|
(=|ϕe(−o)|). For ϕ ∈ Φ(K), we denote by [ϕ] the multiset consisting of the volumes of the
flows of all edges of K . Let (Kθ , θs,t,u) and (Kφ, φs,t ) be the flowed spatial trivalent graphs
depicted in Figure 7. Then we have

[θ1,−2,1] = {1, 2, 1} , [φ1,1] = {1, 1, 0} .
For a set A = {i1, . . . , in} of integers, we denote by gcd(A) or gcd(i1, . . . , in) the great-

est common divisor of the integers in A. Here we put gcd(0, . . . , 0) := 0.
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FIGURE 7

LEMMA 4. If flowed spatial trivalent graphs (K, ϕ) and (K ′, ϕ′) belong to the same

connected component of CΦIH, then we have gcd([ϕ]) = gcd([ϕ′]).
PROOF. Without loss of generality, we may assume that (K, ϕ) and (K ′, ϕ′) are related

by a single flowed IH-move. The equalities

gcd(s, t, u, s + t) = gcd(s, t, u) = gcd(s, t, u, t + u)

imply the equality gcd([ϕ]) = gcd([ϕ′]) (see Figure 6). �

We set KΦ,n := {(K, ϕ) ∈ KΦ | gcd([ϕ]) = n}. Let CΦ,nIH be the subcomplex of CΦIH
spanned by the elements of KΦ,n. The zero flow 0 ∈ Φ(K) is the collection {0e}e∈E(K) of the
zero maps 0e : Oe → Z. For n ∈ Z and ϕ ∈ Φ(K), we define nϕ := {nϕe}e∈E(K). Then we
have −ϕ = (−1)ϕ and 0 = 0ϕ.

PROPOSITION 5. For any positive integer n, the simplicial complex CΦ,nIH is isomorphic

to CΦ,1IH . The simplicial complex CΦ,0IH is isomorphic to CIH.

PROOF. We define the map f : KΦ,1 → KΦ,n by f (K, ϕ) = (K, nϕ). The map f is

a bijection and induces an isomorphism from CΦ,1IH to CΦ,nIH .

We define the map f : KΦ,0 → K by f (K, ϕ) = K . Since ϕ is the zero flow if and only

if gcd([ϕ]) = 0, the map f is a bijection and induces an isomorphism from CΦ,0IH to CIH. �

Let CΦIH(K, ϕ) ⊂ CΦIH be the connected component containing (K, ϕ) ∈ KΦ . Set

CΦ,nIH (K) := {CΦIH(K, ϕ) | gcd([ϕ]) = n}. By Lemmas 2 and 4, we have CΦ,nIH (K) = CΦ,nIH (K ′)
if K ∼ω K

′ in CIH. Then we note that CΦ,nIH (K) is an invariant for handlebody-links.

By Proposition 5, we have #CΦ,0IH (K) = 1 and #CΦ,nIH (K) = #CΦ,1IH (K) for a positive
integer n, where #S is the number of the elements of a set S. We remark that Lemma 4
implies that

(K, ϕ) ∼ω (K, ϕ
′) ⇒ gcd([ϕ]) = gcd([ϕ′]) .

If #CΦ,1IH (K) = 1, then

(K, ϕ) ∼ω (K, ϕ
′) ⇔ gcd([ϕ]) = gcd([ϕ′]) .
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PROPOSITION 6. For the trivial spatial handcuff graph Kφ , we have

#CΦ,1IH (Kφ) = 1 .

PROOF. Since Φ(Kφ) = {φs,t |s, t ∈ Z} and gcd([φs,t ]) = gcd(s, t), it is suffi-
cient to show that there exists a sequence of IH-moves between (Kφ, φs,t ) and (Kφ, φs ′,t ′)
if gcd(s, t) = gcd(s′, t ′). Let (s, t) and (s′, t ′) be pairs of integers such that gcd(s, t) =
gcd(s′, t ′). Then they are related by the following operations:

(i, j) ↔ (j, i) , (i, j) ↔ (i,−j) , (i, j) ↔ (i, i + j) .

We note that

(Kφ, φi,j ) = (Kφ, φj,i ) , (Kφ, φi,j ) = (Kφ, φi,−j ) .

We can transform (Kφ, φi,j ) into (Kφ, φi,i+j ) by applying IH-moves as follows:

(Kφ, φi,j )
IH↔ (Kθ , θi,−i−j,j ) = (Kθ , θi,j,−i−j )

IH↔ (Kφ, φi,−i−j ) = (Kφ, φi,i+j ) .

Therefore there exists a path connecting (Kφ, φs,t ) and (Kφ, φs ′,t ′) if gcd(s, t) = gcd(s′, t ′).
�

5. A lower bound for the IH-distance

Let (X, dX) and (Y, dY ) be metric spaces. For a map f : X → Y , the Lipschitz constant
Lip(f ) is the minimal number λ such that

dY (f (x1), f (x2)) ≤ λ dX(x1, x2)

for any x1, x2 ∈ X. Let dZ be the standard distance function on Z defined by dZ(x, y) =
|x − y|.

For the multiset [ϕ], we define the sequence {[ϕ]i} by ordering the elements of [ϕ] such
that [ϕ]i ≥ [ϕ]i+1 for any i. For the flowed spatial trivalent graphs (Kθ , θs,t,u) and (Kφ, φs,t )
depicted in Figure 7, we have

[θ1,−2,1] = {1, 2, 1} , [θ1,−2,1]1 = 2 , [θ1,−2,1]2 = 1 , [θ1,−2,1]3 = 1 ,

[φ1,1] = {1, 1, 0} , [φ1,1]1 = 1 , [φ1,1]2 = 1 , [φ1,1]3 = 0 .

Let NF : KΦ → Z be the map sending (K, ϕ) to the minimal non-negative integer n such
that [ϕ]1 ≤ Fn+1, [ϕ]2 ≤ Fn, where Fn is the n-th Fibonacci number: F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2.

LEMMA 7. For any (K, ϕ), (K ′, ϕ′) ∈ KΦ , we have

dΦIH((K, ϕ), (K
′, ϕ′)) ≥ |NF (K, ϕ)−NF (K

′, ϕ′)|.
Furthermore, we have Lip(NF ) = 1.
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FIGURE 8

PROOF. Let (K, ϕ) and (K ′, ϕ′) be flowed spatial trivalent graphs related by a single
flowed IH-move around the edges e1, . . . , e5 and e′1, . . . , e′5 depicted in Figure 8.

Put n := NF (K, ϕ). We show that, for e′ ∈ E(K ′),

|ϕ′
e′ | ≤

{
Fn+2 if e′ = e′5 ,

Fn+1 otherwise .
(1)

If e′ �= e′5, then

|ϕ′
e′ | = |ϕe| ≤ [ϕ]1 ≤ Fn+1

for some e ∈ E(K). We assume that e′ = e′5. If e2 = e3, then t = −u and

|ϕ′
e′ | = |t + u| = 0 ≤ Fn+2 .

If e2 �= e3, then

|ϕ′
e′ | = |t + u| ≤ |t| + |u| ≤ [ϕ]1 + [ϕ]2 ≤ Fn+2 .

Then we have the equality (1). Therefore [ϕ′]1 ≤ Fn+2 and [ϕ′]2 ≤ Fn+1, which imply
that NF (K ′, ϕ′) ≤ n + 1 = NF (K, ϕ) + 1. By the same argument, we have NF (K, ϕ) ≤
NF (K

′, ϕ′)+ 1. Hence we have

|NF (K, ϕ) −NF (K
′, ϕ′)| ≤ 1

for any (K, ϕ), (K ′, ϕ′) ∈ KΦ such that dΦIH((K, ϕ), (K
′, ϕ′)) = 1. This implies that

dΦIH((K, ϕ), (K
′, ϕ′)) ≥ |NF (K, ϕ)−NF (K

′, ϕ′)|
for any (K, ϕ), (K ′, ϕ′) ∈ KΦ .

By this inequality, we have Lip(NF ) ≤ 1. We have the equality

dΦIH((Kθ , θ1,−2,1), (Kφ, φ1,1)) = |NF (Kθ , θ1,−2,1)− NF (Kφ, φ1,1)|,
which follows from the equalities

dΦIH((Kθ , θ1,−2,1), (Kφ, φ1,1)) = 1 , NF (Kθ , θ1,−2,1) = 2 , NF (Kφ, φ1,1) = 1 .

Hence we have Lip(NF ) ≥ 1, which completes the proof. �
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THEOREM 8. Let v be a flowed spatial trivalent graph invariant which is invariant
under flowed IH-moves. Let K and K ′ be spatial trivalent graphs. Fix ϕ′ ∈ Φ(K ′). Then we
have

dIH(K,K
′) ≥ min

ϕ∈Φ(K)
v(K,ϕ)=v(K ′,ϕ′)

|NF (K, ϕ)− NF (K
′, ϕ′)| .

PROOF. By Lemma 3, we have

dIH(K,K
′) = min

ϕ∈Φ(K) d
Φ
IH((K, ϕ), (K

′, ϕ′)) .

Since dΦIH((K, ϕ), (K
′, ϕ′)) = ∞ if v(K, ϕ) �= v(K ′, ϕ′), we have

dIH(K,K
′) = min

ϕ∈Φ(K)
v(K,ϕ)=v(K ′,ϕ′)

dΦIH((K, ϕ), (K
′, ϕ′))

≥ min
ϕ∈Φ(K)

v(K,ϕ)=v(K ′,ϕ′)

|NF (K, ϕ)−NF (K
′, ϕ′)| ,

where the last inequality follows from Lemma 7. �

REMARK 9. Let f be a map from (KΦ, dΦIH) to a metric space (X, dX) such that
Lip(f ) = 1. By the same argument as in the proof of Theorem 8, we have

dIH(K,K
′) ≥ min

ϕ∈Φ(K)
v(K,ϕ)=v(K ′,ϕ′)

dX(f (K, ϕ), f (K
′, ϕ′)) .

6. A family which gives all IH-distances

We construct a sequence (Ki, ϕ(i)) (i ∈ Z≥0) of flowed spatial θ -curves such that

[ϕ(i)] = {Fi+2, Fi+1, Fi} as follows: Let (Kψ,ψs,t,u) be the flowed spatial θ -curve repre-
sented by the diagram Ds,t,u depicted in Figure 9, where we ignore the characters a and b.

Put K0 := Kψ , ϕ(0) := ψF2,F1,F0 . For i > 0, let (Ki, ϕ(i)) be a flowed spatial θ -curve ob-

tained from (Ki−1, ϕ
(i−1)) by a single flowed IH-move as shown in Figure 10. Then we have

the following proposition.

PROPOSITION 10. For i, j ≥ 0, we have dIH(Ki,Kj ) = |i − j |, which implies that
the diameter of the IH-complex CIH is infinite.

For a proof of this proposition, we recall the definition of the quandle coloring, and give
a lemma. A quandle [5, 7] is a non-empty set X with a binary operation ∗ : X × X → X

satisfying the following axioms:
Q1. For any a ∈ X, a ∗ a = a,
Q2. For any a ∈ X, the map Sa : X → X defined by Sa(x) = x ∗ a is a bijection,
Q3. For any a, b, c ∈ X, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).
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FIGURE 9

FIGURE 10

For i ∈ Z, we define a ∗i b := Sib(a).
Let D be a diagram of a flowed spatial graph (K, ϕ). We denote by A(D) the set of

arcs of D, where an arc is a piece of a curve whose endpoints are undercrossings or vertices.
We choose an orientation oe ∈ Oe for each edge e ∈ E(K). Then (K, {oe}e∈E(K), ϕ) is a
flowed oriented spatial graph. For an arc α which originates from an edge e, we put oα := oe,
ϕα := ϕe. To represent an orientation oe in D, we may use the co-orientation obtained by
rotating the orientation oe π/2 counterclockwise. We denote it by the same symbol oα. We
denote by χ0 the over-arc at a crossing χ of D. We denote by χ1, χ2 the under-arcs at χ such
that the co-orientation oχ0 points to χ2.

An X-coloring of D is a map C : A(D) → X satisfying the following conditions
(Figure 11):

C1. For a crossing χ , we have

C(χ1) ∗s C(χ0) = C(χ2),

where s = ϕχ0(oχ0).
C2. For a vertex ω, we have

C(ω1) = · · · = C(ωd),

where ω1, . . . , ωd are the arcs incident to ω.
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FIGURE 11

We note that an X-coloring C does not depend on the choice of the orientations oe. An
X-coloring is trivial if the map C is a constant map. For a diagram D of a flowed spatial
graph (K, ϕ), we set

vX(D) :=
{

1 if D possesses a nontrivial X-coloring ,

0 otherwise .

Then vX is a flowed spatial trivalent graph invariant which is invariant under flowed IH-moves.
For the details, we refer the reader to [4].

Set X := Z[x, x−1]/(2x − 1). Let ∗ : X × X → X be the binary operation defined by
a ∗b = xa+ (1−x)b for a, b ∈ X. Then (X, ∗) is a quandle, which is an Alexander quandle.
Put w := vX. We set

Φ(K)w := {ϕ ∈ Φ(K) |w(K, ϕ) = 1} .
LEMMA 11. For i ≥ 0, we have Φ(Ki)w = {ϕ(i)}.
PROOF. We first show that Φ(K0)w = {ϕ(0)}. The coloring relation obtained from

Figure 9 is a ∗t b = b ∗s a, that is, Figure 9 gives an X-coloring of the diagram Ds,t,u if and
only if a ∗t b = b ∗s a for a, b ∈ X. Since the equality a ∗t b = b ∗s a is equivalent to
(xs + xt − 1)(a − b) = 0 in X, the diagram Ds,t,u has a nontrivial X-coloring if and only if

s = t = 1, which implies Φ(K0)w = {ϕ(0)}.
Since w is invariant under flowed IH-moves,

#Φ(Ki)w = #Φ(K0)w = 1 .

By the construction of the sequence, ϕ(i) ∈ Φ(Ki)w . Therefore we have

Φ(Ki)w = {ϕ(i)} .
�

PROOF OF PROPOSITION 10. By the construction of the sequence, we have

dIH(Ki,Kj ) ≤ |i − j |
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for i, j ≥ 0. On the other hand, by Theorem 8 and Lemma 11, we have

dIH(Ki,Kj ) ≥ min
ϕ∈Φ(K)

w(K,ϕ)=w(K ′,ϕ′)

|NF (Ki, ϕ)−NF (Kj , ϕ
(j))|

= min
ϕ∈Φ(Ki)w

|NF (Ki, ϕ)−NF (Kj , ϕ
(j))|

= min
ϕ∈{ϕ(i)}

|NF (Ki, ϕ)− NF (Kj , ϕ
(j))|

= |(i + 1)− (j + 1)| = |i − j | .
This completes the proof. �
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