Токуо J. Матн. Vol. 33, No. 1, 2010

Differential Sandwich Theorems for Certain Subclasses of Analytic Functions Involving an Extended Multiplier Transformation

Mohamed Kamel AOUF and Robha Md. EL-ASHWAH

Mansoura University

(Communicated by Y. Kobayashi)

Abstract. In this paper we derive some subordination and superordination results for certain normalized analytic functions in the open unit disc, which are acted upon by a class of extended multiplier transformation. Relevant connection of the results, which are presented in this paper with various known results are also considered.

1. Introduction

Let H(U) be the class of analytic functions in the open unit disc $U = \{z \in C : |z| < 1\}$ and let H[a, n] consisting of functions of the form:

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \quad (a \in C).$$
(1.1)

Also, let A(n) be the subclass of H(U) consisting of functions of the form:

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k .$$
 (1.2)

If $f, g \in H(U)$, we say that f(z) is subordinate to g(z), written symbolically as follows:

 $f \prec g \ (z \in U)$ or $f(z) \prec g(z) \ (z \in U)$,

if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0and |w(z)| < 1 ($z \in U$) such that f(z) = g(w(z)) ($z \in U$). In particular, if the function g(z)is univalent in U, then we have the following equivalence (cf., e.g., [9]; see also [10, p. 4]):

$$f(z) \prec g(z) \ (z \in U) \Leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U).$$

Supposing that p, h are two analytic functions in U, let

$$\varphi(r, s, t; z) : C^3 \times U \to C$$
.

Received November 26, 2008; revised May 19, 2009

²⁰⁰⁰ Mathematics Subject Classification: 30C45

Key words and phrases: analytic functions, differential subordinations, superordination, subordinants, dominants

MOHAMED KAMEL AOUF AND ROBHA MD. EL-ASHWAH

If p and $\varphi(p(z), zp'(z), z^2 p''(z); z)$ are univalent functions in U and if p satisfies the second-order subordination

$$h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z),$$
 (1.3)

then p is called to be a solution of the differential superordination (1.3). (If f is subordinate to F, then F is superordinate to f). An analytic function q is called a subordinant of (1.3), if $q(z) \prec p(z)$ for all the functions p(z) satisfying (1.3). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all the subordinants q of (1.3), is called the best subordinant (cf., e.g., [9], see also [10]).

Recently, Miller and Mocanu [11] obtained sufficient conditions on the functions h, q and φ for which the following implication holds:

$$h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z) \Rightarrow q(z) \prec p(z).$$

$$(1.4)$$

Using the results of Miller and Mocanu [11], Bulboaca [4] considered certain classes of first-order differential superdordination as well as superordination-preserving integral operators [5]. Ali et al. [1] have used the results of Bulboaca [4] and obtained sufficient conditions for certain normalized analytic functions f(z) to satisfy

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$
 (1.5)

where q_1 and q_2 are given univalent functions in U with $q_1(0) = 1$. Shanmugam et al. [17] obtained sufficient conditions for normalized analytic function f(z) to satisfy

$$q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z)$$

and

$$q_1(z) \prec \frac{z^2 f'(z)}{\{f(z)\}^2} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = 1$ and $q_2(0) = 1$, while Obradovic [12] introduced a class of function $f \in A = A(1)$, such that, for $0 < \alpha < 1$,

$$\operatorname{Re}\left\{f'(z)\left(\frac{z}{f(z)}\right)^{\alpha}\right\} > 0, \quad z \in U.$$

He called this class of function as "non-Bazilevic" type. Using this non-Bazilevic class, Wang et al. [21] studied many subordination results for the class $N(\alpha, \lambda, A, B)$ defined by

$$N(\alpha, \lambda, A, B) = \left\{ f \in A : (1+\lambda) \left(\frac{z}{f(z)}\right)^{\alpha} - \lambda f'(z) \left(\frac{z}{f(z)}\right)^{1+\alpha} \prec \frac{1+Az}{1+Bz} \right\}$$

where $\lambda \in C$, $-1 \leq B < A \leq 1$, $A \neq B$, $0 < \alpha < 1$.

Many essentially equivalent definitions of muliplier transformation have been given in literature (see [7], [8] and [22]). In [6] Catas defined the operator $I^m(\lambda, \ell)$ as follows:

DEFINITION 1 [6]. Let the function $f(z) \in A(n)$. For $m \in N_0 = N \cup \{0\}$, where $N = \{1, 2, ...\}, \lambda \ge 0, \ell \ge 0$. The extended multiplier transformation $I^m(\lambda, \ell)$ on A(n) is defined by the following infinite series

$$I^{m}(\lambda,\ell)f(z) = z + \sum_{k=n+1}^{\infty} \left[\frac{1+\lambda(k-1)+\ell}{1+\ell}\right]^{m} a_{k} z^{k}.$$
 (1.6)

It follows from (1.6) that

$$I^{0}(\lambda, \ell) f(z) = f(z) \,,$$

$$(1+\ell)I^{m+1}(\lambda,\ell)f(z) = (1-\lambda+\ell)I^m(\lambda,\ell)f(z) + \lambda z(I^m(\lambda,\ell)f(z))' \quad (\lambda>0)$$
(1.7)

and

$$I^{m_1}(\lambda,\ell)(I^{m_2}(\lambda,\ell))f(z) = I^{m_1+m_2}(\lambda,\ell)f(z) = I^{m_2}(\lambda,\ell)(I^{m_1}(\lambda,\ell))f(z).$$
(1.8)

We note that

1- $I^{m}(1, \ell) f(z) = I_{\ell}^{m} f(z)$ (see [7] and [8]); 2- $I^{m}(\lambda, 0) f(z) = D_{\lambda}^{m} f(z)$ (see [2]); 3- $I^{m}(1, 0) f(z) = D^{m} f(z)$ (see [16]); 4- $I^{m}(1, 1) f(z) = I_{m} f(z)$ (see [22]). Also if $f \in A(n)$, then we can write

$$I^{m}(\lambda, \ell) f(z) = (f * \varphi^{m}_{\lambda, \ell})(z),$$

where

$$\varphi_{\lambda,\ell}^m(z) = z + \sum_{k=n+1}^{\infty} \left[\frac{1 + \lambda(k-1) + \ell}{1 + \ell} \right]^m z^k .$$
(1.9)

2. Preliminaries

In order to prove our subordination and superordination results, we make use of the following known definition and results.

DEFINITION 2 [11]. Denote by Q the set of all functions f(z) that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \{\zeta : \zeta \in \partial \text{ and } \lim_{z \to \zeta} f(z) = \infty\}$$
(2.1)

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

LEMMA 1 [10]. Let the function q(z) be univalent in the unit disc U and let θ and ϕ be analytic in a domain D containing q(U) with $\varphi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq'(z)\varphi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$. Suppose that

(i) Q(z) is starlike univalent in U,

(ii)
$$\operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) > 0 \text{ for } z \in U.$$

If p is analytic with $p(0) = q(0), p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)), \qquad (2.2)$$

then

$$p(z) \prec q(z)$$

and q(z) is the best dominant.

LEMMA 2 [17]. Let q be a convex univalent function in U and let $\psi \in C, \delta \in C^* = C \setminus \{0\}$ with

$$\operatorname{Re}\left\{1+\frac{zq''(z)}{q'(z)}\right\} > \max\left\{0,\operatorname{Re}\left(\frac{\psi}{\delta}\right)\right\}.$$

If p(z) is analytic in U and

$$\psi p(z) + \delta z p'(z) \prec \psi q(z) + \delta z q'(z), \qquad (2.3)$$

then

$$p(z) \prec q(z) \quad (z \in U)$$

and q is the best dominant.

LEMMA 3 [4]. Let q(z) be convex univalent in the unit disc U and let θ and φ be analytic in a domain D containing q(U). Suppose that

(i)
$$\operatorname{Re}\left\{\frac{\theta'(q(z))}{\varphi(q(z))}\right\} > 0 \text{ for } z \in U;$$

(ii) $zq'(z)\varphi(q(z))$ is starlike univalent in U.

If $p(z) \in H[q(0), 1] \cap Q$, with $p(U) \subseteq D$, and $\theta(p(z)) + zp'(z)\varphi(p(z))$ is univalent in U, and

$$\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(p(z)) + zp'(z)\varphi(p(z)), \qquad (2.4)$$

then

$$q(z) \prec p(z) \quad (z \in U)$$

and q(z) is the best subordinant.

LEMMA 4 [11]. Let q be convex univalent in U and $\delta \in C$. Further assume that $\operatorname{Re}(\overline{\delta}) > 0$. If $p(z) \in H[q(0), 1] \cap Q$ and $p(z) + \delta z p'(z)$ is univalent in U, then

$$q(z) + \delta z q'(z) \prec p(z) + \delta z p'(z), \qquad (2.5)$$

implies

$$q(z) \prec p(z) \quad (z \in U)$$

and q is the best subordinant.

This last lemma gives us a necessary and sufficient condition for the univalence of a special function which will be used in some particular cases.

LEMMA 5 [15]. The function $q(z) = (1 - z)^{-2ab}$ is univalent in U if and only if $|2ab - 1| \le 1$ or $|2ab + 1| \le 1$.

3. Subordination for analytic functions

THEOREM 1. Let q be univalent in $U, \gamma \in C^*, \lambda > 0$ and $0 < \alpha < 1$. Suppose q satisfies

$$\operatorname{Re}\left\{1+\frac{zq^{''}(z)}{q'(z)}\right\} > \max\left\{0,-\operatorname{Re}\left(\frac{\alpha}{\gamma}\right)\right\}.$$
(3.1)

If $f \in A(n)$, $I^m(\lambda, \ell) f(z) \neq 0$ ($z \in U^* = U \setminus \{0\}$) and satisfies the subordination

$$\Psi(f,\gamma,m,\lambda,\ell,\alpha) \prec q(z) + \frac{\gamma}{\alpha} z q'(z) , \qquad (3.2)$$

where

$$\Psi(f,\gamma,m,\lambda,\ell,\alpha) = \left[1 + \gamma\left(\frac{\ell+1}{\lambda}\right)\right] \left(\frac{z}{I^m(\lambda,\ell)f(z)}\right)^{\alpha} - \gamma\left(\frac{\ell+1}{\lambda}\right) \frac{I^{m+1}(\lambda,\ell)f(z)}{z} \left(\frac{z}{I^m(\lambda,\ell)f(z)}\right)^{\alpha+1},$$
(3.3)

then

$$\left(\frac{z}{I^m(\lambda,\ell)f(z)}\right)^{\alpha} \prec q(z) \tag{3.4}$$

and q is the best dominant of (3.2).

PROOF. Define the function p(z) by

$$p(z) = \left(\frac{z}{I^m(\lambda, \ell)f(z)}\right)^{\alpha} \quad (z \in U).$$
(3.5)

Then the function p is analytic in U and p(0) = 1. Therefore, differentiating (3.5) logarithmically with respect to z and using the identity (1.7) in the resulting equation, we have

$$\begin{bmatrix} 1+\gamma\left(\frac{\ell+1}{\lambda}\right) \end{bmatrix} \left(\frac{z}{I^m(\lambda,\ell)f(z)}\right)^{\alpha} -\gamma\left(\frac{\ell+1}{\lambda}\right) \frac{I^{m+1}(\lambda,\ell)f(z)}{z} \left(\frac{z}{I^m(\lambda,\ell)f(z)}\right)^{\alpha+1} = p(z) + \frac{\gamma}{\alpha} z p'(z) \,.$$
(3.6)

Using (3.6) and (3.2), we have

$$p(z) + \frac{\gamma}{\alpha} z p'(z) \prec q(z) + \frac{\gamma}{\alpha} z q'(z) .$$
(3.7)

The assertion (3.4) of Theorem 1 now follows by an application of Lemma 2 with $\delta = \frac{\gamma}{\alpha}$, $0 < \alpha < 1$, and $\psi = 1$.

Taking $q(z) = \frac{1+Az}{1+Bz}$ (-1 $\leq B < A \leq 1$) in Theorem 1, we obtain the following corollary.

COROLLARY 1. Let
$$-1 \leq B < A \leq 1, \gamma \in C^*, \lambda > 0, 0 < \alpha < 1$$
 and
 $\operatorname{Re}\left\{\frac{1-Bz}{1+Bz}\right\} > \max\left\{0, -\operatorname{Re}\left(\frac{\alpha}{\gamma}\right)\right\}.$ If $f(z) \in A(n), I^m(\lambda, \ell) f(z) \neq 0 \ (z \in U^*)$ and
 $\Psi(f, \gamma, m, \lambda, \ell, \alpha) < \frac{1+Az}{1+Bz} + \frac{\gamma(A-B)z}{\alpha(1+Bz)^2},$
(3.8)

where $\Psi(f, \gamma, m, \lambda, \ell, \alpha)$ is given by (3.3), then

$$\left(\frac{z}{I^m(\lambda,\ell)f(z)}\right)^{\alpha} \prec \frac{1+Az}{1+Bz}$$
(3.9)

and $\frac{1+Az}{1+Bz}$ is the best dominant of (3.8).

Taking A = 1 and B = -1 in Corollary 1, we obtain the following corollary.

COROLLARY 2. Let $\gamma \in C^*, \lambda > 0, 0 < \alpha < 1$ and $\operatorname{Re}\left\{\frac{1+z}{1-z}\right\} > \max\left\{0, -\operatorname{Re}\left(\frac{\alpha}{\gamma}\right)\right\}$. if $f(z) \in A(n), I^m(\lambda, \ell) f(z) \neq 0 (z \in U^*)$ and $\frac{H(f(z), m(\lambda, \ell), \ell(z))}{1+z} + \frac{2\gamma z}{2\gamma z}$ (3.10)

$$\Psi(f,\gamma,m,\lambda,\ell,\alpha) \prec \frac{1+z}{1-z} + \frac{2\gamma z}{\alpha(1-z)^2},$$
(3.10)

where $\Psi(f, \gamma, m, \lambda, \ell, \alpha)$ is given by (3.3), then

$$\left(\frac{z}{I^m(\lambda,\ell)f(z)}\right)^{\alpha} \prec \frac{1+z}{1-z}$$
(3.11)

and
$$\frac{1+z}{1-z}$$
 is the best dominant of (3.10).

THEOREM 2. Let q be univalent in U, $\gamma, \mu \in C^*, \lambda > 0$, and $0 \leq \beta \leq 1$. Let $f(z) \in A(n)$. Suppose q satisfies

$$\operatorname{Re}\left\{1 + \frac{zq^{''}(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0.$$
(3.12)

If

$$1 + \gamma \mu[\Phi(f,\beta,m,\lambda,\ell) - 1] \prec 1 + \gamma \frac{zq'(z)}{q(z)}, \qquad (3.13)$$

where

$$\Phi(f,\beta,m,\lambda,\ell) = \frac{\beta\left(\frac{\ell+1}{\lambda}\right)I^{m+2}(\lambda,\ell)f(z) + \left[(1-2\beta)\left(\frac{\ell+1}{\lambda}\right) + \beta\right]I^{m+1}(\lambda,\ell)f(z) - (1-\beta)\left(\frac{\ell+1}{\lambda} - 1\right)I^{m}(\lambda,\ell)f(z)}{(1-\beta)I^{m}(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)},$$
(3.14)

then

$$\left\{\frac{(1-\beta)I^m(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right\}^{\mu} \prec q(z)$$
(3.15)

and q is the best dominant of (3.13).

PROOF. Define the function p(z) by

$$p(z) = \left\{ \frac{(1-\beta)I^m(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)}{z} \right\}^{\mu}.$$
(3.16)

Then a computation shows that

$$\frac{zp'(z)}{p(z)} = \mu[\Phi(f,\beta,m,\lambda,\ell) - 1], \qquad (3.17)$$

where $\Phi(f, \beta, m, \lambda, \ell)$ is given by (3.14). By setting

$$\theta(w) = 1 \quad \text{and} \quad \varphi(w) = \frac{\gamma}{w},$$
(3.18)

it can be easily observed that $\theta(w)$ is analytic in C, $\varphi(w)$ is analytic in C^* , and that $\varphi(w) \neq 0$ ($w \in C^*$). Also, we let

$$Q(z) = zq'(z)\varphi(q(z)) = \gamma \frac{zq'(z)}{q(z)}, \qquad (3.19)$$

MOHAMED KAMEL AOUF AND ROBHA MD. EL-ASHWAH

and

$$h(z) = \theta(q(z)) + Q(z) = 1 + \gamma \frac{zq'(z)}{q(z)}.$$
(3.20)

From (3.12), we find that Q(z) is starlike univalent in U and that

$$\operatorname{Re}\left\{\frac{zh'(z)}{Q(z)}\right\} = \operatorname{Re}\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0$$
(3.21)

by the assertion (3.12) of Theorem 2. Thus, by applying Lemma 1, our proof of Theorem 2 is completed.

Putting
$$n = 1, \beta = m = \ell = 0, \lambda = 1, \gamma = \frac{1}{ab}$$
 $(a, b \in C^*), \mu = a$ and $q(z) = 0$

 $(1 - z)^{-2ab}$ in Theorem 2, then combining this together with Lemma 5, we obtain the next result due to Obradovic et al. [13, Theorem 1]:

COROLLARY 3 [13]. Let $a, b \in C^*$ such that $|2ab - 1| \le 1$ or $|2ab + 1| \le 1$. Let $f(z) \in A$ and suppose that $\frac{f(z)}{z} \ne 0$ for all $z \in U$. If

$$1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \frac{1+z}{1-z}$$
(3.22)

then

$$\left(\frac{f(z)}{z}\right)^a \prec (1-z)^{-2ab}, \qquad (3.23)$$

and $(1-z)^{-2ab}$ is the best dominant of (3.22). (The power is the principal one).

REMARK 1. For a = 1, Corollary 3 reduces to the recent result of Srivastava and Lashin [20,Theorem 3].

Putting
$$n = 1, \beta = m = \ell = 0, \lambda = 1, \gamma = \frac{e^{i\lambda}}{ab\cos\lambda} \left(a, b \in C^*; |\lambda| < \frac{\pi}{2}\right), \mu = a$$

and $q(z) = (1 - z)^{-2ab\cos\lambda e^{-i\lambda}}$ in Theorem 2, we obtain the result due to Aouf et al. [3, Theorem 1]:

COROLLARY 4 [3]. Let $a, b \in C^*$ and $|\lambda| < \frac{\pi}{2}$, and suppose that $|2ab\cos\lambda e^{-i\lambda} - 1| \le 1$ or $|2ab\cos\lambda e^{-i\lambda} + 1| \le 1$. Let $f(z) \in A$ such that $\frac{f(z)}{z} \ne 0$ for all $z \in U$. If

$$1 + \frac{e^{i\lambda}}{b\cos\lambda} \left(\frac{zf'(z)}{f(z)} - 1\right) \prec \frac{1+z}{1-z},$$
(3.24)

then

$$\left(\frac{f(z)}{z}\right)^a \prec (1-z)^{-2ab\cos\lambda e^{i\lambda}},\tag{3.25}$$

and $(1-z)^{-2ab\cos\lambda e^{i\lambda}}$ is the best dominant of (3.24). (The power is the principal one).

Putting $m = \ell = 0, \lambda = \beta = 1, \gamma = \frac{1}{ab}(a, b \in C^*), \mu = a \text{ and } q(z) = (1 - z)^{-2ab}$ in Theorem 2, then combining this together with Lemma 5, we obtain the next result.

COROLLARY 5. Let $a, b \in C^*$ such that $|2ab - 1| \le 1$ or $|2ab + 1| \le 1$. Let $f(z) \in C^*$ A(n) and suppose that $f'(z) \neq 0$ for all $z \in U$. If

$$1 + \frac{1}{b} \frac{zf''(z)}{f'(z)} \prec \frac{1+z}{1-z},$$
(3.26)

then

$$(f'(z))^a \prec (1-z)^{-2ab}$$
 (3.27)

and $(1-z)^{-2ab}$ is the best dominant of (3.26). (The power is the principal one).

REMARK 2. For a = n = 1, Corollary 5 reduces to the recent result of Srivastava and Lashin [20, Corollary 1].

Taking $n = 1, m = \ell = \beta = 0, \lambda = 1, \gamma = \frac{1}{\mu}$ $(\mu \in C^*)$ and q(z) = $(1 + Bz)^{\mu\left(\frac{A-B}{B}\right)}$ $(-1 \le B < A \le 1, B \ne 0)$ in Theorem 2, we get the following known

result obtained by Obradovic and Owa [14].

COROLLARY 6 [14]. Let $-1 \leq B < A \leq 1, B \neq 0, \mu \in C^*$ such that $\left|\mu\left(\frac{A-B}{B}\right)-1\right| \leq 1 \text{ or } \left|\mu\left(\frac{A-B}{B}\right)+1\right| \leq 1. \text{ Let } f(z) \in A \text{ and suppose that } \frac{f(z)}{z} \neq 0$ for all $z \in U$. If

$$\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz} \ (z \in U) \ , \tag{3.28}$$

then

$$\left(\frac{f(z)}{z}\right)^{\mu} \prec \left(1 + Bz\right)^{\mu\left(\frac{A-B}{B}\right)} (\mu \in C^*; B \neq 0)$$
(3.29)

and $(1 + Bz)^{\mu\left(\frac{A-B}{B}\right)}$ is the best dominant of (3.28).

Taking $n = 1, m = \ell = \beta = 0, \lambda = 1, \gamma = \frac{1}{\mu}$ and $q(z) = e^{\mu A z}$ $(-1 < A \le 1)$ in Theorem 2, we get the following known result obtained by Obradovic and Owa [14].

COROLLARY 7 [14]. Let $-1 < A \le 1$, $\mu \in C^*$ such that $|\mu A| \le \pi$. Let $f(z) \in A$ and suppose that $\frac{f(z)}{z} \ne 0$ for all $z \in U$. If

$$\frac{zf'(z)}{f(z)} < 1 + Az \quad (z \in U),$$
(3.30)

then

$$\left(\frac{f(z)}{z}\right)^{\mu} \prec e^{\mu A z} \quad (\mu \in C^*)$$
(3.31)

and $e^{\mu Az}$ is the best dominant of (3.30).

THEOREM 3. Let q(z) be univalent in $U, \gamma \neq 0, \delta, \alpha \in C$, and let $0 \leq \beta \leq 1$. Let $f(z) \in A(n)$. Suppose q satisfies

$$\operatorname{Re}\left\{\frac{\alpha}{\gamma} + 1 + \frac{zq^{''}(z)}{q'(z)}\right\} > 0, \qquad (3.32)$$

and also $\operatorname{Re}(\frac{\alpha}{\gamma}) > 0$. Let

$$\Psi(z) = \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu} \{\alpha + \gamma \mu[\Phi(f,\beta,m,\lambda,\ell) - 1]\} + \delta, \quad (3.33)$$

where $\Phi(f, \beta, m, \lambda, \ell)$ is given by (3.14). If

$$\Psi(z) \prec \alpha q(z) + \delta + \gamma z q'(z), \qquad (3.34)$$

then

$$\left[\frac{(1-\beta)I^m(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu} < q(z)$$
(3.35)

and q(z) is the best dominant of (3.34).

PROOF. Define the function p(z) by

$$p(z) = \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu}.$$
(3.36)

Differentiating (3.36) logarithmically with respect to z and using the identity (1.7) in the resulting equation, we have

$$\frac{zp'(z)}{p(z)} = \mu[\Phi(f,\beta,m,\lambda,\ell) - 1], \qquad (3.37)$$

where $\Phi(f, \beta, m, \lambda, \ell)$ is defined by (3.14). From (3.37), we have

$$zp'(z) = \mu p(z)[\Phi(f, \beta, m, \lambda, \ell) - 1].$$
 (3.38)

By setting

$$\theta(w) = \alpha w + \delta \quad \varphi(w) = \gamma ,$$
 (3.39)

it can be easily observed that $\theta(w)$ and $\varphi(w)$ are analytic in C. Also, we let

$$Q(z) = zq'(z)\varphi(q(z)) = \gamma zq'(z)$$
(3.40)

and

$$h(z) = \theta(q(z)) + Q(z) = \alpha q(z) + \delta + \gamma z q'(z).$$
(3.41)

From (3.40), we find that Q(z) is starlike univalent in U, and that

$$\operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) = \operatorname{Re}\left\{\frac{\alpha}{\gamma} + 1 + \frac{zq''(z)}{q'(z)}\right\} > 0$$
(3.42)

by the hypothesis (3.32) of Theorem 3. Thus, by applying Lemma 3, our proof of Theorem 3 is completed.

Taking $m = \ell = 0, \lambda = \beta = 1, \delta = -\alpha$ and $\gamma = 1$ in Theorem 3, we obtain the following result obtained by Shanmugam et al. [18, Corollary 3.10].

COROLLARY 8 [18]. Let q be univalent in U. Also let $f \in A(n)$ and $1 + \alpha > 0$. Suppose q satisfies

$$\operatorname{Re}\left\{\alpha + 1 + \frac{zq''(z)}{q'(z)}\right\} > 0, \qquad (3.43)$$

then

$$\alpha\{(f'(z))^{\mu} - 1\} + \mu\left\{\frac{zf''(z)}{f'(z)}(f'(z))^{\mu}\right\} \prec \alpha q(z) - \alpha + zq'(z)$$
(3.44)

then

$$(f'(z))^{\mu} \prec q(z)$$

and q is the best dominant of (3.44).

REMARK 3. Taking $q(z) = 1 + \frac{\lambda}{(1+\alpha)}z$, $\alpha \ge 0$ and $0 < \lambda \le 1 + \alpha$, in Corollary 8, we obtain a recent result of Singh [19, Theorem 1(ii)].

4. Superordination for analytic function

THEOREM 4. Let q be convex univalent in $U, \gamma \in C, \lambda > 0$ and $0 < \alpha < 1$. Suppose

$$\operatorname{Re}\{\gamma\} > 0. \tag{4.1}$$

Let $f(z) \in A(n)$, $I^m(\lambda, \ell) f(z) \neq 0$ ($z \in U^*$) and $\left(\frac{z}{I^m(\lambda, \ell) f(z)}\right)^{\alpha} \in H[q(0), 1] \cap Q$. Let $\Psi(f, \gamma, m, \lambda, \ell, \alpha)$ is univalent in U, where $\Psi(f, \gamma, m, \lambda, \ell, \alpha)$ is defined by (3.3). If

$$q(z) + \frac{\gamma}{\alpha} z q'(z) \prec \Psi(f, \gamma, m, \lambda, \ell, \alpha), \qquad (4.2)$$

then

$$q(z) \prec \left(\frac{z}{I^m(\lambda, \ell)f(z)}\right)^{\alpha}$$
 (4.3)

and q is the best subordinant of (4.1).

PROOF. Define the function p(z) by

$$p(z) = \left(\frac{z}{I^m(\lambda, \ell)f(z)}\right)^{\alpha} \quad (z \in U).$$
(4.4)

Differentiating (4.4) logarithmically with respect to z and using the identity (1.7) in the resulting equation, we have

$$p(z) + \frac{\gamma}{\alpha} z p'(z) \prec \Psi(f, \gamma, m, \lambda, \ell, \alpha) .$$
(4.5)

Theorem 4 follows as an applying of Lemma 4.

Taking $q(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$ in Theorem 4, we obtain the following corollary.

COROLLARY 9. Let $-1 \leq B < A \leq 1, \gamma \in C$, $\operatorname{Re}(\gamma) > 0, \lambda > 0$ and $0 < \alpha < 1$. Also let q be convex univalent in U. Suppose $I^m(\lambda, \ell)f(z) \neq 0$ ($z \in U^*$) and $\left(\frac{z}{I^m(\lambda, \ell)f(z)}\right)^{\alpha} \in H[q(0), 1] \cap Q$. Let $\Psi(f, \gamma, m, \lambda, \ell, \alpha)$ is univalent in U, where $\Psi(f, \gamma, m, \lambda, \ell, \alpha)$ is given by (3.3). If

$$\frac{\gamma(A-B)z}{\alpha(1+Bz)^2} + \frac{1+Az}{1+Bz} \prec \Psi(f,\gamma,m,\lambda,\ell,\alpha), \qquad (4.6)$$

then

$$\frac{1+Az}{1+Bz} \prec \left(\frac{z}{I^m(\lambda,\ell)f(z)}\right)^{\alpha}$$
(4.7)

and $\frac{1+Az}{1+Bz}$ is the best subordinant of (4.6).

The proof of the following theorem is similar to the proof of Theorem 4, so we state the theorem without proof.

THEOREM 5. Let q be convex univalent in $U, \gamma \in C, 0 \leq \beta \leq 1$, and $f \in A(n)$. Suppose

$$0 \neq \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu} \in H[q(0),1] \cap Q,$$

and $1 + \gamma \mu[\Phi(f, \beta, m, \lambda, \ell) - 1]$ is univalent in U, where $\Phi(f, \beta, m, \lambda, \ell)$ is given by (3.14). If

$$1 + \gamma \frac{zq'(z)}{q(z)} \prec 1 + \gamma \mu [\Phi(f, \beta, m, \lambda, \ell) - 1], \qquad (4.8)$$

then

$$q(z) \prec \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu}$$
(4.9)

and q is the best subordinant of (4.8).

THEOREM 6. Let q be convex univalent in $U, \gamma \in C^*, \delta, \alpha \in C$ and let $0 \leq \beta \leq 1$. Let $f \in A(n)$ and $0 \neq \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu} \in H[q(0), 1] \cap Q$. Suppose q satisfies

$$\operatorname{Re}\left\{\frac{\alpha}{\gamma}q'(z)\right\} > 0. \tag{4.10}$$

If

$$\alpha q(z) + \delta + \gamma z q'(z) \prec$$

$$\left[\frac{(1-\beta)I^{m}(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu}\{\alpha+\gamma\mu[\Phi(f,\beta,m,\lambda,\ell)-1]\}+\delta, \quad (4.11)$$

where $\Phi(f, \beta, m, \lambda, \ell)$ is given by (3.14). Then

$$q(z) \prec \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu}$$
(4.12)

and q is the best subordinant of (4.11).

PROOF. Define the function p(z) by

$$p(z) = \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu}.$$
(4.13)

Then a computation shows that

$$\frac{zp'(z)}{p(z)} = \mu[\Phi(f,\beta,m,\lambda,\ell) - 1], \qquad (4.14)$$

where $\Phi(f, \beta, m, \lambda, \ell)$ is given by (3.14). Therefore, we have

$$zp'(z) = \mu p(z)[\Phi(f, \beta, m, \lambda, \ell) - 1].$$
 (4.15)

By setting

$$\theta(w) = \alpha w + \delta, \quad \varphi(w) = \gamma,$$
(4.16)

it can be easily observed that both $\theta(w)$ and $\varphi(w)$ are analytic in C. Now,

$$\operatorname{Re}\left\{\frac{\theta'(q(z))}{\varphi(q(z))}\right\} = \operatorname{Re}\left\{\frac{\alpha q'(z)}{\gamma}\right\} > 0, \qquad (4.17)$$

by the hypothesis (4.10) of Theorem 6. Thus, by applying Lemma 3, our proof of Theorem 6 is completed.

5. Sandwich results

Combining the results of differential subordination and supordination, we state the following "sandwich results".

THEOREM 7. Let q_1 be convex univalent and let q_2 be univalent in $U, \gamma \in C^*$, and $0 < \alpha < 1$. Suppose q_1 satisfies (4.1) and q_2 satisfies (3.1). If $0 \neq \left(\frac{z}{I^m(\lambda, \ell)f(z)}\right) \in H[q(0), 1] \cap Q, \Psi(f, \gamma, m, \lambda, \ell, \alpha)$ is univalent in U, where $\Psi(f, \gamma, m, \lambda, \ell, \alpha)$ is given by (3.3), and

$$q_1(z) + \frac{\gamma}{\alpha} z q_1'(z) \prec \Psi(f, \gamma, m, \lambda, \ell, \alpha) \prec q_2(z) + \frac{\gamma}{\alpha} z q_2'(z), \qquad (5.1)$$

then

$$q_1(z) \prec \left(\frac{z}{I^m(\lambda, \ell)f(z)}\right)^{\alpha} \prec q_2(z)$$
(5.2)

and q_1 and q_2 are, respectively, the best subordinant and best dominant.

THEOREM 8. Let q_1 be convex univalent and let q_2 be univalent in U, $\gamma, \mu \in C^*, \lambda > 0$, and $0 \le \beta \le 1$. Let $f(z) \in A(n)$. Suppose q_2 satisfies (3.12), and $0 \ne \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu} \in H[q(0),1] \cap Q, 1+\gamma \mu[\Phi(f,\beta,m,\lambda,\ell) -1]$ is univalent in U, where $\Phi(f,\beta,m,\lambda,\ell)$ is given by (3.14). If

$$1 + \gamma \frac{zq_1'(z)}{q_1(z)} \prec 1 + \gamma \mu[\Phi(f, \beta, m, \lambda, \ell) - 1] \prec 1 + \gamma \frac{zq_2'(z)}{q_2(z)},$$
(5.3)

then

$$q_1(z) \prec \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu} \prec q_2(z)$$
(5.4)

and q_1 and q_2 are, respectively, the best subordinant and the best dominant.

THEOREM 9. Let
$$q_1$$
 be convex univalent and let q_2 be univalent in $U, \gamma, \mu \in C^*, \lambda > 0$ and $0 \le \beta \le 1$. Suppose q_1 satisfies (4.10), q_2 satisfies (3.32), and $0 \ne \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu} \in H[q(0),1] \cap Q$. Let
$$\left[\frac{(1-\beta)I^m(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu} \{\alpha + \gamma \mu[\Phi(f,\beta,m,\lambda,\ell)-1]\} + \delta \quad (5.5)$$

is univalent in U. If

$$\alpha q_1(z) + \delta + \gamma z q'_1(z) \prec$$

$$\left[\frac{(1-\beta)I^{m}(\lambda,\ell)f(z)+\beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^{\mu}\{\alpha+\gamma\mu[\Phi(f,\beta,m,\lambda,\ell)-1]\}+\delta$$
$$\prec \alpha q_{2}(z)+\delta+\gamma z q_{2}'(z), \qquad (5.6)$$

then

$$q_1(z) \prec \left[\frac{(1-\beta)I^m(\lambda,\ell)f(z) + \beta I^{m+1}(\lambda,\ell)f(z)}{z}\right]^\mu \prec q_2(z)$$
(5.7)

and q_1 and q_2 are, respectively, the best subordinant and the best dominant.

ACKNOWLEDGMENTS. The authors thank the referees for their valuable suggestions to improve the paper.

References

- R. M. ALI, V. RAVICHANDRAN, M. H. KHAN AND K. G. SUBRAMANIAN, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004), 87–94.
- F. M. AL-OBOUDI, On univalent functions defined by a generalized Salagean operator, Internat.J. Math. Math. Sci., 27 (2004), 1429–1436.
- [3] M. K. AOUF, F. M. AL-OBOUDI AND M. M. HAIDAN, On some results for λ-spirallike and λ-Robertson functions of complex order, Publ. Instit. Math. Belgrade 77 (2005), no. 91, 93–98.
- [4] T. BULBOACA, Classes of first order differential superordinations, Demonstratio Math. 35 (2002), no. 2, 287–292.
- [5] T. BULBOACA, A class of superordination-preserving integral operators, Indeg. Math. (N.S.) 13 (2002), no.3, 301–311.
- [6] A. CATAS, A note on a certain subclass of analytic functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, August 2007.
- [7] N. E. CHO AND H. M. SRIVASTAVA, Argument estimates of certain analytic functions defined by a class of multipier transformations, Math. Comput. Modelling 37 (1–2) (2003), 39–49.

MOHAMED KAMEL AOUF AND ROBHA MD. EL-ASHWAH

- [8] N. E. CHO and T. H. KIM, Multiplier transformations and strongly close-to-convex functions, Bull. Korean. Math. Soc. 40 (2003), no. 3, 399–410.
- [9] S. S. MILLER and P. T. MOCANU, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), no. 2, 157–171.
- [10] S. S. MILLER and P. T. MOCANU, *Differential subordinations: Theory and Applications*, Series on Mongraphs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York. and Basel, 2000.
- [11] S. S. MILLER and P. T. MOCANU, Subordinants of differential superordinations, Complex Variables 48 (2003), no. 10, 815–826.
- [12] M. OBRADOVIC, A class of univalent functions, Hokkaido Math. J. 27 (1998), no. 2, 329-335.
- [13] M. OBRADOVIC, M. K. AOUF and S. OWA, On some results for starlike functions of complex order, Publ. Inst. Math. (Beograd) (N.S.) 46 (60), (1989), 79–85.
- [14] M. OBRADOVIC and S. OWA, On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145 (1990), 357–364.
- [15] W. C. ROYSTER, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387.
- [16] G. S. SALAGEAN, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013, (1983), 362–372.
- [17] T. N. SHANMUGAM, V. RADICHANDRAN and S. SIVASUBRAMANIAN, Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3 (2006), no. 1, art. 8, 1–11.
- [18] T. N. SHANMUGAM, S. SIVASUBRAMANIAN and H. M. SRIVASTAVA, On sandwich theorems for some classes of analytic functions, Internat. J. Math. Math. Sci. Vol. 2006, Article ID 29684, 1–13.
- [19] V. SINGH, On some criteria for univalence and starlikeness, Indian J. Pure Appl. Math. 34 (2003), no. 4, 569–577.
- [20] H. M. SRIVASTAVA and A. Y. LASHIN, Some applications of the Briot-Bouquet differential subordination, J. Inequal. Pure. Appl. Math. 6 (2005), no.2, Art. 41, 7, pp.
- [21] Z. WANG, C. GAO and M. LIAO, On certian generalized class of non-Bazilevivc functions, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 21 (2005), 147–154.
- [22] B. A. URALEGADDI and C. SOMANATHA, Certain classes of univalent functions, In *Current Topics in Analytic Function Theory*, (Edited by H. M. Srivastava and S. Owa), 371–374, World Scientific. Publishing, Company, Singapore, 1992.

Present Addresses: MOHAMED KAMEL AOUF DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA 35516, EGYPT. *e-mail*: mkaouf127@yahoo.com

ROBHA MD. EL-ASHWAH DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA 35516, EGYPT. *e-mail:* r_elashwah@yahoo.com