The Diophantine Equation $X^{3}=u+27 v$ over Real Quadratic Fields

Takaaki KAGAWA

Ritsumeikan University
(Communicated by M. Ohta)

Abstract

Let k be a real quadratic field. The Diophantine equation $X^{3}=u+27 v$ in $X \in \mathcal{O}_{k}$ (the ring of integers of k), $u, v \in \mathcal{O}_{k}^{\times}$(the group of units of k) is solved under some assumptions on k.

1. Main theorem

Let k be a real quadratic field. Throughout, \mathcal{O}_{k} and \mathcal{O}_{k}^{\times}denote the ring of integers of k and the group of units of k, respectively. The Diophantine equation

$$
\begin{equation*}
X^{3}=u+27 v \tag{1}
\end{equation*}
$$

in $X \in \mathcal{O}_{k}, u, v \in \mathcal{O}_{k}^{\times}$arises from the study of elliptic curves with everywhere good reduction over k. (See [2], [3], [4] and [6].) We treat this equation and prove the following theorem:

THEOREM. Let $k=\mathbf{Q}(\sqrt{6})$ or $k=\mathbf{Q}(\sqrt{3 p})$, where p is a prime number such that $p \neq 3$ and $p \equiv 3(\bmod 4)$. If equation (1) has solutions in $X \in \mathcal{O}_{k}, u, v \in \mathcal{O}_{k}^{\times}$, then $k=\mathbf{Q}(\sqrt{6})$ or $k=\mathbf{Q}(\sqrt{33})$, and the only solutions are

$$
(X, u, v)=\left(w_{1}(4 \pm \sqrt{6}), w_{1}^{3}, w_{1}^{3}(5 \pm 2 \sqrt{6})\right)
$$

for any $w_{1} \in \mathcal{O}_{\mathbf{Q}(\sqrt{6})}^{\times}$, or

$$
(X, u, v)=\left(w_{2}(5 \pm \sqrt{33}),-w_{2}^{3}, w_{2}^{3}(23 \pm 4 \sqrt{33})\right)
$$

for any $w_{2} \in \mathcal{O}_{\mathbf{Q}(\sqrt{33})}^{\times}$. (Note that $5+2 \sqrt{6}$ and $23+4 \sqrt{33}$ are the fundamental units of $\mathbf{Q}(\sqrt{6})$ and $\mathbf{Q}(\sqrt{33})$, respectively.)

This Theorem and a theorem in [5] imply the following criterion :

Corallary 1. Let p be a prime such that $p \neq 3,11, p \equiv 3(\bmod 8)$, let $k:=$ $\mathbf{Q}(\sqrt{3 p})$, and let $\varepsilon>1$ be the fundamental unit of k. If the following conditions are satisfied, then there are no elliptic curves with everywhere good reduction over k.
(1) $\left(h_{k}, 3\right)=1$,
(2) $4 \nmid h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{1}^{(\infty)} \mathfrak{P}_{2}^{(\infty)}\right)$ or $4 \nmid h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3))$.

Here, for a number field K and a divisor \mathfrak{m} of $K, h_{K}(\mathfrak{m})$ is the ray class number of K modulo \mathfrak{m}, and $\mathfrak{P}_{1}^{(\infty)}, \mathfrak{P}_{2}^{(\infty)}$ are the infinite primes of $k(\sqrt[3]{\varepsilon})$.

Proof. Let E be an elliptic curve with everywhere good reduction over k. We may suppose that the discriminant of E is not a cube, because such a curve exists only on $\mathbf{Q}(\sqrt{6})$ and $\mathbf{Q}(\sqrt{33})$. (See [3].) By Proposition 12 of [4], E admits a 3-isogeny defined over k. Thus $X^{3}=u+27 v$ or $X^{3}=u+v$ has a solution in $X \in \mathcal{O}_{k}-\{0\}, u, v \in \mathcal{O}_{k}^{\times}$. But by Theorem in this paper, the former equation has no solutions, and from a result in [5], which requires $p \equiv 3(\bmod 8)$, the latter equation has no solutions.

As a corollary, we have
Corallary 2. If $m=129,177,201$ or 249 , then there are no elliptic curves with everywhere good reduction over $\mathbf{Q}(\sqrt{m})$.

Proof. Using KASH, we obtain ray class numbers appeared in Collorary 1 as follows:

p	$m=3 p$	h_{k}	$h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right)$	$h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3))$
43	129	1	$2^{2} \cdot 3$	$\mathbf{2} \cdot \mathbf{3}^{\mathbf{3}}$
59	177	1	$\mathbf{2} \cdot \mathbf{3}$	
67	201	1	$2^{2} \cdot 3$	$\mathbf{2} \cdot \mathbf{3}^{\mathbf{3}}$
83	249	1	$\mathbf{2} \cdot \mathbf{3}$	

Thus Corollary 1 implies the assertion.

2. Proof of Theorem

Let k be a real quadratic field.
When $u v=\square_{k}$ (a square in k) or $u v=-\square_{k}$, we already have the following ([4]):
Lemma 1. If there exist $X \in \mathcal{O}_{k}, u, v \in \mathcal{O}_{k}^{\times}$satisfying (1) and $u v= \pm \square_{k}$, then $k=$ $\mathbf{Q}(\sqrt{29})$ and $(X, u, v)=\left(\pm \varepsilon_{29}^{n}, \mp \varepsilon_{29}^{3 n+4}, \pm \varepsilon_{29}^{3 n+2}\right),\left(\pm \varepsilon_{29}^{n}, \mp \varepsilon_{29}^{3 n-4}, \pm \varepsilon_{29}^{3 n-2}\right)(n \in \mathbf{Z})$. (Here and in what follows, $\varepsilon_{m}(>1)$ is the fundamental unit of the real quadratic field $\mathbf{Q}(\sqrt{m})$).

The outline of the proof of Lemma 1 is as follows. By changing (u, v, X) to ($u^{4}, u^{3} v, u X$) if necessary, we may assume that $N_{k / \mathbf{Q}}(u)=N_{k / \mathbf{Q}}(v)=1$. Thus taking norm of (1), we have

$$
\begin{equation*}
N_{k / \mathbf{Q}}(X)^{3}=730+27 \operatorname{Tr}_{k / \mathbf{Q}}\left(u v^{-1}\right) \tag{2}
\end{equation*}
$$

By assumption, there exists a $w \in \mathcal{O}_{k}^{\times}$such that $u v^{-1}= \pm w^{2}$. When $u v^{-1}=w^{2}$, we have

$$
\begin{aligned}
27 \operatorname{Tr}_{k / \mathbf{Q}}(w)^{2} & =N_{k / \mathbf{Q}}(X)^{3}-730+54 N_{k / \mathbf{Q}}(w) \\
& = \begin{cases}N_{k / \mathbf{Q}}(X)^{3}-676 & \text { if } N_{k / \mathbf{Q}}(w)=1 \\
N_{k / \mathbf{Q}}(X)^{3}-784 & \text { if } N_{k / \mathbf{Q}}(w)=-1\end{cases}
\end{aligned}
$$

When $u v^{-1}=-w^{2}$, we have

$$
\begin{aligned}
27 \operatorname{Tr}_{k / \mathbf{Q}}(w)^{2} & =\left\{-N_{k / \mathbf{Q}}(X)\right\}^{3}+730+54 N_{k / \mathbf{Q}}(w) \\
& = \begin{cases}\left\{-N_{k / \mathbf{Q}}(X)\right\}^{3}+784 & \text { if } N_{k / \mathbf{Q}}(w)=1 \\
\left\{-N_{k / \mathbf{Q}}(X)\right\}^{3}+676 & \text { if } N_{k / \mathbf{Q}}(w)=-1\end{cases}
\end{aligned}
$$

Thus the problem is reduced to computing the integer points of some elliptic curves.
When $u v \neq \pm \square_{k}$, we cannot use the above method. However, as we shall see later, we can use similar method under the assumption of Theorem. The following lemma is vital:

LEmmA 2. Let k be as in the assumption of Theorem and $\varepsilon(>1)$ the fundamental unit of k. Then $3 \varepsilon=\square_{k}$.

Proof. There exists a $\pi \in \mathcal{O}_{k}$ such that $(\pi)^{2}=(3)$, since 3 is ramified in k and the class number of k is odd (see [1] for example). The facts that $\pi^{2} / 3>0$ and $k \neq \mathbf{Q}(\sqrt{3})$ imply $3 \varepsilon=\left(\pi \varepsilon^{n}\right)^{2}$ for some $n \in \mathbf{Z}$.

Now we treat the case $u v \neq \pm \square_{k}$. From now on, let k be as in the assumption of Theorem and $\varepsilon(>1)$ the fundamental unit of k. Taking norm of (1), we have (2) again. (Note that $N_{k / \mathbf{Q}}(\eta)=1$ for all $\eta \in \mathcal{O}_{k}^{\times}$, since 3 is ramified in k.) Let $u v^{-1}= \pm \varepsilon w^{2}, w \in \mathcal{O}_{k}^{\times}$. Then Lemma 2 implies, in k, that

$$
\begin{equation*}
27 \operatorname{Tr}_{k / \mathbf{Q}}\left(u v^{-1}\right)= \pm 9 \operatorname{Tr}_{k / \mathbf{Q}}\left((\sqrt{3 \varepsilon} w)^{2}\right)= \pm 9\left\{\operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)^{2}-2 N_{k / \mathbf{Q}}(\sqrt{3 \varepsilon})\right\} \tag{3}
\end{equation*}
$$

When $N_{k / \mathbf{Q}}(\sqrt{3 \varepsilon})=-3$, equations (2) and (3) give

$$
\left\{3 \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)\right\}^{2}= \begin{cases}N_{k / \mathbf{Q}}(X)^{3}-784 & \text { if } u v^{-1}=\varepsilon w^{2} \\ \left\{-N_{k / \mathbf{Q}}(X)\right\}^{3}+676 & \text { if } u v^{-1}=-\varepsilon w^{2}\end{cases}
$$

Using the software KASH, we obtain the following.
LEMMA 3. (a) There are no integer solutions of $y^{2}=x^{3}-784$.
(b) The only integer solutions of $y^{2}=x^{3}+676$ are $(x, y)=(0, \pm 26)$.

Thus there is no solution in this case.
When $N_{k / \mathbf{Q}}(\sqrt{3 \varepsilon})=3$, equations (2) and (3) give

$$
\left\{3 \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)\right\}^{2}= \begin{cases}N_{k / \mathbf{Q}}(X)^{3}-676 & \text { if } u v^{-1}=\varepsilon w^{2} \\ \left\{-N_{k / \mathbf{Q}}(X)\right\}^{3}+784 & \text { if } u v^{-1}=-\varepsilon w^{2}\end{cases}
$$

Using KASH again, we obtain the following.
LEMMA 4. (a) The only integer solutions of $y^{2}=x^{3}-676$ are $(x, y)=(10, \pm 18)$, $(13, \pm 39),(26, \pm 130),(130, \pm 1482),(338, \pm 6214)$ and $(901, \pm 27045)$.
(b) The only integer solutions of $y^{2}=x^{3}+784$ are $(x, y)=(-7, \pm 21),(0, \pm 28)$, $(8, \pm 36)$ and $(56, \pm 420)$.

In case $u v^{-1}=\varepsilon w^{2}$, Lemma 4 implies that $\operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)= \pm 6, \pm 13, \pm 494$ or ± 9015, and

$$
\sqrt{3 \varepsilon} w= \begin{cases}3 \pm \sqrt{6} & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)=6 \\ -3 \pm \sqrt{6} & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)=-6 \\ (\pm 13 \pm \sqrt{157}) / 2 & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)= \pm 13 \\ \pm 247 \pm \sqrt{2 \cdot 11 \cdot 47 \cdot 59} & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)= \pm 494 \\ (\pm 9015 \pm \sqrt{3 \cdot 503 \cdot 53857}) / 2 & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)= \pm 9015\end{cases}
$$

Thus $k=\mathbf{Q}(\sqrt{6})$ and $\varepsilon=\varepsilon_{6}=5+2 \sqrt{6}$. Since $\sqrt{3 \varepsilon_{6}}=3+\sqrt{6}$ and $\sqrt{3 \varepsilon_{6}} \varepsilon_{6}^{\prime}=3-\sqrt{6}$, we have

$$
u v^{-1}=\varepsilon_{6} w^{2}= \begin{cases}\varepsilon_{6} & \text { if } \sqrt{3 \varepsilon_{6}} w= \pm(3+\sqrt{6}) \\ \varepsilon_{6}^{\prime} & \text { if } \sqrt{3 \varepsilon_{6}} w= \pm(3-\sqrt{6})\end{cases}
$$

When $u v^{-1}=\varepsilon_{6}$, since $u+27 v=v\left(\varepsilon_{6}+27\right)=v \varepsilon_{6}(4-\sqrt{6})^{3}$, there exists $w_{1} \in \mathcal{O}_{\mathbf{Q}(\sqrt{6})}^{\times}$ such that $v=w_{1}^{3} \varepsilon_{6}^{\prime}, u=w_{1}^{3}$ and $X=w_{1}(4-\sqrt{6})$. When $u v^{-1}=\varepsilon_{6}^{\prime}$, since $u+27 v=$ $v\left(\varepsilon_{6}^{\prime}+27\right)=v \varepsilon_{6}^{\prime}(4+\sqrt{6})^{3}$, there exists $w_{1} \in \mathcal{O}_{\mathbf{Q}(\sqrt{6})}^{\times}$such that $v=w_{1}^{3} \varepsilon_{6}, u=w_{1}^{3}$ and $X=w_{1}(4+\sqrt{6})$.

In case $u v^{-1}=-\varepsilon w^{2}$, Lemma 4 implies that $\operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)= \pm 7, \pm 12$, or ± 140, and

$$
\sqrt{3 \varepsilon} w= \begin{cases}(\pm 7 \pm \sqrt{37}) / 2 & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)= \pm 7 \\ 6 \pm \sqrt{33} & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)=12 \\ -6 \pm \sqrt{33} & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)=-12 \\ \pm 70 \pm \sqrt{59 \cdot 83} & \text { if } \operatorname{Tr}_{k / \mathbf{Q}}(\sqrt{3 \varepsilon} w)= \pm 140\end{cases}
$$

Thus $k=\mathbf{Q}(\sqrt{33})$ and $\varepsilon=\varepsilon_{33}=23+4 \sqrt{33}$. Since $\sqrt{3 \varepsilon_{33}}=6+\sqrt{33}$ and $\sqrt{3 \varepsilon_{33}} \varepsilon_{33}^{\prime}=$
$6-\sqrt{33}$, we have

$$
u v^{-1}=-\varepsilon_{33} w^{2}= \begin{cases}-\varepsilon_{33} & \text { if } \sqrt{3 \varepsilon_{33}} w= \pm(6+\sqrt{33}) \\ -\varepsilon_{33}^{\prime} & \text { if } \sqrt{3 \varepsilon_{33}} w= \pm(6-\sqrt{33})\end{cases}
$$

When $u v^{-1}=-\varepsilon_{33}$, since $u+27 v=v \varepsilon_{33}(5-\sqrt{33})^{3}$, we have $u=-w_{2}^{3}, v=w_{2}^{3} \varepsilon_{33}^{\prime}$ and $X=w_{2}(5-\sqrt{33})$ for some $w_{2} \in \mathcal{O}_{\mathbf{Q}(\sqrt{33})}^{\times}$. When $u v^{-1}=-\varepsilon_{33}^{\prime}$, we have $u+27 v=$ $v \varepsilon_{33}^{\prime}(5+\sqrt{33})^{3}$, Hence there exists $w_{2} \in \mathcal{O}_{\mathbf{Q}(\sqrt{33})}^{\times}$such that $u=-w_{2}^{3}, v=w_{2}^{3} \varepsilon_{33}$ and $X=w_{2}(5+\sqrt{33})$

The proof of Theorem is now complete.

References

[1] A. Fröhlich, Central extensions, Galois groups, and ideal class groups of number fields, Contemp. Math. 24, American Mathematical Society, 1983.
[2] T. KAGAWA, Determination of elliptic curves with everywhere good reduction over $\mathbf{Q}(\sqrt{37})$, Acta Arith. $\mathbf{8 3}$ (1998), 253-269.
[3] T. KAGAWA, Nonexistence of elliptic curves having everywhere good reduction and cubic discriminant, Proc. Japan Acad. 76, Ser. A (2000), 141-142.
[4] T. KAGAWA, Determination of elliptic curves with everywhere good reduction over real quadratic fields Q $(\sqrt{3 p})$, Acta Arith. 96 (2001), 231-245.
[5] T. KAGAWA, The Diophantine equation $X^{3}=u+v$ over real quadratic fields, in preparation.
[6] M. KIDA, Arithmetic of abelian varieties under field extensions, dissertation, Johns Hopkins, 1994.

Present Address:
Department of Mathematical Sciences, Ritsumeikan University, Nojihigashi, Kusastsu, Shiga, 525-8577 Japan.
e-mail: kagawa@se.ritsumei.ac.jp

