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Abstract. In this paper we derive some subordination and superordination results for certain normalized ana-
lytic functions in the open unit disc, which are acted upon by a class of extended multiplier transformation. Relevant
connection of the results, which are presented in this paper with various known results are also considered.

1. Introduction

Let H(U) be the class of analytic functions in the open unit disc U = {z ∈ C : |z| < 1}
and let H [a, n] consisting of functions of the form:

f (z) = a + anz
n + an+1z

n+1 + · · · (a ∈ C) . (1.1)

Also, let A(n) be the subclass of H(U) consisting of functions of the form:

f (z) = z+
∞∑

k=n+1

akz
k . (1.2)

If f, g ∈ H(U), we say that f (z) is subordinate to g(z) , written symbolically as follows:

f ≺ g (z ∈ U) or f (z) ≺ g(z) (z ∈ U) ,
if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0
and |w(z)| < 1 (z ∈ U) such that f (z) = g(w(z)) (z ∈ U). In particular, if the function g(z)
is univalent in U , then we have the following equivalence (cf., e.g., [9]; see also [10, p. 4]):

f (z) ≺ g(z) (z ∈ U) ⇔ f (0) = g(0) and f (U) ⊂ g(U) .

Supposing that p, h are two analytic functions in U , let

ϕ(r, s, t; z) : C3 × U → C .
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If p and ϕ(p(z), zp′(z), z2p′′(z); z) are univalent functions in U and if p satisfies the second-
order subordination

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z) , (1.3)

then p is called to be a solution of the differential superordination (1.3). (If f is subordinate
to F , then F is superordinate to f ). An analytic function q is called a subordinant of (1.3), if
q(z) ≺ p(z) for all the functionsp(z) satisfying (1.3). A univalent subordinant q̃ that satisfies
q ≺ q̃ for all the subordinants q of (1.3), is called the best subordinant (cf., e.g., [9], see also
[10]).

Recently, Miller and Mocanu [11] obtained sufficient conditions on the functions h, q
and ϕ for which the following implication holds:

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z) . (1.4)

Using the results of Miller and Mocanu [11], Bulboaca [4] considered certain classes of
first-order differential superdordination as well as superordination-preserving integral opera-
tors [5]. Ali et al. [1] have used the results of Bulboaca [4] and obtained sufficient conditions
for certain normalized analytic functions f (z) to satisfy

q1(z) ≺ zf ′(z)
f (z)

≺ q2(z) , (1.5)

where q1 and q2 are given univalent functions in U with q1(0) = 1. Shanmugam et al. [17]
obtained sufficient conditions for normalized analytic function f (z) to satisfy

q1(z) ≺ f (z)

zf ′(z)
≺ q2(z) ,

and

q1(z) ≺ z2f ′(z)
{f (z)}2 ≺ q2(z) ,

where q1 and q2 are given univalent functions in U with q1(0) = 1 and q2(0) = 1, while
Obradovic [12] introduced a class of function f ∈ A = A(1), such that, for 0 < α < 1,

Re

{
f ′(z)

(
z

f (z)

)α}
> 0 , z ∈ U .

He called this class of function as “non-Bazilevic” type. Using this non-Bazilevic class, Wang
et al. [21] studied many subordination results for the class N(α, λ,A,B) defined by

N(α, λ,A,B) =
{
f ∈ A : (1 + λ)

(
z

f (z)

)α
− λf ′(z)

(
z

f (z)

)1+α
≺ 1 + Az

1 + Bz

}
,

where λ ∈ C,−1 ≤ B < A ≤ 1, A 
= B, 0 < α < 1.
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Many essentially equivalent definitions of muliplier transformation have been given in
literature (see [7], [8] and [22]). In [6] Catas defined the operator Im(λ, �) as follows:

DEFINITION 1 [6]. Let the function f (z) ∈ A(n). For m ∈ N0 = N ∪ {0}, where
N = {1, 2, ...}, λ ≥ 0, � ≥ 0. The extended muliplier transformation Im(λ, �) on A(n) is
defined by the following infinite series

Im(λ, �)f (z) = z+
∞∑

k=n+1

[
1 + λ(k − 1)+ �

1 + �

]m
akz

k . (1.6)

It follows from (1.6) that

I 0(λ, �)f (z) = f (z) ,

(1 + �)Im+1(λ, �)f (z) = (1 − λ+ �)Im(λ, �)f (z)+ λz(Im(λ, �)f (z))′ (λ > 0) (1.7)

and

Im1(λ, �)(Im2 (λ, �))f (z) = Im1+m2(λ, �)f (z) = Im2(λ, �)(Im1(λ, �))f (z) . (1.8)

We note that
1- Im(1, �)f (z) = Im� f (z)(see [7] and [8]);
2- Im(λ, 0)f (z) = Dmλ f (z)(see [2]);
3- Im(1, 0)f (z) = Dmf (z)(see [16]);
4- Im(1, 1)f (z) = Imf (z)(see [22]).
Also if f ∈ A(n), then we can write

Im(λ, �)f (z) = (f ∗ ϕmλ,�)(z) ,
where

ϕmλ,�(z) = z +
∞∑

k=n+1

[
1 + λ(k − 1)+ �

1 + �

]m
zk . (1.9)

2. Preliminaries

In order to prove our subordination and superordination results, we make use of the
following known definition and results.

DEFINITION 2 [11]. Denote by Q the set of all functions f (z) that are analytic and

injective on U\E(f ), where

E(f ) = {ζ : ζ ∈ ∂ and lim
z→ζ

f (z) = ∞} (2.1)

and are such that f ′(ζ ) 
= 0 for ζ ∈ ∂U\E(f ).
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LEMMA 1 [10]. Let the function q(z) be univalent in the unit disc U and let θand φ
be analytic in a domain D containing q(U) with ϕ(w) 
= 0 when w ∈ q(U). Set Q(z) =
zq ′(z)ϕ(q(z)) and h(z) = θ(q(z))+Q(z). Suppose that

(i) Q(z) is starlike univalent in U ,

(ii) Re

(
zh′(z)
Q(z)

)
> 0 for z ∈ U.

If p is analytic with p(0) = q(0), p(U) ⊆ D and

θ(p(z))+ zp′(z)ϕ(p(z)) ≺ θ(q(z))+ zq ′(z)ϕ(q(z)) , (2.2)

then

p(z) ≺ q(z)

and q(z) is the best dominant.

LEMMA 2 [17]. Let q be a convex univalent function in U and let ψ ∈ C, δ ∈ C∗ =
C\{0} with

Re

{
1 + zq ′′(z)

q ′(z)

}
> max

{
0,Re

(
ψ

δ

)}
.

If p(z) is analytic in U and

ψp(z)+ δzp′(z) ≺ ψq(z)+ δzq ′(z) , (2.3)

then

p(z) ≺ q(z) (z ∈ U)
and q is the best dominant.

LEMMA 3 [4]. Let q(z) be convex univalent in the unit disc U and let θ and ϕ be
analytic in a domain D containing q(U). Suppose that

(i) Re

{
θ ′(q(z))
ϕ(q(z))

}
> 0 for z ∈ U ;

(ii) zq ′(z)ϕ(q(z)) is starlike univalent in U.
If p(z) ∈ H [q(0), 1] ∩ Q, with p(U) ⊆ D, and θ(p(z)) + zp′(z)ϕ(p(z)) is univalent in U,
and

θ(q(z))+ zq ′(z)ϕ(q(z)) ≺ θ(p(z))+ zp′(z)ϕ(p(z)) , (2.4)

then

q(z) ≺ p(z) (z ∈ U)
and q(z) is the best subordinant.
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LEMMA 4 [11]. Let q be convex univalent in U and δ ∈ C. Further assume that

Re(δ) > 0. If p(z) ∈ H [q(0), 1] ∩Q and p(z)+ δzp′(z) is univalent in U, then

q(z)+ δzq ′(z) ≺ p(z)+ δzp′(z) , (2.5)

implies

q(z) ≺ p(z) (z ∈ U)
and q is the best subordinant.

This last lemma gives us a necessary and sufficient condition for the univalence of a
special function which will be used in some particular cases.

LEMMA 5 [15]. The function q(z) = (1 − z)−2ab is univalent in U if and only if
|2ab− 1| ≤ 1 or |2ab+ 1| ≤ 1.

3. Subordination for analytic functions

THEOREM 1. Let q be univalent in U, γ ∈ C∗, λ > 0 and 0 < α < 1. Suppose q
satisfies

Re

{
1 + zq

′′
(z)

q ′(z)

}
> max

{
0,− Re

(
α

γ

)}
. (3.1)

If f ∈ A(n), Im(λ, �)f (z) 
= 0 (z ∈ U∗ = U\{0}) and satisfies the subordination

Ψ (f, γ,m, λ, �, α) ≺ q(z)+ γ

α
zq ′(z) , (3.2)

where

Ψ (f, γ,m, λ, �, α) =
[

1 + γ

(
�+ 1

λ

)](
z

Im(λ, �)f (z)

)α

− γ

(
�+ 1

λ

)
Im+1(λ, �)f (z)

z

(
z

Im(λ, �)f (z)

)α+1

, (3.3)

then (
z

Im(λ, �)f (z)

)α
≺ q(z) (3.4)

and q is the best dominant of (3.2).

PROOF. Define the function p(z) by

p(z) =
(

z

Im(λ, �)f (z)

)α
(z ∈ U) . (3.5)
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Then the function p is analytic in U and p(0) = 1. Therefore, differentiating (3.5) logarith-
mically with respect to z and using the identity (1.7) in the resulting equation, we have[

1 + γ

(
�+ 1

λ

)](
z

Im(λ, �)f (z)

)α
− γ

(
�+ 1

λ

)
Im+1(λ, �)f (z)

z

(
z

Im(λ, �)f (z)

)α+1

= p(z)+ γ

α
zp′(z) . (3.6)

Using (3.6) and (3.2), we have

p(z)+ γ

α
zp′(z) ≺ q(z)+ γ

α
zq ′(z) . (3.7)

The assertion (3.4) of Theorem 1 now follows by an application of Lemma 2 with δ = γ
α
, 0 <

α < 1, and ψ = 1.

Taking q(z) = 1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1) in Theorem 1, we obtain the following

corollary.

COROLLARY 1. Let −1 ≤ B < A ≤ 1, γ ∈ C∗, λ > 0, 0 < α < 1 and

Re

{
1 − Bz

1 + Bz

}
> max

{
0,− Re

(
α

γ

)}
. If f (z) ∈ A(n), Im(λ, �)f (z) 
= 0 (z ∈ U∗) and

Ψ (f, γ,m, λ, �, α) ≺ 1 + Az

1 + Bz
+ γ (A− B)z

α(1 + Bz)2
, (3.8)

where Ψ (f, γ,m, λ, �, α) is given by (3.3), then(
z

Im(λ, �)f (z)

)α
≺ 1 + Az

1 + Bz
(3.9)

and
1 + Az

1 + Bz
is the best dominant of (3.8).

Taking A = 1 and B = −1 in Corollary 1, we obtain the following corollary.

COROLLARY 2. Let γ ∈ C∗, λ > 0, 0 < α < 1 and Re

{
1 + z

1 − z

}
>

max

{
0,− Re

(
α

γ

)}
. if f (z) ∈ A(n), Im(λ, �)f (z) 
= 0(z ∈ U∗) and

Ψ (f, γ,m, λ, �, α) ≺ 1 + z

1 − z
+ 2γ z

α(1 − z)2
, (3.10)

where Ψ (f, γ,m, λ, �, α) is given by (3.3), then(
z

Im(λ, �)f (z)

)α
≺ 1 + z

1 − z
(3.11)
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and
1 + z

1 − z
is the best dominant of (3.10).

THEOREM 2. Let q be univalent in U, γ,µ ∈ C∗, λ > 0, and 0 ≤ β ≤ 1. Let
f (z) ∈ A(n). Suppose q satisfies

Re

{
1 + zq

′′
(z)

q ′(z)
− zq ′(z)

q(z)

}
> 0 . (3.12)

If

1 + γµ[Φ(f, β,m, λ, �)− 1] ≺ 1 + γ
zq ′(z)
q(z)

, (3.13)

where

Φ(f, β,m, λ, �)

=
β

(
�+ 1

λ

)
Im+2(λ,�)f (z)+

[
(1−2β)

(
�+ 1

λ

)
+β

]
Im+1(λ,�)f (z)−(1−β)

(
�+ 1

λ
−1

)
Im(λ,�)f (z)

(1−β)Im(λ,�)f (z)+βIm+1(λ,�)f (z)
,

(3.14)

then {
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

}µ
≺ q(z) (3.15)

and q is the best dominant of (3.13).

PROOF. Define the function p(z) by

p(z) =
{
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

}µ
. (3.16)

Then a computation shows that

zp′(z)
p(z)

= µ[Φ(f, β,m, λ, �)− 1] , (3.17)

where Φ(f, β,m, λ, �) is given by (3.14). By setting

θ(w) = 1 and ϕ(w) = γ

w
, (3.18)

it can be easily observed that θ(w) is analytic in C, ϕ(w) is analytic in C∗, and that ϕ(w) 
=
0 (w ∈ C∗).Also, we let

Q(z) = zq ′(z)ϕ(q(z)) = γ
zq ′(z)
q(z)

, (3.19)
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and

h(z) = θ(q(z))+Q(z) = 1 + γ
zq ′(z)
q(z)

. (3.20)

From (3.12), we find that Q(z) is starlike univalent in U and that

Re

{
zh′(z)
Q(z)

}
= Re

{
1 + zq

′′
(z)

q ′(z) − zq ′(z)
q(z)

}
> 0 (3.21)

by the assertion (3.12) of Theorem 2. Thus, by applying Lemma 1, our proof of Theorem 2
is completed.

Putting n = 1, β = m = � = 0, λ = 1, γ = 1

ab
(a, b ∈ C∗), µ = a and q(z) =

(1 − z)−2ab in Theorem 2, then combining this together with Lemma 5, we obtain the next
result due to Obradovic et al. [13 , Theorem 1]:

COROLLARY 3 [13]. Let a, b ∈ C∗ such that |2ab − 1| ≤ 1 or |2ab + 1| ≤ 1. Let

f (z) ∈ A and suppose that
f (z)

z

= 0 for all z ∈ U. If

1 + 1

b

(
zf ′(z)
f (z)

− 1

)
≺ 1 + z

1 − z
(3.22)

then (
f (z)

z

)a
≺ (1 − z)−2ab , (3.23)

and (1 − z)−2ab is the best dominant of (3.22). (The power is the principal one).

REMARK 1. For a = 1, Corollary 3 reduces to the recent result of Srivastava and
Lashin [20,Theorem 3].

Putting n = 1, β = m = � = 0, λ = 1, γ = eiλ

ab cosλ

(
a, b ∈ C∗; |λ| < π

2

)
, µ = a

and q(z) = (1 − z)−2ab cos λe−iλ in Theorem 2, we obtain the result due to Aouf et al. [3,
Theorem 1]:

COROLLARY 4 [3]. Let a, b ∈ C∗ and |λ| <
π

2
, and suppose that∣∣2ab cosλe−iλ − 1

∣∣≤ 1 or
∣∣2ab cosλe−iλ + 1

∣∣ ≤ 1. Let f (z) ∈ A such that
f (z)

z

= 0

for all z ∈ U. If

1 + eiλ

b cosλ

(
zf ′(z)
f (z)

− 1

)
≺ 1 + z

1 − z
, (3.24)
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then (
f (z)

z

)a
≺ (1 − z)−2ab cosλeiλ , (3.25)

and (1 − z)−2ab cos λeiλ is the best dominant of (3.24). (The power is the principal one).

Putting m = � = 0, λ = β = 1, γ = 1

ab
(a, b ∈ C∗), µ = a and q(z) = (1 − z)−2ab in

Theorem 2, then combining this together with Lemma 5, we obtain the next result.

COROLLARY 5. Let a, b ∈ C∗ such that |2ab− 1| ≤ 1 or |2ab+ 1| ≤ 1.Let f (z) ∈
A(n) and suppose that f ′(z) 
= 0 for all z ∈ U. If

1 + 1

b

zf
′′
(z)

f ′(z)
≺ 1 + z

1 − z
, (3.26)

then

(f ′(z))a ≺ (1 − z)−2ab (3.27)

and (1 − z)−2ab is the best dominant of (3.26) . (The power is the principal one).

REMARK 2. For a = n = 1, Corollary 5 reduces to the recent result of Srivastava and
Lashin [20, Corollary 1].

Taking n = 1,m = � = β = 0, λ = 1, γ = 1

µ
(µ ∈ C∗) and q(z) =

(1 + Bz)
µ

(
A−B
B

)
(−1 ≤ B < A ≤ 1, B 
= 0) in Theorem 2, we get the following known

result obtained by Obradovic and Owa [14].

COROLLARY 6 [14]. Let −1 ≤ B < A ≤ 1, B 
= 0, µ ∈ C∗ such that∣∣µ (
A−B
B

) − 1
∣∣ ≤ 1 or

∣∣µ (
A−B
B

) + 1
∣∣ ≤ 1. Let f (z) ∈ A and suppose that

f (z)

z

= 0

for all z ∈ U. If

zf ′(z)
f (z)

≺ 1 + Az

1 + Bz
(z ∈ U) , (3.28)

then (
f (z)

z

)µ
≺ (1 + Bz)

µ
(
A−B
B

)
(µ ∈ C∗;B 
= 0) (3.29)

and (1 + Bz)
µ

(
A−B
B

)
is the best dominant of (3.28).

Taking n = 1, m = � = β = 0, λ = 1, γ = 1

µ
and q(z) = eµAz (−1 < A ≤ 1) in

Theorem 2, we get the following known result obtained by Obradovic and Owa [14].
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COROLLARY 7 [14]. Let −1 < A ≤ 1, µ ∈ C∗ such that |µA| ≤ π . Let f (z) ∈ A

and suppose that
f (z)

z

= 0 for all z ∈ U. If

zf ′(z)
f (z)

≺ 1 + Az (z ∈ U) , (3.30)

then (
f (z)

z

)µ
≺ eµAz (µ ∈ C∗) (3.31)

and eµAz is the best dominant of (3.30).

THEOREM 3. Let q(z) be univalent in U , γ 
= 0, δ, α ∈ C, and let 0 ≤ β ≤ 1. Let
f (z) ∈ A(n). Suppose q satisfies

Re

{
α

γ
+ 1 + zq

′′
(z)

q ′(z)

}
> 0 , (3.32)

and also Re( α
γ
) > 0. Let

Ψ (z) =
[
(1−β)Im(λ,�)f (z)+βIm+1(λ,�)f (z)

z

]µ
{α+ γµ[Φ(f, β,m, λ, �)− 1]} + δ , (3.33)

where Φ(f, β,m, λ, �) is given by (3.14). If

Ψ (z) ≺ αq(z)+ δ + γ zq ′(z) , (3.34)

then [
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
≺ q(z) (3.35)

and q(z) is the best dominant of (3.34).

PROOF. Define the function p(z) by

p(z) =
[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
. (3.36)

Differentiating (3.36) logarithmically with respect to z and using the identity (1.7) in the
resulting equation, we have

zp′(z)
p(z)

= µ[Φ(f, β,m, λ, �)− 1] , (3.37)

where Φ(f, β,m, λ, �) is defined by (3.14). From (3.37), we have

zp′(z) = µp(z)[Φ(f, β,m, λ, �)− 1] . (3.38)
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By setting

θ(w) = αw + δ ϕ(w) = γ , (3.39)

it can be easily observed that θ(w) and ϕ(w) are analytic in C. Also, we let

Q(z) = zq ′(z)ϕ(q(z)) = γ zq ′(z) (3.40)

and

h(z) = θ(q(z))+Q(z) = αq(z)+ δ + γ zq ′(z) . (3.41)

From (3.40), we find that Q(z) is starlike univalent in U , and that

Re

(
zh′(z)
Q(z)

)
= Re

{
α

γ
+ 1 + zq ′′(z)

q ′(z)

}
> 0 (3.42)

by the hypothesis (3.32) of Theorem 3. Thus, by applying Lemma 3, our proof of Theorem 3
is completed.

Taking m = � = 0, λ = β = 1, δ = −α and γ = 1 in Theorem 3, we obtain the
following result obtained by Shanmugam et al. [18, Corollary 3.10].

COROLLARY 8 [18]. Let q be univalent in U . Also let f ∈ A(n) and 1 + α > 0.
Suppose q satisfies

Re

{
α + 1 + zq ′′(z)

q ′(z)

}
> 0 , (3.43)

then

α{(f ′(z))µ − 1} + µ

{
zf

′′
(z)

f ′(z)
(f ′(z))µ

}
≺ αq(z)− α + zq ′(z) (3.44)

then

(f ′(z))µ ≺ q(z)

and q is the best dominant of (3.44).

REMARK 3. Taking q(z) = 1 + λ
(1+α)z, α ≥ 0 and 0 < λ ≤ 1 + α,in Corollary 8, we

obtain a recent result of Singh [19, Theorem 1(ii)].

4. Superordination for analytic function

THEOREM 4. Let q be convex univalent in U, γ ∈ C, λ > 0 and 0 < α < 1. Suppose

Re{γ } > 0 . (4.1)
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Let f (z) ∈ A(n), Im(λ, �)f (z) 
= 0 (z ∈ U∗) and

(
z

Im(λ, �)f (z)

)α
∈ H [q(0), 1] ∩Q. Let

Ψ (f, γ,m, λ, �, α) is univalent in U, where Ψ (f, γ,m, λ, �, α) is defined by (3.3). If

q(z)+ γ

α
zq ′(z) ≺ Ψ (f, γ,m, λ, �, α) , (4.2)

then

q(z) ≺
(

z

Im(λ, �)f (z)

)α
(4.3)

and q is the best subordinant of (4.1).

PROOF. Define the function p(z) by

p(z) =
(

z

Im(λ, �)f (z)

)α
(z ∈ U) . (4.4)

Differentiating (4.4) logarithmically with respect to z and using the identity (1.7) in the re-
sulting equation, we have

p(z)+ γ

α
zp′(z) ≺ Ψ (f, γ,m, λ, �, α) . (4.5)

Theorem 4 follows as an applying of Lemma 4.

Taking q(z) = 1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1) in Theorem 4, we obtain the following

corollary.

COROLLARY 9. Let −1 ≤ B < A ≤ 1, γ ∈ C,Re(γ ) > 0, λ > 0 and
0 < α < 1. Also let q be convex univalent in U. Suppose Im(λ, �)f (z) 
= 0 (z ∈ U∗)

and

(
z

Im(λ, �)f (z)

)α
∈ H [q(0), 1] ∩ Q. Let Ψ (f, γ,m, λ, �, α) is univalent in U, where

Ψ (f, γ,m, λ, �, α) is given by (3.3). If

γ (A− B)z

α(1 + Bz)2
+ 1 + Az

1 + Bz
≺ Ψ (f, γ,m, λ, �, α) , (4.6)

then

1 + Az

1 + Bz
≺

(
z

Im(λ, �)f (z)

)α
(4.7)

and
1 + Az

1 + Bz
is the best subordinant of (4.6).

The proof of the following theorem is similar to the proof of Theorem 4, so we state the
theorem without proof.
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THEOREM 5. Let q be convex univalent in U, γ ∈ C, 0 ≤ β ≤ 1, and f ∈ A(n).

Suppose

0 
=
[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
∈ H [q(0), 1] ∩Q,

and 1+γµ[Φ(f, β,m, λ, �)−1] is univalent in U, whereΦ(f, β,m, λ, �) is given by (3.14).
If

1 + γ
zq ′(z)
q(z)

≺ 1 + γµ[Φ(f, β,m, λ, �)− 1] , (4.8)

then

q(z) ≺
[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
(4.9)

and q is the best subordinant of (4.8).

THEOREM 6. Let q be convex univalent in U, γ ∈ C∗, δ, α ∈ C and let 0 ≤ β ≤ 1.

Let f ∈ A(n) and 0 
=
[
(1−β)Im(λ,�)f (z)+βIm+1(λ,�)f (z)

z

]µ
∈ H [q(0), 1] ∩ Q. Suppose q

satisfies

Re

{
α

γ
q ′(z)

}
> 0 . (4.10)

If

αq(z)+ δ + γ zq ′(z) ≺
[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
{α + γµ[Φ(f, β,m, λ, �)− 1]} + δ , (4.11)

where Φ(f, β,m, λ, �)) is given by (3.14). Then

q(z) ≺
[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
(4.12)

and q is the best subordinant of (4.11).

PROOF. Define the function p(z) by

p(z) =
[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
. (4.13)

Then a computation shows that

zp′(z)
p(z)

= µ[Φ(f, β,m, λ, �)− 1] , (4.14)
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where Φ(f, β,m, λ, �) is given by (3.14). Therefore, we have

zp′(z) = µp(z)[Φ(f, β,m, λ, �)− 1] . (4.15)

By setting

θ(w) = αw + δ , ϕ(w) = γ , (4.16)

it can be easily observed that both θ(w) and ϕ(w) are analytic in C. Now,

Re

{
θ ′(q(z))
ϕ(q(z))

}
= Re

{
αq ′(z)
γ

}
> 0 , (4.17)

by the hypothesis (4.10) of Theorem 6. Thus, by applying Lemma 3, our proof of Theorem 6
is completed.

5. Sandwich results

Combining the results of differential subordination and supordination, we state the fol-
lowing “sandwich results”.

THEOREM 7. Let q1 be convex univalent and let q2 be univalent in U, γ ∈ C∗, and

0 < α < 1. Suppose q1 satisfies (4.1) and q2 satisfies (3.1). If 0 
=
(

z

Im(λ, �)f (z)

)
∈

H [q(0), 1] ∩Q, Ψ (f, γ,m, λ, �, α) is univalent in U, where Ψ (f, γ,m, λ, �, α) is given by
(3.3), and

q1(z)+ γ

α
zq ′

1(z) ≺ Ψ (f, γ,m, λ, �, α) ≺ q2(z)+ γ

α
zq ′

2(z) , (5.1)

then

q1(z) ≺
(

z

Im(λ, �)f (z)

)α
≺ q2(z) (5.2)

and q1 and q2 are, respectively, the best subordinant and best dominant.

THEOREM 8. Let q1 be convex univalent and let q2 be univalent in U, γ,µ ∈
C∗, λ > 0, and 0 ≤ β ≤ 1. Let f (z) ∈ A(n). Suppose q2 satisfies (3.12), and 0 
=[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
∈ H [q(0), 1] ∩ Q,1 + γµ[Φ(f, β,m, λ, �)

−1] is univalent in U, where Φ(f, β,m, λ, �) is given by (3.14). If

1 + γ
zq ′

1(z)

q1(z)
≺ 1 + γµ[Φ(f, β,m, λ, �)− 1] ≺ 1 + γ

zq ′
2(z)

q2(z)
, (5.3)

then

q1(z) ≺
[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
≺ q2(z) (5.4)
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and q1 and q2 are, respectively, the best subordinant and the best dominant.

THEOREM 9. Let q1 be convex univalent and let q2 be univalent in U, γ,µ ∈
C∗, λ > 0 and 0 ≤ β ≤ 1. Suppose q1 satisfies (4.10), q2 satisfies (3.32), and 0 
=[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
∈ H [q(0), 1] ∩Q. Let

[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
{α + γµ[Φ(f, β,m, λ, �)− 1]} + δ (5.5)

is univalent in U. If

αq1(z)+ δ + γ zq ′
1(z) ≺

[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
{α+ γµ[Φ(f, β,m, λ, �)− 1]} + δ

≺ αq2(z)+ δ + γ zq ′
2(z) , (5.6)

then

q1(z) ≺
[
(1 − β)Im(λ, �)f (z)+ βIm+1(λ, �)f (z)

z

]µ
≺ q2(z) (5.7)

and q1 and q2 are, respectively, the best subordinant and the best dominant.
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