Stability of the Basic Solution of Kolmogorov Flow with a Bottom Friction

Mami MATSUDA

(Communicated by K. Shinoda)

Abstract

We consider stability of a stationary solution of Kolmogorov flow with a bottom friction. Any solution of nonstationary problem which is periodic with respect to x, y with periods $2 \pi / \alpha, 2 \pi$ is shown to tend to the stationary solution as time tends to infinity when aspect ratio α is equal to or greater than 1 .

1. Introduction

We shall treat a modified model of Kolmogorov flow, a plane periodic flow of an incompressible fluid under the action of a spatially periodic external force in a thin layer (see [1], [2]).

The corresponding Navier-Stokes equations in a stationary case take the form:

$$
\left\{\begin{array}{l}
u u_{x}+v u_{y}=-P_{x}+v \Delta u-\kappa u+\gamma \sin y \tag{1}\\
u v_{x}+v v_{y}=-P_{y}+v \Delta v-\kappa v \\
u_{x}+v_{y}=0
\end{array}\right.
$$

where the unknowns are velocity vector $V(x, y)=^{t}(u(x, y), v(x, y))$ and pressure $P(x, y)$, and positive numbers v, γ, κ mean the kinematic viscosity, the amplitude of the external force $F={ }^{t}(\gamma \sin y, 0)$ and the coefficient of the bottom friction which can be defined by $\kappa \equiv 2 \nu / h^{2}$ with h, depth of the fluid layer.

We consider the problem under the conditions that V has periods $2 \pi / \alpha, 2 \pi$ with respect to x, y respectively. In addition, we shall require the following condition

$$
\begin{equation*}
\iint_{D} V(x, y) d x d y=0, \quad D \equiv\{(x, y):|x| \leq \pi / \alpha,|y| \leq \pi\} \tag{2}
\end{equation*}
$$

be satisfied.
Introducing a stream function $\psi(x, y)$, we reproduce the velocity as $(u, v)=\left(\psi_{y},-\psi_{x}\right)$. As the pressure is known to be determined by the velocity, the problem is reduced to seeking solutions of the equation

$$
\begin{equation*}
J(\Delta \psi, \psi)=v \Delta^{2} \psi-\kappa \Delta \psi+\gamma \cos y, \quad J(f, g) \equiv f_{x} g_{y}-f_{y} g_{x} \tag{3}
\end{equation*}
$$

which are periodic with respect to x, y with periods $2 \pi / \alpha, 2 \pi$ under the condition

$$
\begin{equation*}
\iint_{D} \psi d x d y=0 \tag{4}
\end{equation*}
$$

without loss of generality.
The problem (3) and (4) has a solution

$$
\begin{equation*}
\psi_{0}(x, y) \equiv-\gamma(\nu+\kappa)^{-1} \cos y \tag{5}
\end{equation*}
$$

for any positive numbers γ, ν and κ. We call this ψ_{0} a basic solution.
We denote by X the completion of the pre-Hilbert space

$$
X_{0}=\left\{\psi \in C^{\infty}\left(R^{2}\right): \psi \text { is periodic and satisfies (4). }\right\}
$$

provided the inner product

$$
\left(\psi_{1}, \psi_{2}\right) \equiv \iint_{D} \Delta \psi_{1} \Delta \psi_{2} d x d y
$$

Our result is stated as follows:
THEOREM 1. Let $\alpha \geq 1$. Then, for any positive ν, γ and κ, any solution of the following nonstationary equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \Delta \psi+J(\Delta \psi, \psi)=v \Delta^{2} \psi-\kappa \Delta \psi+\gamma \cos y \tag{6}
\end{equation*}
$$

which has periods $2 \pi / \alpha$, 2π with respect to x, y and satisfy the condition (4) tends to the basic solution ψ_{0} in X as $t \rightarrow \infty$.

Iudovich [3] has given the same result when there is no friction parameter κ. Following his method, we make the proof more precise.

2. Proof of the theorem

We shall seek solutions of (6) in the form $\psi=\psi_{0}+\Phi$, where ψ_{0} is the basic solution (5). $\Phi=\Phi(t, x, y)$ satisfies the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \Delta \Phi+\frac{\gamma}{v+\kappa} \sin y \frac{\partial}{\partial x}(\Delta \Phi+\Phi)+J(\Delta \Phi, \Phi)-v \Delta^{2} \Phi+\kappa \Delta \Phi=0 \tag{7}
\end{equation*}
$$

Multiplying (7) by $\Delta \Phi+\Phi$ and integrating over D, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(J_{2}^{2}(t)-J_{1}^{2}(t)\right)+v\left(J_{3}^{2}(t)-J_{2}^{2}(t)\right)+\kappa\left(J_{2}^{2}(t)-J_{1}^{2}(t)\right)=0 \tag{8}
\end{equation*}
$$

where $J_{i}(t)(i=1,2,3)$ are defined as follows:

$$
J_{1}(t) \equiv\left(\iint_{D}(\nabla \Phi)^{2} d x d y\right)^{\frac{1}{2}}
$$

$$
\begin{aligned}
& J_{2}(t) \equiv\left(\iint_{D}(\Delta \Phi)^{2} d x d y\right)^{\frac{1}{2}} \\
& J_{3}(t) \equiv\left(\iint_{D}(\nabla \Delta \Phi)^{2} d x d y\right)^{\frac{1}{2}}
\end{aligned}
$$

Theorem means that $J_{2}(t)=\|\Phi\|_{X} \rightarrow 0$ as $t \rightarrow \infty$. We consider (8) separately in two cases, $\alpha>1$ and $\alpha=1$, because the estimate for the case $\alpha=1$ is quite different from that for $\alpha>1$.
2.1. The case where $\alpha>1$. Let $\Phi \in X$ expand in the Fourier series as

$$
\Phi(t, x, y)=\sum_{k, \ell} c_{k, \ell}(t) e^{i(k \alpha x+\ell y)},
$$

where the summation is taken over all the pairs of integers but $(k, \ell)=(0,0)$. Since we assume that Φ satisfies the condition (4), we can put $c_{0,0}(t) \equiv 0$.

We rewrite (8) as

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} K_{1}^{2}(t)+\nu K_{2}^{2}(t)+\kappa K_{1}^{2}(t)=0 \tag{9}
\end{equation*}
$$

where $K_{1}^{2}(t) \equiv J_{2}^{2}(t)-J_{1}^{2}(t)$ and $K_{2}^{2}(t) \equiv J_{3}^{2}(t)-J_{2}^{2}(t)$. We see $K_{1}^{2}(t) \leq K_{2}^{2}(t)$, since we have

$$
\begin{equation*}
K_{2}^{2}(t)-K_{1}^{2}(t)=4 \pi^{2} \alpha^{-1} \sum_{k, \ell}\left(k^{2} \alpha^{2}+\ell^{2}\right)\left(k^{2} \alpha^{2}+\ell^{2}-1\right)^{2} c_{k, \ell}^{2}(t) \geq 0 \tag{10}
\end{equation*}
$$

for $\alpha \geq 1$. Then, from (9), we have

$$
\frac{1}{2} \frac{d}{d t} K_{1}^{2}(t)+(\nu+\kappa) K_{1}^{2}(t) \leq 0
$$

The inequality above leads the following relation:

$$
\begin{equation*}
K_{1}^{2}(t) \leq e^{-2(\nu+\kappa) t} K_{1}^{2}(0) . \tag{11}
\end{equation*}
$$

Therefore, we see that $K_{1}^{2}(t) \rightarrow 0$ as $t \rightarrow \infty$.
Next we shall seek a positive number A which satisfies $K_{1}^{2}(t) \geq A J_{2}^{2}(t)$ in order to show that $J_{2}^{2}(t) \rightarrow 0$ as $t \rightarrow \infty$.

We denote Φ by $\Phi=\Phi_{1}+\Phi_{2}+\Phi_{3}$, where

$$
\begin{aligned}
\Phi_{1}(t, x, y) & \equiv c_{0,1}(t) e^{i y}+c_{0,-1}(t) e^{-i y}, \\
\Phi_{2}(t, x, y) & \equiv \sum_{\ell= \pm 2, \pm 3, \ldots, \pm L} c_{0, \ell}(t) e^{i \ell y}, \quad L \equiv[\alpha]+1, \\
\Phi_{3}(t, x, y) & \equiv \Phi-\left(\Phi_{1}+\Phi_{2}\right) .
\end{aligned}
$$

Here $[\alpha]$ means the largest positive integer which remains $(0, \alpha]$. Note $\left(\Phi_{i}, \Phi_{j}\right)=0$ for $i \neq j$. So we can denote $J_{i}^{2}(t)$ of (8) by $J_{i}^{2}(t)=J_{i, 1}^{2}(t)+J_{i, 2}^{2}(t)+J_{i, 3}^{2}(t)(i=1,2,3)$, where

$$
\begin{aligned}
J_{1, j}(t) & \equiv\left(\iint_{D}\left(\nabla \Phi_{j}\right)^{2} d x d y\right)^{\frac{1}{2}}, \\
J_{2, j}(t) & \equiv\left(\iint_{D}\left(\Delta \Phi_{j}\right)^{2} d x d y\right)^{\frac{1}{2}}, \\
J_{3, j}(t) & \equiv\left(\iint_{D}\left(\nabla \Delta \Phi_{j}\right)^{2} d x d y\right)^{\frac{1}{2}} \quad \text { for } j=1,2,3 .
\end{aligned}
$$

Also $K_{i}^{2}(t)$ of (9) can be written as $K_{i}^{2}(t)=K_{i, 1}^{2}(t)+K_{i, 2}^{2}(t)+K_{i, 3}^{2}(t)(i=1,2)$, where $K_{1, j}^{2}(t)=J_{2, j}^{2}(t)-J_{1, j}^{2}(t)$ and $K_{2, j}^{2}(t)=J_{3, j}^{2}(t)-J_{2, j}^{2}(t)$ for $j=1,2,3$.

We first note that $K_{1,1}^{2}(t)=K_{2,1}^{2}(t) \equiv 0$, since it holds

$$
J_{1,1}^{2}(t)=J_{2,1}^{2}(t)=J_{3,1}^{2}(t)=4 \pi^{2} \alpha^{-1}\left(c_{0,1}^{2}(t)+c_{0,-1}^{2}(t)\right) .
$$

And we have

$$
\begin{aligned}
& K_{1,2}^{2}(t)=4 \pi^{2} \alpha^{-1} \sum_{\ell= \pm 2, \pm 3, \ldots, \pm L} \ell^{2}\left(\ell^{2}-1\right) c_{0, \ell}^{2}(t) \geq 0 \\
& K_{1,3}^{2}(t)=4 \pi^{2} \alpha^{-1} \sum_{(k, \ell) \neq(0, \pm 1), \cdots,(0, \pm L)}\left(k^{2} \alpha^{2}+\ell^{2}\right)\left(k^{2} \alpha^{2}+\ell^{2}-1\right) c_{k, \ell}^{2}(t) \geq 0 \\
& K_{2,2}^{2}(t)=4 \pi^{2} \alpha^{-1} \sum_{\ell= \pm 2, \pm 3, \ldots, \pm L} \ell^{4}\left(\ell^{2}-1\right) c_{0, \ell}^{2}(t) \geq 0 \\
& K_{2,3}^{2}(t)=4 \pi^{2} \alpha^{-1} \sum_{(k, \ell) \neq(0, \pm 1), \ldots,(0, \pm L)}\left(k^{2} \alpha^{2}+\ell^{2}\right)^{2}\left(k^{2} \alpha^{2}+\ell^{2}-1\right) c_{k, \ell}^{2}(t) \geq 0
\end{aligned}
$$

Since $K_{1, j}^{2}(t) \rightarrow 0$ as $t \rightarrow \infty$ for $j=2,3$ holds from (11), we seek a positive A which satisfies $K_{1, j}^{2}(t) \geq A J_{2, j}^{2}(t)$ for $j=2,3$.

First we obtain

$$
\begin{equation*}
K_{1,2}^{2}(t) \geq 2^{-1} J_{2,2}^{2}(t) \tag{12}
\end{equation*}
$$

which follows from the fact

$$
K_{1,2}^{2}(t)-2^{-1} J_{2,2}^{2}(t)=2 \pi^{2} \alpha^{-1} \sum_{\ell= \pm 2, \pm 3, \ldots, \pm L} \ell^{2}\left(\ell^{2}-2\right) c_{0, \ell}^{2}(t) \geq 0
$$

And we also obtain the following inequality

$$
\begin{equation*}
K_{1,3}^{2}(t) \geq\left(1-\alpha^{-2}\right) J_{2,3}^{2}(t), \tag{13}
\end{equation*}
$$

since it holds that for $\alpha>1$
$K_{1,3}^{2}(t)-\left(1-\alpha^{-2}\right) J_{2,3}^{2}(t)=4 \pi^{2} \alpha^{-1} \sum_{(k, \ell) \neq(0, \pm 1), \ldots,(0, \pm L)}\left(k^{2} \alpha^{2}+\ell^{2}\right)\left(k^{2}+\ell^{2} \alpha^{-2}-1\right) c_{k, \ell}^{2}(t)$
is equal to or greater than 0 . From (12) and (13), we obtain $J_{2, j}(t) \rightarrow 0$ as $t \rightarrow \infty$ for $j=2,3$.

If $J_{2,1}(t)$ also tends to 0 as $t \rightarrow \infty$, then we can estimate $J_{2}(t)$. Multiplying (7) by $\Delta \Phi_{1}\left(=-\Phi_{1}\right)$ and integrating over D, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} J_{2,1}^{2}(t)+(v+\kappa) J_{2,1}^{2}(t)=\iint_{D} \Delta \Phi_{3} \frac{\partial \Phi_{3}}{\partial x} \frac{\partial \Phi_{1}}{\partial y} d x d y \tag{14}
\end{equation*}
$$

We treat (14) from now, since (9) is insufficient to estimate $J_{2,1}(t)$.
The right-hand side of (14) can be estimated as

$$
\begin{aligned}
\iint_{D} \Delta \Phi_{3} \frac{\partial \Phi_{3}}{\partial x} \frac{\partial \Phi_{1}}{\partial y} d x d y & \leq C J_{2,3}(t) J_{1,3}(t) J_{1,1}(t) \\
& \leq C J_{2,3}^{2}(t) J_{2,1}(t) \quad C ; \text { const. }
\end{aligned}
$$

since we see $\left|\frac{\partial \Phi_{1}}{\partial y}\right| \leq\left|c_{0,1}(t)\right|+\left|c_{0,-1}(t)\right| \leq C J_{1,1}(t), J_{1,3}(t) \leq J_{2,3}(t)$ and $J_{1,1}(t)=J_{2,1}(t)$. Then, from (14), we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} J_{2,1}^{2}(t)+(v+\kappa) J_{2,1}^{2}(t) \leq C J_{2,3}^{2}(t) J_{2,1}(t) \tag{15}
\end{equation*}
$$

(13) and $K_{1,3}^{2}(t) \leq e^{-2(\nu+\kappa) t} K_{1}^{2}(0)$ which follows from (11) lead

$$
J_{2,3}^{2}(t) \leq M(\alpha) e^{-2(\nu+\kappa) t},
$$

where $M(\alpha) \equiv \alpha^{2}\left(\alpha^{2}-1\right)^{-1} K_{1}^{2}(0)$. Then, from (15), it holds that

$$
\frac{1}{2} \frac{d}{d t} J_{2,1}^{2}(t)+(v+\kappa) J_{2,1}^{2}(t) \leq M(\alpha) C e^{-2(v+\kappa) t} J_{2,1}(t)
$$

which is also written as

$$
\frac{d}{d t}\left\{e^{(v+\kappa) t} J_{2,1}(t)\right\} \leq M(\alpha) C e^{-(\nu+\kappa) t}
$$

From the inequality above, we have

$$
J_{2,1}(t) \leq J_{2,1}(0) e^{-(v+\kappa) t}+(v+\kappa)^{-1} M(\alpha) C\left\{e^{-(v+\kappa) t}-e^{-2(v+\kappa) t}\right\} .
$$

Therefore, $J_{2,1}(t)$ goes to 0 as $t \rightarrow \infty$ and the theorem has proved in the case of $\alpha>1$.
2.2. The case where $\alpha=1$. Since (10) and (11) hold also for $\alpha=1$, we see that $K_{1}^{2}(t) \rightarrow 0$ as $t \rightarrow \infty$.

We denote Φ by $\Phi=\Phi_{4}+\Phi_{5}$, where

$$
\begin{aligned}
& \Phi_{4} \equiv \sum_{k^{2}+\ell^{2}=1} c_{k, \ell}(t) e^{i(k x+\ell y)}, \\
& \Phi_{5} \equiv \Phi-\Phi_{4}
\end{aligned}
$$

Note $\left(\Phi_{4}, \Phi_{5}\right)=0$. Then, we also denote $J_{i}^{2}(t)$ of (8) by $J_{i}^{2}(t)=J_{i, 4}^{2}(t)+J_{i, 5}^{2}(t)(i=$ $1,2,3$), where

$$
\begin{aligned}
J_{1, j}(t) & \equiv\left(\iint_{D}\left(\nabla \Phi_{j}\right)^{2} d x d y\right)^{\frac{1}{2}} \\
J_{2, j}(t) & \equiv\left(\iint_{D}\left(\Delta \Phi_{j}\right)^{2} d x d y\right)^{\frac{1}{2}} \\
J_{3, j}(t) & \equiv\left(\iint_{D}\left(\nabla \Delta \Phi_{j}\right)^{2} d x d y\right)^{\frac{1}{2}} \quad \text { for } j=4,5
\end{aligned}
$$

and $K_{i}^{2}(t)$ of (9) by $K_{i}^{2}(t)=K_{i, 4}^{2}(t)+K_{i, 5}^{2}(t)(i=1,2)$, where $K_{1, j}^{2}(t)=J_{2, j}^{2}(t)-J_{1, j}^{2}(t)$ and $K_{2, j}^{2}(t)=J_{3, j}^{2}(t)-J_{2, j}^{2}(t)$ for $j=4,5$.

We first note that $K_{1,4}^{2}(t)=K_{2,4}^{2}(t) \equiv 0$ follows from

$$
\begin{equation*}
J_{1,4}^{2}(t)=J_{2,4}^{2}(t)=J_{3,4}^{2}(t)=4 \pi^{2}\left\{c_{1,0}^{2}(t)+c_{-1,0}^{2}(t)+c_{0,1}^{2}(t)+c_{0,-1}^{2}(t)\right\} \tag{16}
\end{equation*}
$$

We also have

$$
\begin{aligned}
& K_{1,5}^{2}(t)=4 \pi^{2} \sum_{k^{2}+\ell^{2} \geq 2}\left(k^{2}+\ell^{2}\right)\left(k^{2}+\ell^{2}-1\right) c_{k, \ell}^{2}(t) \geq 0, \\
& K_{2,5}^{2}(t)=4 \pi^{2} \sum_{k^{2}+\ell^{2} \geq 2}\left(k^{2}+\ell^{2}\right)^{2}\left(k^{2}+\ell^{2}-1\right) c_{k, \ell}^{2}(t) \geq 0 .
\end{aligned}
$$

We find that $K_{1}^{2}(t) \rightarrow 0$ as $t \rightarrow \infty$ implies $K_{1,5}^{2}(t)=J_{2,5}^{2}(t)-J_{1,5}^{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. $J_{2,5}^{2}(t)$ is estimated as

$$
\begin{equation*}
K_{1,5}^{2}(t) \geq 2^{-1} J_{2,5}^{2}(t), \tag{17}
\end{equation*}
$$

since it holds that

$$
K_{1,5}^{2}(t)-2^{-1} J_{2,5}^{2}(t)=2 \pi^{2} \sum_{k^{2}+\ell^{2} \geq 2}\left(k^{2}+\ell^{2}\right)\left(k^{2}+\ell^{2}-2\right) c_{k, \ell}^{2}(t) \geq 0 .
$$

Therefore, we obtain $J_{2,5}^{2}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Our next purpose is to show that $J_{2,4}(t) \rightarrow 0$ as $t \rightarrow \infty$. Multiplying (7) by $\Delta \Phi_{4}$ ($=$ $-\Phi_{4}$) and integrating it over D, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} J_{2,4}^{2}(t)+(\nu+\kappa) J_{2,4}^{2}(t)=G_{1}(t)+G_{2}(t) \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
G_{1}(t) & \equiv \gamma(\nu+\kappa)^{-1} \iint_{D}\left(\Delta \Phi_{5}+\Phi_{5}\right) \sin y \frac{\partial \Delta \Phi_{4}}{\partial x} d x d y \\
G_{2}(t) & \equiv \iint_{D}\left(\Delta \Phi_{5} \frac{\partial \Phi_{5}}{\partial y} \frac{\partial \Delta \Phi_{4}}{\partial x}+\Delta \Phi_{5} \frac{\partial \Phi_{5}}{\partial x} \frac{\partial \Phi_{4}}{\partial y}\right) d x d y
\end{aligned}
$$

Each $G_{i}(t)(i=1,2)$ can be estimated as

$$
\begin{aligned}
G_{1}(t) & \leq \gamma(v+\kappa)^{-1}\left\{J_{2,5}(t) J_{3,4}(t)+J_{1,5}(t) J_{3,4}(t)\right\} \\
& \leq 2 \gamma(v+\kappa)^{-1} J_{2,5}(t) J_{3,4}(t)=2 \gamma(v+\kappa)^{-1} J_{2,5}(t) J_{2,4}(t), \\
G_{2}(t) & \leq C J_{2,5}(t) J_{1,5}(t) J_{1,4}(t) \\
& \leq C J_{2,5}^{2}(t) J_{2,4}(t) \quad C ; \text { const. },
\end{aligned}
$$

because of (16), $J_{2,5}(t) \geq J_{1,5}(t)$ and

$$
\left|\frac{\partial \Delta \Phi_{4}}{\partial x}\right|+\left|\frac{\partial \Phi_{4}}{\partial y}\right| \leq\left|c_{1,0}(t)\right|+\left|c_{-1,0}(t)\right|+\left|c_{0,1}(t)\right|+\left|c_{0,-1}(t)\right| \leq C J_{1,4}(t)
$$

Then, from (18), we have

$$
\begin{equation*}
\frac{d}{d t}\left\{e^{(\nu+\kappa) t} J_{2,4}(t)\right\} \leq\left\{2 \gamma(\nu+\kappa)^{-1} J_{2,5}(t)+C J_{2,5}^{2}(t)\right\} e^{(v+\kappa) t} \tag{19}
\end{equation*}
$$

$J_{2,5}(t)$ has been estimated by (17), and (11) leads

$$
\begin{equation*}
K_{1,5}^{2}(t) \leq e^{-2(\nu+\kappa) t} K_{1}^{2}(0) . \tag{20}
\end{equation*}
$$

Then, from (17) and (20), we have

$$
J_{2,5}(t) \leq \sqrt{2} e^{-(\nu+\kappa) t} K_{1}(0) .
$$

So the right-hand side of (19) is estimated as follows:

$$
\left\{2 \gamma(\nu+\kappa)^{-1} J_{2,5}(t)+C J_{2,5}^{2}(t)\right\} e^{(v+\kappa) t} \leq N_{1}+N_{2} e^{-(v+\kappa) t},
$$

where $N_{1} \equiv 2 \sqrt{2} \gamma(\nu+\kappa)^{-1} K_{1}(0)$ and $N_{2} \equiv 2 C K_{1}^{2}(0)$.
Thus, we obtain the following inequality from (19)

$$
J_{2,4}(t) \leq\left\{J_{2,4}(0)+N_{2}(v+\kappa)^{-1}+N_{1} t\right\} e^{-(v+\kappa) t}-N_{2}(v+\kappa)^{-1} e^{-2(v+\kappa) t}
$$

which implies that $J_{2,4}(t) \rightarrow 0$ as $t \rightarrow \infty$. The theorem has proved in the case of $\alpha=1$.

Acknowledgement. The author expresses her gratitude to Professor Sadao Miyatake and referees for continuous encouragement and invaluable suggestions.

References

[1] N. F. Bondarenko, M. Z. Gak and F. V. Dolzhanskir, Laboratory and theoretical models of plane periodic flows, Izv. Atmos. Oceanic Phys. 15 (1979), 711-716.
[2] M. Matsuda, Bifurcation of the Kolmogorov flow with an external friction, Tsukuba J. Math. 29, No. 1 (2005), 1-17.
[3] V. I. IUdovich, Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid, J. Appl. Math. Mech. 29 (1965), 527-544.

Present Address:
12-7-701 Daido 2, TENNOJi-Ku, OsaKa, 543-0052 Japan.

