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Stability of the Basic Solution of Kolmogorov Flow
with a Bottom Friction
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Abstract. We consider stability of a stationary solution of Kolmogorov flow with a bottom friction. Any
solution of nonstationary problem which is periodic with respect to x, y with periods 27 /e, 27 is shown to tend to
the stationary solution as time tends to infinity when aspect ratio « is equal to or greater than 1.

1. Introduction

We shall treat a modified model of Kolmogorov flow, a plane periodic flow of an incom-
pressible fluid under the action of a spatially periodic external force in a thin layer (see [1],
[2D.

The corresponding Navier-Stokes equations in a stationary case take the form:

uuy +vuy = —Py +vAu —ku+ ysiny,
uvy +vvy = — Py, + vAv — kv, (1)
uy +vy =0,

where the unknowns are velocity vector V (x, y) = (u(x, y), v(x, y)) and pressure P(x, y),
and positive numbers v, y, k¥ mean the kinematic viscosity, the amplitude of the external force
F =(y sin y, 0) and the coefficient of the bottom friction which can be defined by k = 2v/ h?
with A, depth of the fluid layer.

We consider the problem under the conditions that V has periods 27 /«, 2 with respect
to x, y respectively. In addition, we shall require the following condition

//D V(x,y)dxdy =0, D={(x,y) : x| <n/a, |yl <7} @)

be satisfied.

Introducing a stream function ¥ (x, y), we reproduce the velocity as (i, v) = (¥y, —¥y).
As the pressure is known to be determined by the velocity, the problem is reduced to seeking
solutions of the equation

J(AY, ) = vA*Y —kAY +ycosy,  J(f.9) = frgy — frox 3)
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which are periodic with respect to x, y with periods 27 /«, 2 under the condition

// Ydxdy =0, C))
D
without loss of generality.

The problem (3) and (4) has a solution

Yo(x,y) = -y +k)"'cosy ®)

for any positive numbers y, v and «. We call this ¥ a basic solution.
We denote by X the completion of the pre-Hilbert space

Xo={v e C>®(R?) : Y is periodic and satisfies (4).},

provided the inner product

W1, ¥2) = //D A1 Ayndxdy .

Our result is stated as follows:

THEOREM 1. Let « > 1. Then, for any positive v, y and k, any solution of the
following nonstationary equation

%m/wrf(mp, V) = vA%Y — k Ay + y cosy (6)

which has periods 2m /o, 27 with respect to x, y and satisfy the condition (4) tends to the
basic solution Yy in X ast — oo.

Tudovich [3] has given the same result when there is no friction parameter «. Following
his method, we make the proof more precise.

2. Proof of the theorem

We shall seek solutions of (6) in the form ¢ = 9 + @, where v is the basic solution
(5). @ = @(t, x, y) satisfies the equation

0
— AP +
Jat V4K

)
sinya(A®+CD)+J(Ad>,d>)—vA2CD + kAP =0. (7
Multiplying (7) by A® + @ and integrating over D, we obtain

1d

527 (O = T + 030 = S 0) + k(3 (1) = JF@0) =0, (8)

where J;(t) (i = 1,2, 3) are defined as follows:

%
Jﬂt)E(// (V@)dedy> ,
D
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%
Jz(t)z(// (A¢)2dxdy> ,
D

1

Ji(t) = </f (VAq>)2dxdy>7 )
D

Theorem means that J>(¢) = [|@||x — 0ast — oo. We consider (8) separately in two cases,
o > 1 and ¢ = 1, because the estimate for the case « = 1 is quite different from that for
o> 1.

2.1. The case where o > 1. Let @ € X expand in the Fourier series as
B, x,y) =) cre(n)eFT,
k.e

where the summation is taken over all the pairs of integers but (k, £) = (0,0). Since we
assume that @ satisfies the condition (4), we can put cg () = 0.
We rewrite (8) as

1d
EEK%@) +vK3(t) + kK1) =0, )

where K3(1) = J3(t) — J2(t) and K3(t) = J3(t) — J3(t). We see K#(t) < K3 (1), since we
have

K2(t) — K3(t) = 4n’a™! Z(kzozz + ) (K2 + 02 — 12 (1) = 0 (10)
k,l

for o > 1. Then, from (9), we have

ld 2
EEKl(t)"i_(V'i_K)Kl(t) <0.

The inequality above leads the following relation:
K () < e 20+ g2(0) (11)

Therefore, we see that Klz(t) — Qast — oo.
Next we shall seek a positive number A which satisfies K lz(t) > AJZ2 (t) in order to show

that J3(t) — 0 ast — oo.
We denote @ by @ = &1 + &, + @3, where

®i(t,x, y) = co.1(1)e” +co—1(e™,

Ot x, )= Y coue, L=la]+1,

D3(t,x, ) =D — (D1 + D).
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Here [o] means the largest positive integer which remains (0, «]. Note (®;, ®;) = 0 for
i # j. Sowe can denote JZ(1) of (8) by JZ(1) = JZ (1) + JH 1) + J5H1) (i = 1,2,3),
where

Ji(t) = <//D(Vq>,~)2dxdy)7 ,
3
Do, (1) = <//D(Aq§j)2dxdy>

2
J3,,-(t)z</f (VAqu)zdxdy> forj=1,2,3.
D

Also K2 (1) of (9) can be written as K7(1) = K2 (1) + K2,(1) + K25(1) (i = 1,2), where
K%’j(r) = Jij(t) - Jﬁj(t) and K%gj(t) = Jij(t) - Jij(t) forj=1,2,3.
We first note that K12 @) = K22 (&) = 0, since it holds

T2 () = J3,(0) = J3 (1) = AmPe (e 1 (1) + 51 (1) .
And we have

Ki () =dr’e™" Y (= Dej, 1) =0,
{=42,43,...,£L

K} 4(t) =4n*a”! > (2a? + ) (K2 + € — D)} (1) = 0,
(k,£)#(0,£1),---,(0,£L)

K3 () =4n?e™" Y =D, =0,
{=+2,+3,...,.+L

K35(1) =4n’a™! > (K*a? + 02 (kKPo* + €* — e} (1) 2 0.
(k,£)#(0,£1),...,(0,£L)

Since Klzgj(t) — 0ast — oo for j = 2,3 holds from (11), we seek a positive A which
satisfies K7 ;(1) = AJ3 (1) for j = 2,3.
First we obtain
K ) =27"05,0), (12)

which follows from the fact

Ki ) —27'05,(1) = 2n%a”! Z 0 =2)cf (1) = 0.
(=+£2,4£3,..., +L

And we also obtain the following inequality

Kis() =1 —a 2350, (13)
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since it holds that for o > 1

Kis(0) = (1=a™)J35() = 4x’a”! > K AE+ a0
(k,£)#(0,£1),...,(0,£L)

is equal to or greater than 0. From (12) and (13), we obtain J () — 0 ast — oo for
j=2,3.

If J2,1(¢) also tends to 0 as ¢t — oo, then we can estimate J2(¢). Multiplying (7) by
A®| (= —P) and integrating over D, we have

0Pz 09

1d
2 J21([)+(V+K)J21(t)—// A§D3—a—d xdy . (14)

We treat (14) from now, since (9) is insufficient to estimate J» 1(¢).

The right-hand side of (14) can be estimated as

0P3 0P
3——dxdy <Ch3®)J13()J110)
< CJ2!3(t)J2,1(t) C ; const. ,

since we see ‘aa% < leo1(I+lco,~1(D] = CI1,1(1), J1.3(1) < J23() and Jy 1 () = J2,1(2).
Then, from (14), we have

1d
2dt

Jz](t)+(V+K)J21(t) <CJ23(t)J21(t) (15)
(13) and K§ 5(1) < e 20"F K F(0) which follows from (11) lead
J33(t) < M(@)e 21,

where M () = a*(a? — 1)"'K?(0). Then, from (15), it holds that

d
VT — I3+ W+ k)3 (1) < M(@)Ce 2T (1)

which is also written as

d

AT (0] < M) Cem "
From the inequality above, we have

D10 < D10 TN+ (v + )T M) Clem TN — 720 HOr

Therefore, J>,1(¢) goes to 0 as t — oo and the theorem has proved in the case of « > 1.
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2.2. The case where ¢ = 1. Since (10) and (11) hold also for « = 1, we see that
Klz(t) — Qast — oo.
We denote @ by @ = @4 + 5, where

Py= Y cpe)e T,
k2+02=1
Ds=P — Py

Note (@4, 5) = 0. Then, we also denote J2(t) of (8) by JZ(1) = J2,(1) + J35(1) (i =

1,2,3), where
1
Jl,j(t)s(// (Vq§j)2dxdy>2 ,
D
1
2
D (1) = (// (Aéj)zdxdy) ,
D

1
2
J3, (1) = (// (VA@j)zdxdy) forj =4,5,
D

and K2(1) of (9) by K7 (1) = K7,(1) + K75(1) (i = 1,2), where K{ (1) = J3 ;(t) = J{ ; (1)
and Kzz!j (t) = J32J(t) - Jz%j(;) for j =4, 5.
We first note that K7 ,(1) = K3 ,(t) = 0 follows from
JE(0) = J34(0) = J34(0) = 4n2{c} o (1) + 2 o) + 3 () + g (). (16)
We also have

Kis@)y=4n> Y (K + K+ — e ,(1) =0,
k2+¢2>2

K3st)y=4n® Y K+ K+ —Deg (1) =0,
k2+402>2

We find that K(1) — 0 as ¢ — oo implies K{ 5(t) = J35(1) — J{5(t) — Oast — oc.
J225(t) is estimated as

Kis) =217, (17)
since it holds that

Kist) =27 55ty =21 Y (K + (K + £ =2)ci (1) = 0.
k2+402>2

Therefore, we obtain J22 5(t) > Oast — oo.
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Our next purpose is to show that J> 4(t) — 0 ast — oco. Multiplying (7) by A®4 (=
—@4) and integrating it over D, we have

1d
577 2O+ 0+ OI,0) = Gi() + Ga0), (18)

where

ax

Ibs JAD IDs Jb
Gz(t)E// APs— 20278 L Aps T T ) rdy
D dy ox dx dy

G =yW+r)"! ff (Ads + Bs) sin y o024
D

Each G;(t) (i =1, 2) can be estimated as

Gi() <y + ) 250 J3,4(0) + J15()J3,4(0)
<2y + )" s a0 =2y 0 + ) 50 124(0)
Ga(1) < CJa5(1)J1,5(1) J1,4(1)
< CJiS(t)J2,4(t) C ; const.,
because of (16), J2 5(t) > J1 5(¢) and
0Py

dy

0ADy
‘ < le1,0®)] + le—1,0®)] + lco,1 ()] + |co,—1(D)] < CJ1,4() .

0x

Then, from (18), we have
%{e(”“’h,m)} <2y 4" hs) + CIps)}eV T (19)
J2,5(t) has been estimated by (17), and (11) leads
Kis(t) < e 20 KE0). (20)
Then, from (17) and (20), we have
D.5(t) < V2"V (0).
So the right-hand side of (19) is estimated as follows:
Ry 41" st) + CI3 50} T < Nj 4 Nye™ T

where N1 = 2+/2y (v +«) "' K1(0) and N, = 2CK#(0).
Thus, we obtain the following inequality from (19)

J2.4(t) < {J2.4(0) + Na(v 4+ k)1 4+ Nytye VT — Ny(u 4 i) ~Le 20001

which implies that J> 4(t) — 0 as t — oo. The theorem has proved in the case of ¢ = 1.
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