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Abstract. We consider stability of a stationary solution of Kolmogorov flow with a bottom friction. Any
solution of nonstationary problem which is periodic with respect to x, y with periods 2π/α, 2π is shown to tend to
the stationary solution as time tends to infinity when aspect ratio α is equal to or greater than 1.

1. Introduction

We shall treat a modified model of Kolmogorov flow, a plane periodic flow of an incom-
pressible fluid under the action of a spatially periodic external force in a thin layer (see [1],
[2]).

The corresponding Navier-Stokes equations in a stationary case take the form:


uux + vuy = −Px + ν�u− κu+ γ sin y ,
uvx + vvy = −Py + ν�v − κv ,

ux + vy = 0 ,
(1)

where the unknowns are velocity vector V (x, y) = t(u(x, y), v(x, y)) and pressure P(x, y),
and positive numbers ν, γ , κ mean the kinematic viscosity, the amplitude of the external force
F = t(γ sin y, 0) and the coefficient of the bottom friction which can be defined by κ ≡ 2ν/h2

with h, depth of the fluid layer.
We consider the problem under the conditions that V has periods 2π/α, 2π with respect

to x, y respectively. In addition, we shall require the following condition∫∫
D

V (x, y)dxdy = 0 , D ≡ {
(x, y) : |x| ≤ π/α, |y| ≤ π

}
(2)

be satisfied.
Introducing a stream functionψ(x, y), we reproduce the velocity as (u, v) = (ψy,−ψx).

As the pressure is known to be determined by the velocity, the problem is reduced to seeking
solutions of the equation

J (�ψ,ψ) = ν�2ψ − κ�ψ + γ cos y , J (f, g) ≡ fxgy − fygx (3)
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which are periodic with respect to x, y with periods 2π/α, 2π under the condition∫∫
D

ψdxdy = 0 , (4)

without loss of generality.
The problem (3) and (4) has a solution

ψ0(x, y) ≡ −γ (ν + κ)−1 cos y (5)

for any positive numbers γ , ν and κ . We call this ψ0 a basic solution.
We denote by X the completion of the pre-Hilbert space

X0 = {ψ ∈ C∞(R2) : ψ is periodic and satisfies (4).} ,
provided the inner product

(ψ1, ψ2) ≡
∫∫

D

�ψ1�ψ2dxdy .

Our result is stated as follows:

THEOREM 1. Let α ≥ 1. Then, for any positive ν, γ and κ , any solution of the
following nonstationary equation

∂

∂t
�ψ + J (�ψ,ψ) = ν�2ψ − κ�ψ + γ cos y (6)

which has periods 2π/α, 2π with respect to x, y and satisfy the condition (4) tends to the
basic solution ψ0 in X as t → ∞.

Iudovich [3] has given the same result when there is no friction parameter κ . Following
his method, we make the proof more precise.

2. Proof of the theorem

We shall seek solutions of (6) in the form ψ = ψ0 + Φ, where ψ0 is the basic solution
(5). Φ = Φ(t, x, y) satisfies the equation

∂

∂t
�Φ + γ

ν + κ
sin y

∂

∂x
(�Φ +Φ)+ J (�Φ,Φ)− ν�2Φ + κ�Φ = 0 . (7)

Multiplying (7) by�Φ +Φ and integrating overD, we obtain

1

2

d

dt
(J 2

2 (t)− J 2
1 (t))+ ν(J 2

3 (t)− J 2
2 (t))+ κ(J 2

2 (t)− J 2
1 (t)) = 0 , (8)

where Ji(t) (i = 1, 2, 3) are defined as follows:

J1(t)≡
(∫∫

D

(∇Φ)2dxdy
) 1

2

,
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J2(t)≡
(∫∫

D

(�Φ)2dxdy

) 1
2

,

J3(t)≡
(∫∫

D

(∇�Φ)2dxdy
) 1

2

.

Theorem means that J2(t) = ‖Φ‖X → 0 as t → ∞. We consider (8) separately in two cases,
α > 1 and α = 1, because the estimate for the case α = 1 is quite different from that for
α > 1.

2.1. The case where α > 1. Let Φ ∈ X expand in the Fourier series as

Φ(t, x, y) =
∑
k,


ck,
(t)e
i(kαx+
y) ,

where the summation is taken over all the pairs of integers but (k, 
) = (0, 0). Since we
assume that Φ satisfies the condition (4), we can put c0,0(t) ≡ 0.

We rewrite (8) as

1

2

d

dt
K2

1 (t)+ νK2
2 (t)+ κK2

1 (t) = 0 , (9)

where K2
1 (t) ≡ J 2

2 (t)− J 2
1 (t) and K2

2 (t) ≡ J 2
3 (t)− J 2

2 (t). We see K2
1 (t) ≤ K2

2 (t), since we
have

K2
2 (t)−K2

1 (t) = 4π2α−1
∑
k,


(k2α2 + 
2)(k2α2 + 
2 − 1)2c2
k,
(t) ≥ 0 (10)

for α ≥ 1. Then, from (9), we have

1

2

d

dt
K2

1 (t)+ (ν + κ)K2
1 (t) ≤ 0 .

The inequality above leads the following relation:

K2
1 (t) ≤ e−2(ν+κ)tK2

1 (0) . (11)

Therefore, we see that K2
1 (t) → 0 as t → ∞.

Next we shall seek a positive numberAwhich satisfiesK2
1 (t) ≥ AJ 2

2 (t) in order to show

that J 2
2 (t) → 0 as t → ∞.

We denote Φ by Φ = Φ1 +Φ2 +Φ3, where

Φ1(t, x, y)≡ c0,1(t)e
iy + c0,−1(t)e

−iy ,

Φ2(t, x, y)≡
∑


=±2,±3,...,±L
c0,
(t)e

i
y , L ≡ [α] + 1 ,

Φ3(t, x, y)≡Φ − (Φ1 +Φ2) .
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Here [α] means the largest positive integer which remains (0, α]. Note (Φi,Φj ) = 0 for

i 	= j . So we can denote J 2
i (t) of (8) by J 2

i (t) = J 2
i,1(t) + J 2

i,2(t) + J 2
i,3(t) (i = 1, 2, 3),

where

J1,j (t)≡
(∫∫

D

(∇Φj)2dxdy
) 1

2

,

J2,j (t)≡
(∫∫

D

(�Φj)
2dxdy

) 1
2

,

J3,j (t)≡
(∫∫

D

(∇�Φj)2dxdy
) 1

2

for j = 1, 2, 3 .

Also K2
i (t) of (9) can be written as K2

i (t) = K2
i,1(t) + K2

i,2(t) + K2
i,3(t) (i = 1, 2), where

K2
1,j (t) = J 2

2,j (t)− J 2
1,j (t) andK2

2,j (t) = J 2
3,j (t)− J 2

2,j (t) for j = 1, 2, 3.

We first note that K2
1,1(t) = K2

2,1(t) ≡ 0, since it holds

J 2
1,1(t) = J 2

2,1(t) = J 2
3,1(t) = 4π2α−1(c2

0,1(t)+ c2
0,−1(t)) .

And we have

K2
1,2(t)= 4π2α−1

∑

=±2,±3,...,±L


2(
2 − 1)c2
0,
(t) ≥ 0 ,

K2
1,3(t)= 4π2α−1

∑
(k,
) 	=(0,±1),··· ,(0,±L)

(k2α2 + 
2)(k2α2 + 
2 − 1)c2
k,
(t) ≥ 0 ,

K2
2,2(t)= 4π2α−1

∑

=±2,±3,...,±L


4(
2 − 1)c2
0,
(t) ≥ 0 ,

K2
2,3(t)= 4π2α−1

∑
(k,
) 	=(0,±1),...,(0,±L)

(k2α2 + 
2)2(k2α2 + 
2 − 1)c2
k,
(t) ≥ 0 .

Since K2
1,j (t) → 0 as t → ∞ for j = 2, 3 holds from (11), we seek a positive A which

satisfies K2
1,j (t) ≥ AJ 2

2,j (t) for j = 2, 3.

First we obtain

K2
1,2(t) ≥ 2−1J 2

2,2(t) , (12)

which follows from the fact

K2
1,2(t)− 2−1J 2

2,2(t) = 2π2α−1
∑


=±2,±3,...,±L

2(
2 − 2)c2

0,
(t) ≥ 0 .

And we also obtain the following inequality

K2
1,3(t) ≥ (1 − α−2)J 2

2,3(t) , (13)
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since it holds that for α > 1

K2
1,3(t)− (1−α−2)J 2

2,3(t) = 4π2α−1
∑

(k,
) 	=(0,±1),...,(0,±L)
(k2α2 +
2)(k2 +
2α−2 −1)c2

k,
(t)

is equal to or greater than 0. From (12) and (13), we obtain J2,j (t) → 0 as t → ∞ for
j = 2, 3.

If J2,1(t) also tends to 0 as t → ∞, then we can estimate J2(t). Multiplying (7) by
�Φ1(= −Φ1) and integrating overD, we have

1

2

d

dt
J 2

2,1(t)+ (ν + κ)J 2
2,1(t) =

∫∫
D

�Φ3
∂Φ3

∂x

∂Φ1

∂y
dxdy . (14)

We treat (14) from now, since (9) is insufficient to estimate J2,1(t).
The right-hand side of (14) can be estimated as∫∫

D

�Φ3
∂Φ3

∂x

∂Φ1

∂y
dxdy ≤CJ2,3(t)J1,3(t)J1,1(t)

≤CJ 2
2,3(t)J2,1(t) C ; const. ,

since we see
∣∣∣ ∂Φ1
∂y

∣∣∣ ≤ |c0,1(t)|+|c0,−1(t)| ≤ CJ1,1(t), J1,3(t) ≤ J2,3(t) and J1,1(t) = J2,1(t).

Then, from (14), we have

1

2

d

dt
J 2

2,1(t)+ (ν + κ)J 2
2,1(t) ≤ CJ 2

2,3(t)J2,1(t) . (15)

(13) andK2
1,3(t) ≤ e−2(ν+κ)tK2

1 (0) which follows from (11) lead

J 2
2,3(t) ≤ M(α)e−2(ν+κ)t ,

whereM(α) ≡ α2(α2 − 1)−1K2
1 (0). Then, from (15), it holds that

1

2

d

dt
J 2

2,1(t)+ (ν + κ)J 2
2,1(t) ≤ M(α)Ce−2(ν+κ)tJ2,1(t) ,

which is also written as

d

dt
{e(ν+κ)tJ2,1(t)} ≤ M(α)Ce−(ν+κ)t .

From the inequality above, we have

J2,1(t) ≤ J2,1(0)e−(ν+κ)t + (ν + κ)−1M(α)C{e−(ν+κ)t − e−2(ν+κ)t} .
Therefore, J2,1(t) goes to 0 as t → ∞ and the theorem has proved in the case of α > 1.
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2.2. The case where α = 1. Since (10) and (11) hold also for α = 1, we see that
K2

1 (t) → 0 as t → ∞.
We denote Φ by Φ = Φ4 +Φ5, where

Φ4 ≡
∑

k2+
2=1

ck,
(t)e
i(kx+
y) ,

Φ5 ≡Φ − Φ4 .

Note (Φ4,Φ5) = 0. Then, we also denote J 2
i (t) of (8) by J 2

i (t) = J 2
i,4(t) + J 2

i,5(t) (i =
1, 2, 3), where

J1,j (t)≡
(∫∫

D

(∇Φj )2dxdy
) 1

2

,

J2,j (t)≡
(∫∫

D

(�Φj )
2dxdy

) 1
2

,

J3,j (t)≡
(∫∫

D

(∇�Φj )2dxdy
) 1

2

for j = 4, 5 ,

and K2
i (t) of (9) by K2

i (t) = K2
i,4(t)+K2

i,5(t) (i = 1, 2), where K2
1,j (t) = J 2

2,j (t)− J 2
1,j (t)

and K2
2,j (t) = J 2

3,j (t)− J 2
2,j (t) for j = 4, 5.

We first note that K2
1,4(t) = K2

2,4(t) ≡ 0 follows from

J 2
1,4(t) = J 2

2,4(t) = J 2
3,4(t) = 4π2{c2

1,0(t)+ c2−1,0(t)+ c2
0,1(t)+ c2

0,−1(t)} . (16)

We also have

K2
1,5(t)= 4π2

∑
k2+
2≥2

(k2 + 
2)(k2 + 
2 − 1)c2
k,
(t) ≥ 0 ,

K2
2,5(t)= 4π2

∑
k2+
2≥2

(k2 + 
2)2(k2 + 
2 − 1)c2
k,
(t) ≥ 0 .

We find that K2
1 (t) → 0 as t → ∞ implies K2

1,5(t) = J 2
2,5(t) − J 2

1,5(t) → 0 as t → ∞.

J 2
2,5(t) is estimated as

K2
1,5(t) ≥ 2−1J 2

2,5(t) , (17)

since it holds that

K2
1,5(t)− 2−1J 2

2,5(t) = 2π2
∑

k2+
2≥2

(k2 + 
2)(k2 + 
2 − 2)c2
k,
(t) ≥ 0 .

Therefore, we obtain J 2
2,5(t) → 0 as t → ∞.
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Our next purpose is to show that J2,4(t) → 0 as t → ∞. Multiplying (7) by �Φ4 (=
−Φ4) and integrating it overD, we have

1

2

d

dt
J 2

2,4(t)+ (ν + κ)J 2
2,4(t) = G1(t)+G2(t) , (18)

where

G1(t)≡ γ (ν + κ)−1
∫∫

D

(�Φ5 +Φ5) sin y
∂�Φ4

∂x
dxdy ,

G2(t)≡
∫∫

D

(
�Φ5

∂Φ5

∂y

∂�Φ4

∂x
+�Φ5

∂Φ5

∂x

∂Φ4

∂y

)
dxdy .

Each Gi(t) (i = 1, 2) can be estimated as

G1(t)≤ γ (ν + κ)−1{J2,5(t)J3,4(t)+ J1,5(t)J3,4(t)}
≤ 2γ (ν + κ)−1J2,5(t)J3,4(t) = 2γ (ν + κ)−1J2,5(t)J2,4(t) ,

G2(t)≤ CJ2,5(t)J1,5(t)J1,4(t)

≤ CJ 2
2,5(t)J2,4(t) C ; const. ,

because of (16), J2,5(t) ≥ J1,5(t) and
∣∣∣∣∂�Φ4

∂x

∣∣∣∣ +
∣∣∣∣∂Φ4

∂y

∣∣∣∣ ≤ |c1,0(t)| + |c−1,0(t)| + |c0,1(t)| + |c0,−1(t)| ≤ CJ1,4(t) .

Then, from (18), we have

d

dt
{e(ν+κ)tJ2,4(t)} ≤ {2γ (ν + κ)−1J2,5(t)+ CJ 2

2,5(t)}e(ν+κ)t . (19)

J2,5(t) has been estimated by (17), and (11) leads

K2
1,5(t) ≤ e−2(ν+κ)tK2

1 (0) . (20)

Then, from (17) and (20), we have

J2,5(t) ≤ √
2e−(ν+κ)tK1(0) .

So the right-hand side of (19) is estimated as follows:

{2γ (ν + κ)−1J2,5(t)+ CJ 2
2,5(t)}e(ν+κ)t ≤ N1 + N2e

−(ν+κ)t ,

where N1 ≡ 2
√

2γ (ν + κ)−1K1(0) and N2 ≡ 2CK2
1 (0).

Thus, we obtain the following inequality from (19)

J2,4(t) ≤ {J2,4(0)+ N2(ν + κ)−1 + N1t}e−(ν+κ)t − N2(ν + κ)−1e−2(ν+κ)t ,

which implies that J2,4(t) → 0 as t → ∞. The theorem has proved in the case of α = 1.
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