Some Remarks on Subvarieties of Hopf Manifolds

Masahide KATO
Sophia University

Introduction

A holomorphic automorphism g of a complex space \mathfrak{X} is called a contraction to a point $O \in \mathfrak{X}$ if g satisfies the following three conditions:
(i) $g(O)=O$,
(ii) $\lim _{\nu \rightarrow+\infty} g^{\nu}(x)=O$ for any point $x \in \mathfrak{X}$,
(iii) for any small neighborhood U of O in \mathfrak{X}, there exists an integer ν_{0} such that $g^{\nu}(U) \subset U$ for all $\nu \geqq \nu_{0}$,
where g^{ν} is the ν-times composite of g. By [2]*, the complex space \mathfrak{X} which admits a contracting automorphism is holomorphically isomorphic to an algebraic subset of C^{N} for some N. We identify \mathfrak{X} to the algebraic subset of C^{N}. Then there exists a contracting automorphism \widetilde{g} of C^{N} to the origin O such that $\left.\widetilde{g}\right|_{x}=g$ ([2], [3]). Obviously the action of \widetilde{g} on $C^{N}-\{O\}$ is free and properly discontinuous. Hence the quotient space $H=C^{N}-\{O\} /\langle\widetilde{g}\rangle$ is a compact complex manifold which is called a primary Hopf manifold. Sometimes we indicate by H^{N} an N-dimensional primary Hopf manifold. The compact complex space $\mathfrak{X}-\{O\} /\langle\boldsymbol{g}\rangle$ is clearly an analytic subset of a primary Hopf manifold. A compact complex manifold X of dimension $n(n \geqq 2)$ is called a Hopf manifold if its universal covering is holomorphically isomorphic to $C^{n}-\{O\}$ (Kodaira [4]).

The purpose of this paper is to show several properties of subvarieties of Hopf manifolds.

§ 1. Hopf manifolds.

The following proposition shows that it is sufficient to consider only subvarieties of primary Hopf manifolds.

Proposition 1. Any Hopf manifold is a submanifold of a (higher dimensional) primary Hopf manifold.

[^0]Proof. Let X be any Hopf manifold. Then, by definition, there exists a group G of holomorphic transformations of $C^{n}-\{O\}$ such that $X=C^{n}-\{O\} / G \quad(n=\operatorname{dim} X \geqq 2)$. It follows from a theorem of Hartogs that any element of G can be extended to a holomorphic transformation of C^{n}. Hence we may assume that each element of G is a holomorphic transformation of C^{n} which fixes the origin $O \in C^{n}$. By the same argument as in [4] pp. 694-695, G contains a contraction.

For each element $x \in G$, we denote by $d x(O)$ the jacobian matrix at the origin $O \in C^{n}$.

Lemma 1. An element $x \in G$ is a contraction if and only if $|\operatorname{det}(d x(O))|<1$.

Proof. If $x \in G$ is a contraction, then any eigenvalue α of $d x(O)$ satisfies $|\boldsymbol{\alpha}|<1$ (see [3] for the detail). Hence $|\operatorname{det}(d x(O))|<1$. Conversely, let x be an element of G satisfying $|\operatorname{det}(d x(O))|<1$. Let g be a contraction contained in G. Since $C^{n}-\{O\} /\langle g\rangle$ is compact, the index of the infinite cyclic subgroup $\{g\}$ generated by g is finite in G. Now assume that x is not a contraction. Then x^{n} is not a contraction for any integers n. Hence $x^{n} \neq g^{m}$ for any pair of integers n and m except $n=m=0$. This implies that $\{x\} \cap\{g\}=\{1\}$. This contradicts the fact that $\{g\}$ is of the finite index in G.
Q.E.D.

Let U be a subgroup of G defined by

$$
U=\{x \in G:|\operatorname{det}(d x(O))|=1\}
$$

Obviously U is a normal subgroup of G.
Lemma 2. There exists an infinite cyclic subgroup Z of G such that G is the semi-direct product of Z and $U ; G=Z \cdot U$.

Proof. Define a group homomorphism $l: G \rightarrow \boldsymbol{R}$ by

$$
l(x)=-\log |\operatorname{det}(d x(O))| \quad(x \in G)
$$

Let $g_{1} \in G$ be a contraction. Then the index d of the infinite cyclic group $\left\{l\left(g_{1}\right)\right\}$ generated by $l\left(g_{1}\right)$ in $l(G)$ is finite. Hence $d^{-1} l\left(g_{1}\right)$ is a minimum positive element of $l(G)$. Let g be an element of G such that $l(g)=d^{-1} l\left(g_{1}\right)$. We put $Z=\{g\}$. Then it is clear that $G=Z \cdot U$.
Q.E.D.

Lemma 3. U is a finite normal subgroup of G.
Proof. Clear by Lemma 2.
Now continue the proof of Proposition 1. It is easy to see that any
holomorphic transformation u of C^{n} which fixes the origin is linear, if u is of the finite order. Hence U is a finite subgroup of GL (n, C). Hence, by H. Cartan [1], $\mathfrak{X}=C^{n} / U$ is a complex space with unique possible singularity at \bar{O}, where \bar{O} is the corresponding point to the origin $O \in C^{n}$. The generator g of Z induces a contracting automorphism \bar{g} of \mathfrak{X} such that $\bar{g}(\bar{O})=\bar{O}$. Hence $X=\mathfrak{X}-\{\bar{O}\} /\langle\bar{g}\rangle$ is a submanifold of a primary Hopf manifold as we have seen in the introduction.
Q.E.D.

§ 2. Line bundles defined by divisors.

Let M be an arbitrary compact complex manifold and N be a divisor of M. The line bundle [N] defined by N is an element of $H^{1}\left(M, O^{*}\right)$. There is a natural homomorphism $i: H^{1}\left(M, C^{*}\right) \rightarrow H^{1}\left(M, O^{*}\right)$ induced by the natural injection $C^{*} \rightarrow O^{*}$. If [N] is in the image of i, then [N] is called a flat line bundle. In other words, [N] is locally flat if and only if its transition functions can be written by constant functions.

Now let \widetilde{g} be any contracting automorphism of C^{N} which fixes the origin $O \in \boldsymbol{C}^{N}$. Then, by L. Reich ([6], [7]), we can choose a system of coordinates of C^{N} such that \widetilde{g} can be written in the following form:

$$
\begin{align*}
& z_{1}^{\prime}=\alpha_{1} z_{1} \\
& z_{2}^{\prime}=z_{1}+\alpha_{2} z_{2} \\
& \vdots \\
& z_{r_{1}}^{\prime}=z_{r_{1}-1}+\alpha_{r_{1}} z_{r_{1}} \\
& z_{r_{1}+1}^{\prime}=\alpha_{r_{1}+1} z_{r_{1}+1}+P_{r_{1}+1}\left(z_{1}, \cdots, z_{r_{1}}\right) \tag{1}\\
& \vdots \\
& z_{r_{1}+r_{2}}^{\prime}=z_{r_{1}+r_{2}-1}+\alpha_{r_{1}+r_{2}} z_{r_{1}+r_{2}}+P_{r_{1}+r_{2}}\left(z_{1}, \cdots, z_{r_{1}}\right) \\
& z_{r_{1}+r_{2}+1}^{\prime}=\alpha_{r_{1}+r_{2}+1} z_{r_{1}+r_{2}+1}+P_{r_{1}+r_{2}+1}\left(z_{1}, \cdots, z_{r_{1}+r_{2}}\right) \\
& \vdots \\
& z_{N}^{\prime}=z_{N-1}+\alpha_{N} z_{N}+P_{N}\left(z_{1}, \cdots, z_{r_{1}+r_{2}+\cdots+r_{\mu-1}}\right),
\end{align*}
$$

where $1>\left|\alpha_{1}\right| \geqq \cdots \geqq\left|\alpha_{N}\right|>0, \mu$ is the number of Jordan blocks of the linear part, $P_{j}\left(r_{1}+\cdots+r_{s}<j \leqq r_{1}+\cdots+r_{s+1}\right)$ are finite sums of monomials $z_{1}^{m_{1}} \cdots z_{r_{s}}^{m_{r}}$ which satisfy

$$
\begin{align*}
& \alpha_{j}=\alpha_{1}^{m_{1}} \cdots \alpha_{r_{s}}^{m_{r_{s}}} \tag{2}\\
& m_{1}+\cdots+m_{r_{s}} \geqq 2 \quad\left(\text { all } \quad m_{l}>0\right) .
\end{align*}
$$

Let $\tilde{\omega}: C^{N}-\{O\} \rightarrow H=C^{N}-\{O\} /\langle\widetilde{\boldsymbol{g}}\rangle$ be the covering projection. For any analytic subset X in H, the set $\tilde{\omega}^{-1}(X)$ is an analytic subset in $C^{N}-\{O\}$.

If $\operatorname{dim} X \geqq 1$, then by a theorem of Remmert-Stein, $\mathscr{X}=\tilde{\omega}^{-1}(X) \cup\{O\}$ is an analytic subset of C^{N}. In what follows, we indicate by the script letters the analytic subsets in C^{N} corresponding in the above manner to the analytic subsets of H written by the Roman letters. An analytic subset is called a variety if it is irreducible.

Assume that X is an analytic subvariety in H of $\operatorname{dim} X \geqq 2$ and that D is an analytic subvariety of codimension 1 in X. It is clear that \mathfrak{X} and \mathscr{D} are both \widetilde{g}-invariant in C^{N}, i.e., $g(\mathscr{X})=\mathfrak{X}$ and $g(\mathscr{D})=\mathscr{D}$.

Lemma 4 ([2]). There exists a non-constant holomorphic function f on \mathfrak{X} such that $g^{*} f=\alpha f$ for some constant $\alpha(0<|\alpha|<1)$ and that $\left.f\right|_{\mathscr{P}}=0$.

Remark 1. In [2], the word "variety" is used as "analytic set".
Let X be a non-singular manifold. Consider f of Lemma 4 as a multiplicative multi-valued holomorphic function on X (K. Kodaira [4] p. 701). The divisor $D_{1}=(f)$ is well-defined. The equation $g^{*} f=\alpha f$ implies that the line bundle $\left[D_{1}\right]$ is flat of which the transition functions are some powers of α. We summarize these facts as follows.

Theorem 1. Let X be a submanifold of H and D an effective divisor on X. Assume that $\operatorname{dim} X \geqq 2$. Then then exists an effective divisor E on X such that the line bundle $[D+E]$ is flat of which the transition functions are some powers of a certain constant $\alpha \in C^{*}(0<|\alpha|<1)$.

Remark 2. The following example shows that there are cases such that the "additional" effective divisor \dot{E} of Theorem 1 is indispensable.

Let ($x_{0}, x_{1}, x_{2}, x_{3}$) be a standard system of coordinates of C^{4}. Fix a complex number α such that $0<|\alpha|<1$. Let \tilde{g} be a contracting holomorphic automorphism of C^{4} defined by

$$
\tilde{g}:\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \longmapsto\left(\alpha x_{0}, \alpha x_{1}, \alpha x_{2}, \alpha x_{3}\right) .
$$

Define \widetilde{g}-invariant subvarieties of C^{4} by

$$
\mathfrak{X}: x_{0} x_{1}=x_{2} x_{3}
$$

and

$$
\mathscr{A}: x_{3}=0 .
$$

Denote the intersection $\mathfrak{X} \cap \mathscr{\mathscr { A }}$ by \mathscr{S}. Then $\mathscr{S}=\left\{x_{0}=x_{3}=0\right\} \cup\left\{x_{1}=x_{3}=0\right\}$. We put

$$
\mathscr{S}_{1}=\left\{x_{0}=x_{3}=0\right\}
$$

and

$$
\mathscr{S}_{2}=\left\{x_{1}=x_{3}=0\right\} .
$$

Then $S=\mathscr{S}-\{O\} /\langle\widetilde{g}\rangle, S_{1}=\mathscr{S}_{1}-\{O\} /\langle\widetilde{g}\rangle$ and $S_{2}=\mathscr{S}_{2}-\{O\} /\langle\widetilde{g}\rangle$ are subvarieties of a compact complex manifold $X=\mathfrak{X}-\{O\} /\langle\widetilde{g}\rangle$. It is clear that $\left[S_{1}+S_{2}\right]=$ [S] is flat. We shall prove that either $\left[S_{1}\right]$ or $\left[S_{2}\right]$ is not flat. Assume that both $\left[S_{1}\right]$ and $\left[S_{2}\right]$ are flat. Let $\mathfrak{u}=\left\{U_{\lambda}\right\}$ be a sufficiently fine finite open covering of X. We represent $\left[S_{1}\right]$ as a 1 -cocycle $\left\{c_{1 \alpha \mu}\right\} \in Z^{1}\left(\mathfrak{U}, C^{*}\right)$. Since $\operatorname{dim} H^{0}\left(X, O\left[S_{1}\right]\right)>0$, there exists a non-zero section φ_{1} which vanishes exactly on S_{1}. Let $\varphi_{1 \lambda}=c_{1 \lambda \mu} \varphi_{1 \mu}$ on $U_{\lambda} \cap U_{\mu}$. As we can easily see,

$$
\eta_{1}=\frac{d \varphi_{1 \lambda}}{\varphi_{1 \lambda}}=\frac{d \varphi_{1 \mu}}{\varphi_{1 \mu}}=\cdots
$$

is a meromorphic 1 -form on X. Since $\mathfrak{X}-\{O\}$ is simply connected,

$$
f_{1}(x)=\exp \int^{x} \eta_{1}
$$

is a holomorphic function on $\mathfrak{X}-\{O\}$ such that $\widetilde{g} * f_{1}=\beta_{1} f_{1}\left(\beta_{1} \in \boldsymbol{C}^{*}, 0<\left|\beta_{1}\right|<1\right)$ which vanishes exactly on $\mathscr{S}_{1}-\{O\}$ with multiplicity 1 . Since \mathfrak{X} is normal at O, f_{1} uniquely extends to a holomorphic function on \mathfrak{X}. Comparing the initial terms of $\widetilde{g} * f_{1}$ and f_{1} at O, we see that β_{1} is some power of α, i.e., $\beta_{1}=\alpha^{m_{1}}\left(m_{1} \geqq 1\right)$. By the same manner, we construct f_{2} for a non-zero section $\varphi_{2} \in H^{\circ}\left(X, O\left[S_{2}\right]\right)$ such that $\widetilde{g} * f_{2}=\alpha^{m_{2}} f_{2}\left(m_{2} \geqq 1\right)$. Let f_{0} be a restriction of a holomorphic function x_{3} to $\mathfrak{X}-\{O\}$. Then $\widetilde{g} * f_{0}=\alpha f_{0}$. It is easy to see that $f=f_{1} \cdot f_{2} \cdot f_{0}^{-1}$ is a non-vanishing holomorphic function on $\mathfrak{X}-\{O\}$ such that $\widetilde{g} * f=\alpha^{m_{1}+m_{2}-1} f\left(m_{1}+m_{2}-1 \geqq 1\right)$. But this does not occur if $\operatorname{dim} X>1$. In fact, using the non-vanishing holomorphic function f, we get the following commutative diagram:

Then f induces a proper surjective holomorphic mapping $\bar{f}: X \rightarrow C^{*} /$ $\left\langle\alpha^{m_{1}+m_{2}-1}\right\rangle$. For any point $\tau \in C^{*} /\left\langle\alpha^{m_{1}+m_{2}-1}\right\rangle, \bar{f}^{-1}(\tau)=X_{\tau}$ is a compact subvariety in X. Hence $\tilde{\omega}^{-1}\left(X_{\tau}\right)$ is a complex analytic subset in $C^{4}-\{O\}$ whose connected components are compact, where $\tilde{\omega}$ is the covering map $C^{4}-$ $\{O\} \rightarrow C^{4}-\{O\} /\langle\widetilde{g}\rangle$. This implies that $\tilde{\omega}^{-1}\left(X_{\tau}\right)$ is a countable union of points. Hence $\operatorname{dim} X_{\tau}=0$. This contradicts $\operatorname{dim} X>1$. This implies that either
[S_{1}] or $\left[S_{2}\right]$ is not flat.
Remark 3. If $\operatorname{dim} X=2$, then [D] is always flat ([3]).
§3. Some properties of subvarieties.
By Lemma 5 in [2], we have easily
Proposition 2. Let Y_{1} and Y_{2} be subvarieties of a (primary) Hopf manifold H such that $Y_{1} \subset Y_{2}$ and $0<n_{1}=\operatorname{dim} Y_{1}<n_{2}=\operatorname{dim} Y_{2}$. Then there exists a sequence of subvarieties $W_{0}, W_{1}, \cdots, W_{p}\left(p=n_{2}-n_{1}\right)$ in H with following properties:
(i) $W_{0}=Y_{1}, W_{p}=Y_{2}$,
(ii) $\quad W_{i} \subset W_{i+1}(i=0, \cdots, p-1), \operatorname{dim} W_{i}+1=\operatorname{dim} W_{i+1}$.

Proposition 3. Let $H^{N}=C^{N}-\{O\} /\langle\widetilde{g}\rangle$ be a primary Hopf manifold. Then
(a) any positive dimensional subvariety in H^{N} contains a curve,
(b) any irreducible curve in H^{N} is non-singular elliptic,
(c) for any elliptic curve C in H^{N}, there exist an eigenvalue α of \widetilde{g}, a constant β and certain positive integers m, n with $\alpha^{m}=\beta^{n}$ such that C is isomorphic to $C^{*} /\langle\beta\rangle$.

Proof. (a) Let Y be a n-dimensional subvariety in $H^{N}(n \geqq 1)$. For any integer $k(1 \leqq k \leqq N)$, the $(N-k)$-dimensional subspace C^{N-k} defined by $z_{1}=$ $\cdots=z_{k}=0$ is \widetilde{g}-invariant. There exists an integer k such that $\operatorname{dim}\left(C^{N-(k-1)} \cap\right.$ $\mathscr{Y})=1$. Then $\tilde{\omega}\left(\left(C^{N-(k-1)} \cap \mathscr{Y}\right)-\{O\}\right)$ is a 1-dimensional analytic subset of Y.
(b) Let C be any irreducible curve in H^{N}. Then \mathscr{C} is a 1-dimensional analytic subset of C^{N}. Let \mathscr{C}_{0} be one of the irreducible components of \mathscr{C}. Then, for some positive integer $n_{0}, g^{n_{0}}$ acts on \mathscr{C}_{0} as a contracting automorphism of \mathscr{C}_{0}. Let $\lambda: \mathscr{C}_{0}^{*} \rightarrow \mathscr{C}_{0}$ be the normalization of \mathscr{C}_{0}. Then $g^{n_{0}}$ naturally induces a contracting automorphism of \mathscr{C}_{0}^{*}. By [2], $\mathscr{C}_{0}^{*} \cong C$. It is clear that $\lambda^{-1}(O)$ consists of one point O^{*}. Hence $\mathscr{C}_{0}-$ $\{O\} \cong \mathscr{C}_{0}^{*}-\left\{O^{*}\right\} \cong C^{*}$. Thus C^{*} is an infinite cyclic unramified covering of C. Therefore C is a non-singular elliptic curve.
(c) Consider the \widetilde{g}-invariant subspaces C^{N-k} defind in (a). For $k=$ $0, C^{N-k}$ is the total space. Fix the integer $k(0 \leqq k \leqq N-1)$ such that $\mathscr{C} \subset C^{N-k}$ and $\mathscr{C} \not \subset C^{N-k-1}$. If $\mathscr{C} \cap C^{N-k-1}$ contains a point p other than O, then $\mathscr{C} \cap C^{N-k-1}$ contains an infinite sequence of points $\tilde{g}^{n}(p) \rightarrow O(n=1,2, \cdots)$. Hence one of the irreducible components of \mathscr{C} is contained in C^{N-k-1}. Since \widetilde{g} is transitive over all the irreducible components of \mathscr{C}, this implies that $\mathscr{C} \subset C^{N-k-1}$, contradiction. Therefore $\mathscr{C} \cap C^{N-k-1}=\{0\}$. Hence $f=$
$z_{k+1 \mid C^{N-k}}$, the restriction of z_{k+1} to C^{N-k}, vanishes nowhere on $\mathscr{C}-\{O\}$. Moreover f satisfies the equation $g^{*} f=\alpha_{k+1} f$. Hence we get the following commutative diagram:

This induces a covering $\bar{f}: C \rightarrow C^{*} /\left\langle\alpha_{k+1}\right\rangle$. Since both C and $C^{*} /\left\langle\alpha_{k+1}\right\rangle$ are non-singular elliptic curves, \bar{f} has no branch points by the Hurwitz's formula. Hence there exist $\beta \in C^{*}$ and positive integers m, n such that $\boldsymbol{C} \cong \boldsymbol{C}^{*} /\langle\beta\rangle$ and $\alpha_{k+1}^{m}=\beta^{n}$.
Q.E.D.

Remark 4. By Propositions 2 and 3 (a), it follows that any n dimensional subvariety of a Hopf manifold contains subvarieties of arbitrary dimensions less than n.
§4. Subvarieties of algebraic dimension 0.
In general, let M be a compact complex analytic subvariety. Then the field $\mathscr{L}(M)$ of all meromorphic functions on M has the finite transendental degree $a(M)$ over C. We call $a(M)$ the algebraic dimension of M. It is well-known that $a(M) \leqq \operatorname{dim} M$. The number $\operatorname{dim} M-a(M)$ is called the algebraic codimension of M.

Theorem 2. Let Y be a subvariety of dimension k in N-dimensional primary Hopf manifold H^{N}. Assume that $a(Y)=0$. Then the number of $(k-1)$-dimensional subvarieties in Y is at most N.

Before proving the theorem, we shall make some preparations.
Let $\alpha_{1}, \cdots, \alpha_{N}$ be the eigenvalues of $\widetilde{g}((1))$. Put $\theta_{j}=\log \alpha_{j},\left(0 \leqq \arg \theta_{j}<\right.$ $2 \pi, j=1,2, \cdots, N)$. Let K be a vector space over the field of rational numbers \boldsymbol{Q} generated by the elements $2 \pi \sqrt{-1}, \theta_{1}, \cdots, \theta_{N}$. Choose a basis $\tau_{0}, \tau_{1}, \cdots, \tau_{\lambda}$ of K so that following conditions may be satisfied:
(i) $\tau_{0}=2 \pi \sqrt{-1}$,
(ii) $\left\{\tau_{1}, \cdots, \tau_{\lambda}\right\}$ is a subset of $\left\{\theta_{1}, \cdots, \theta_{N}\right\}$,
(iii) for any $\nu \geqq 1, \tau_{\nu}$ is linearly independent to $\boldsymbol{Q} \tau_{0}+\boldsymbol{Q} \tau_{1}+\cdots+\boldsymbol{Q} \tau_{\nu-1}$,
(iv) if $\tau_{\nu}=\theta_{j}, \tau_{\mu}=\theta_{k}$ and $\nu<\mu$, then $j<k$.

It is easy to check that we can choose such a basis. We denote by $\alpha_{i_{\nu}}$ the element of $\left\{\alpha_{1}, \cdots, \alpha_{N}\right\}$ corresponding to τ_{ν}. Note that $\tau_{\nu}=\theta_{i_{\nu}}=$ $\log \alpha_{i_{\nu}}(\nu=1,2, \cdots, \lambda)$. If the equation

$$
\alpha_{i_{\nu}}=\alpha_{1}^{a_{1}} \cdots \alpha_{l}^{a_{l}} \quad\left(l<i_{\nu}\right)
$$

holds for some integers a_{1}, \cdots, a_{l}, then

$$
\tau_{\nu}=\theta_{i_{\nu}}=\sum_{j=1}^{l} a_{j} \theta_{j}+p \tau_{0} \quad(p \in \mathbb{Z})
$$

Since $\sum_{j=1}^{l} a_{j} \theta_{j}$ is written by a linear combination of $\tau_{0}, \tau_{1}, \cdots, \tau_{\nu-1}$, this is absurd. Therefore $\alpha_{i_{\nu}}$ has no such relations. Hence by (1),

$$
z_{i}^{\prime}=\alpha_{i_{\nu}} z_{i} \quad(\nu=1,2, \cdots, \lambda)
$$

Proof of Theorem 2. We may assume that Y can not be contained any primary Hopf manifold of dimension less than N. Let D be a subvariety of codimension 1 in Y. By Lemma 4, \mathscr{D} is contained in the zero locus of a non-constant holomorphic function f on \mathscr{Y} such that $\widetilde{g} * f=\alpha f(0<|\alpha|<1)$. There exist some integers $m, m_{1}, \cdots, m_{\lambda}$ such that

$$
\alpha^{m}=\alpha_{i_{1}}^{m_{1}} \cdots \alpha_{i_{2}}^{m \lambda} .
$$

Put

$$
h=z_{i_{1}}^{m_{1}} \cdots \cdot z_{i_{\lambda}}^{m_{\lambda}} .
$$

Since Y is not contained in any lower dimensional primary Hopf manifold, h is not equal to zero on \mathscr{Y}. Hence both f^{m} and h are eigenfunctions of \widetilde{g}^{*} of which the eigenvalues are the same α^{m}. Then h / f^{m} defines a non-zero meromorphic function on Y. By the assumption $a(Y)=0, h / f^{m}=$ constant $=c \neq 0$. Hence we get

$$
\begin{equation*}
h=c f^{m} \tag{3}
\end{equation*}
$$

Let $Z_{i_{\nu}}(\nu=1, \cdots, \lambda)$ be analytic subsets of Y corresponding to $\left\{z_{i_{\nu}}=0\right\} \cap \mathscr{Y}$. The equation (3) implies that D is contained in $\bigcup_{\nu=1}^{\lambda} Z_{i_{\nu}}$. Since $\lambda \leqq N$, this proves the theorem.
Q.E.D.
§5. C^{*}-actions.
Proposition 4. There exists a holomorphic mapping

$$
\begin{aligned}
\tilde{\mathscr{\rho}}: \boldsymbol{C} \times \boldsymbol{C}^{N} & \longrightarrow \boldsymbol{C}^{N} \\
\boldsymbol{U} & {\underset{\mathscr{\varphi}}{t}}^{\boldsymbol{\omega}}(\boldsymbol{z})
\end{aligned}
$$

which satisfies the following properties:
(i) for every $t \in \boldsymbol{C}, \widetilde{\varphi}_{t}$ is a holomorphic automorphism of \boldsymbol{C}^{N} which fixes the origin,
(ii) $\widetilde{\mathscr{P}}_{t+\varepsilon}=\widetilde{\varphi}_{t} \circ \widetilde{\mathscr{P}}_{s}$,
(iii) there exists an integer n_{0} such that $\widetilde{\varphi}_{1}=\widetilde{g}^{n_{0}}$,
(iv) every \widetilde{g}-invariant subvarieties in C^{N} is $\widetilde{\mathscr{D}}_{t}$-invariant for all $t \in \boldsymbol{C}$.

We say that an analytic subset of C^{N} is $\widetilde{\varphi}$-invariant, if it is $\widetilde{\varphi}_{t^{-}}$ invariant for all $t \in \boldsymbol{C}$.

Proof. Let $\alpha_{i_{1}}, \cdots, \alpha_{i_{2}}$ be the eigenvalues of \widetilde{g} considered in $\S 4$. For any eigenvalue α_{i} of \widetilde{g}, there exist some integers $m_{j}, m_{j_{1}}, \cdots, m_{j_{\lambda}}$ such that

$$
\alpha_{j}^{m}=\alpha_{i_{1}}^{m \rho_{1}} \cdots \alpha_{i_{\lambda}}^{m} \quad(j=1,2, \cdots, N) .
$$

Put $n_{0}=m_{1} \cdots m_{N}$ and $g_{0}=g^{n_{0}}$. We define

$$
\begin{equation*}
\alpha_{i_{\nu}}^{t}=\exp t \tau_{\nu} \quad(t \in C, \nu=1,2, \cdots, \lambda) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{j}^{n_{0} t}=\exp \left(t n_{j} \sum_{\nu=1}^{\lambda} m_{j_{\nu}} \tau_{\nu}\right) \quad\left(n_{j}=n_{0} m_{j}^{-1}, j=1,2, \cdots, N\right) \tag{5}
\end{equation*}
$$

Let $R\left(\alpha_{1}^{n_{0}}, \cdots, \alpha_{N}^{n_{0}}\right)=1$ be any relation among the eigenvalues of g_{0}, where $R\left(u_{1}, \cdots, u_{N}\right)$ is a product of some (possibly negative) powers of $u_{j}(j=1,2, \cdots, N), u_{j}$ being indeterminates. Now let $R\left(u_{1}, \cdots, u_{N}\right)=$ $u_{1}^{a_{1}} \cdots u_{N}^{a_{N}}\left(a_{j} \in \boldsymbol{Z}\right)$. Then, for $t \in \boldsymbol{C}$,

$$
\begin{align*}
R\left(\alpha_{1}^{n_{0} t}, \cdots, \alpha_{N}^{n_{0} t}\right) & =\alpha_{1}^{a_{1} n_{0} t} \cdots \alpha_{N}^{a_{N} n_{0} t} \tag{6}\\
& =\exp \left(t \sum_{j=1}^{N} a_{j} n_{j} \sum_{\nu=1}^{\lambda} m_{j_{\nu}} \tau_{\nu}\right) \\
& =\exp \left(t \sum_{\nu=1}^{\lambda}\left(\sum_{j=1}^{N} a_{j} n_{j} m_{j_{\nu}}\right) \tau_{\nu}\right) .
\end{align*}
$$

Put $t=1$ in (6). Then we get

$$
\sum_{\nu=1}^{\lambda}\left(\sum_{j=1}^{N} a_{j} n_{j} m_{j_{\nu}}\right) \tau_{\nu}=p \tau_{0} \quad(p \in \mathbb{Z})
$$

Hence we get $p=0$ and $\sum_{j=1}^{N} a_{j} n_{j} m_{j_{\nu}}=0 \quad(\nu=1,2, \cdots, \lambda)$. Therefore

$$
\begin{equation*}
R\left(\alpha_{1}^{n_{0} t}, \cdots, \alpha_{N}^{n_{0} t}\right)=1 \tag{7}
\end{equation*}
$$

for all $t \in C$. Put $\beta_{j}=\alpha_{j}^{n_{0}}$. By (1), the j-th coordinate of the point $g_{0}^{n}(\boldsymbol{z})$ is given by

$$
\begin{equation*}
\left(g_{0}^{n}(z)\right)_{j}=\beta_{j}^{n}\left\{z_{j}+Q_{j}\left(n, z_{1}, \cdots, z_{j-1}\right)\right\}, \tag{8}
\end{equation*}
$$

where Q_{j} is a polynomial of $n, z_{1}, \cdots, z_{j-1}$. Replace n and β_{j}^{n} of (8) by t and $\alpha_{j}^{n_{0} t}=\beta_{j}^{t}$, respectively. Then we get a holomorphic automorphism $\widetilde{\Phi}_{\boldsymbol{t}}$ of \boldsymbol{C}^{N} defined by

$$
\left(\widetilde{\mathscr{P}}_{t}(z)\right)_{j}=\beta_{j}^{t}\left\{z_{j}+Q_{j}\left(t, z_{1}, \cdots, z_{j-1}\right)\right\}
$$

We shall prove that $\widetilde{\mathscr{\rho}}=\left\{\widetilde{\phi}_{t}\right\}_{t \in c}$ satisfies the desired conditions. The condition (i) and (iii) are clearly satisfied. To prove the condition (ii) is satisfied we put

$$
z=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{N}
\end{array}\right), \quad Q(t, z)=\left(\begin{array}{c}
Q_{1}(t, z) \\
\cdots \\
Q_{N}(t, z)
\end{array}\right) \quad \text { and } \quad A^{t}=\left(\begin{array}{ccc}
\beta_{1}^{t} & & 0 \\
& \ddots & \\
0 & & \beta_{N}^{t}
\end{array}\right)
$$

We write $\widetilde{\varphi}_{t}(z)$ as

$$
\begin{equation*}
\widetilde{\varphi}_{t}(z)=A^{t}(z+Q(t, z)) \tag{9}
\end{equation*}
$$

Again we put

$$
\begin{equation*}
d(t, s, z)=\tilde{\varphi}_{t+s}(z)-\tilde{\varphi}_{t} 0_{s}(z) \tag{10}
\end{equation*}
$$

It is sufficient to prove that $d(t, s, z)$ vanishes identically. By (9),

$$
\begin{align*}
d(t, s, z) & =A^{t+s}(z+Q(t+s, z))-A^{t}\left(A^{s}(z+Q(s, z))+Q\left(t, A^{s}(z+Q(s, z))\right)\right) \tag{11}\\
& =A^{t+s} Q(t+s, z)-A^{t+s} Q(s, z)-A^{t} Q\left(t, A^{s}(z+Q(s, z))\right)
\end{align*}
$$

Let $Q_{j}(s, z)=\sum q_{i_{1} \cdots i_{j-1}}(s) z_{1}^{i_{1} \cdots z_{j-1}^{i} \overline{1}_{1}^{1}}$ be the j-th component of $Q(s, z)$, where i_{1}, \cdots, i_{j-1} satisfy $\beta_{1}^{i_{1}} \cdots \beta_{j-1}^{i_{j-1}}=\beta_{j}$ and $i_{l}>0$. Then, by (7),

$$
\begin{aligned}
& Q_{j}\left(t, A^{s}(z+Q(s, z))\right) \\
& \quad=\sum q_{i_{1} \cdots i_{j-1}}(t)\left\{\beta_{1}^{s}\left(z_{1}+Q_{1}(s, z)\right)\right\}^{i_{1}} \cdots\left\{\beta_{j-1}^{s}\left(z_{j-1}+Q_{j-1}(s, z)\right)\right\}^{i_{j-1}} \\
& \quad=\beta_{j}^{s} \sum q_{i_{1} \cdots i_{j-1}}(t)\left(z_{1}+Q_{1}(s, z)\right)^{i_{1}} \cdots\left(z_{j-1}+Q_{j-1}(s, z)\right)^{i_{j-1}}
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
A^{t} Q\left(t, A^{s}(z+Q(s, z))\right)=A^{t+s} Q(t, z+Q(s, z)) \tag{12}
\end{equation*}
$$

Combining (11) with (12), we obtain

$$
d(t, s, z)=A^{t+s}(Q(t+s, z)-Q(s, z)-Q(t, z+Q(s, z)))
$$

Hence it is sufficient to show that

$$
d_{1}(t, s, z)=Q(t+s, z)-Q(s, z)-Q(t, z+Q(s, z))
$$

vanishes identically. Note that every component of $d_{1}(t, s, z)$ is a poly-
nomial of t, s, and z.
Fix any integer $t=m$. Since $d_{1}(m, n, z)$ vanishes identically for any $n \in \boldsymbol{Z}$, the algebraic subset in C^{N+1} defined by

$$
\left\{(s, z) \in C^{N+1}: d_{1}(m, s, z)=0\right\}
$$

contains infinitely many N-dimensional subspaces of C^{N+1}. Hence we infer that $d_{1}(m, s, z)$ vanishes identically for any integer m. Again, since $d_{1}(m, s, z)=0$ for any $m \in \boldsymbol{Z}$, the algebraic subset in C^{N+2} defined by $d_{1}(t, s, z)=0$ contains infinitely many ($N+1$)-dimensional subspaces of C^{N+2}. Hence we conclude that d_{1} vanishes identically on C^{N+2}. Therefore the condition (ii) is satisfied.

Next we prove that the condition (iv) is satisfied. We need the following

Lemma 5. Let \mathscr{Y} be a \tilde{g} - and φ-invariant analytic subvariety in C^{N}. Let \mathscr{Z} be a pure 1-codimensional \widetilde{g}-invariant analytic subset of \mathscr{Y}. Then each irreducible component of \mathscr{F} is $\widetilde{\phi}$-invariant.

Proof. By Lemma 4, there exists a holomorphic function f on \mathscr{Y} such that $\widetilde{g} * f=\alpha f(0<|\alpha|<1)$ and that $\left.f\right|_{x}=0$. Here we shall prove the following equation:

$$
\begin{equation*}
\tilde{\mathscr{\rho}}_{t}^{*} f=\alpha^{t} f \tag{13}
\end{equation*}
$$

Once the equation (13) is proved, the lemma is clear. In fact, each irreducible component of \mathscr{F} is an irreducible component of the zero locus of f. Since everything continuously varies depending on t, (13) implies that the irreducible components of $\mathscr{\mathscr { Z }}$ is $\widetilde{\rho}$-invariant.

We put

$$
M(\alpha)=\left\{h \in \mathcal{O}_{\vartheta}: \widetilde{g}^{*} h=\alpha h\right\}
$$

Then $M(\alpha)$ is a finite dimensional vector space over C (cf. [2]). Let σ_{1}, \cdots, σ_{s} be a basis of $M(\alpha)$. Put $\sigma_{i}^{t}(z)=\sigma_{i}\left(\widetilde{\mathscr{D}}_{t}(z)\right)(i=1,2, \cdots, s)$. Since \mathscr{Y} is $\widetilde{\varphi}_{t}$-invariant, the elements $\sigma_{1}^{t}, \cdots, \sigma_{s}^{t}$ form another basis of $M(\alpha)$. Hence there exist some constants $c_{i j}(t)$ depending on t such that

$$
\sigma_{i}^{t}=\sum_{j=1}^{s} c_{i j}(t) \sigma_{j}
$$

We claim that $C(t)=\left(c_{i j}(t)\right)$ is holomorphically dependent on t. In fact, we can choose points $z_{1}, \cdots, z_{s} \in \mathscr{Y}$ such that

$$
S=\left(\begin{array}{ccc}
\sigma_{1}\left(z_{1}\right) & \cdots & \sigma_{1}\left(z_{s}\right) \\
\vdots & & \\
\sigma_{s}\left(z_{1}\right) & \cdots & \sigma_{s}\left(z_{s}\right)
\end{array}\right)
$$

is a non-singular matrix. Then,

$$
\left(\begin{array}{cccc}
\sigma_{1}^{t}\left(z_{1}\right) & \cdots & \sigma_{1}^{t}\left(z_{s}\right) \tag{14}\\
\vdots & & \vdots \\
\sigma_{s}^{t}\left(z_{1}\right) & \cdots & \sigma_{s}^{t}\left(z_{s}\right)
\end{array}\right) S^{-1}=C(t)
$$

Since the left hand side of (14) is holomorphically dependent on $t, C(t)$ is holomorphic.

It is easy to see that $\{C(t)\}_{t \in C}$ is a 1-parameter subgroup of GL (s, C), satisfying the equality,

$$
\begin{equation*}
C(n)=\alpha^{n} I \quad(n \in Z) \tag{15}
\end{equation*}
$$

Hence there exist a matrix A which has the Jordan canonical form and a non-singular matrix P such that

$$
C(t)=P^{-1} \exp (t A) P
$$

By (15), A is a diagonal matrix. Put $P^{-1} \sigma_{j}=\tau_{j}(j=1,2, \cdots, s)$. Then,

$$
\begin{equation*}
\tau_{j}^{t}=\left(\operatorname{ext} t a_{j}\right) \tau_{j} \quad(j=1,2, \cdots, s) \tag{16}
\end{equation*}
$$

where a_{1}, \cdots, a_{s} are the diagonal components of A. Comparing the initial terms of the both sides of (16), we get

$$
\begin{equation*}
\exp t a_{j}=\exp \sum_{\nu=1}^{2} t n_{j_{\nu}} \tau_{\nu} \quad(j=1,2, \cdots, s) \tag{17}
\end{equation*}
$$

for some integers $\boldsymbol{n}_{\boldsymbol{j}_{\nu}}$. Letting $t=1$, we get

$$
\alpha=\exp a_{j}=\exp \sum_{\nu=1}^{\lambda} n_{j_{\nu}} \tau_{\nu} \quad(j=1,2, \cdots, s)!
$$

Hence for any i and j,

$$
\sum_{\nu=1}^{\lambda}\left(n_{j_{\nu}}-n_{i_{\nu}}\right) \tau_{\nu}=p_{i j} \tau_{0}
$$

choosing some integers $p_{i j}$. Since $\tau_{0}, \tau_{1}, \cdots, \tau_{2}$ are linearly independent over Q, this implies that $n_{j_{\nu}}=n_{i_{\nu}}$ and $p_{i j}=0$. Hence $\exp t a_{j}=\exp t a_{i}$ for any i and j. Therefore $C(t)$ is a scalar matrix:

$$
C(t)=\alpha^{t} I \quad\left(\alpha^{t}=\exp t a_{j}\right)
$$

Since $f \in M(\alpha), f$ can be expressed as

$$
f=c_{1} \tau_{1}+\cdots+c_{s} \tau_{s} \quad\left(c_{j} \in \boldsymbol{C}\right)
$$

Then $\widetilde{\mathscr{\varphi}}_{t}^{*} f=\sum_{j} c_{j} \widetilde{\mathscr{q}}_{t}^{*} \tau_{j}=\alpha^{t} \sum c_{j} \tau_{j}=\alpha^{t} f$.
Q.E.D.

Proof of (iv). By Lemma 5 [2], there exists a sequence $\left\{\mathscr{W}_{j}: j=\right.$ $0,1, \cdots, p\}$ of \widetilde{g}-invariant subvarieties of C^{N} such that $\mathscr{W}_{0}=$ a given \widetilde{g} invariant subvariety $\mathscr{W}, \mathscr{W}_{j} \subset \mathscr{W}_{j+1}$, $\operatorname{dim} \mathscr{W}_{j}+1=\operatorname{dim} \mathscr{W}_{j+1}$ and $\mathscr{W}_{p}=$ $C^{N}\left(p=N\right.$ - $\left.\operatorname{dim} \mathscr{W}_{0}\right)$. Since C^{N} is obviously \widetilde{g} - and $\widetilde{\rho}$-invariant, we infer that \mathscr{W} is $\tilde{\varphi}$-invariant by the previous lemma.
Q.E.D.

As a corollary, we obtain
Theorem 3. For any primary Hopf manifold H^{N}, there exists another primary Hopf manifold $H^{\prime N}$ with following properties:
(i) H^{N} is a finite cyclic unramified covering of H^{N},
(ii) $H^{\prime N}$ has a free C^{*}-action $\varphi=\left\{\varphi_{\tau}\right\}_{\tau \in C^{*}}$ such that every positive dimensional subvariety in $H^{\prime N}$ is φ-invariant.

Proof. Let $H^{\prime}=C^{N}-\{O\} /\left\langle\widetilde{g}^{n_{0}}\right\rangle$. Then everything is clear from Proposition 4.

Corollary. The Euler number of a submanifold of a Hopf manifold is equal to 0.

Proof. By Theorem 3, every submanifold of a Hopf manifold has a finite unramified covering which admits a free S^{1}-action. Hence the Euler number vanishes.
Q.E.D.
§6. Subvarieties of algebraic codimension 1.
Let Y be a n-dimensional ($n \geqq 2$) subvariety of a primary Hopf manifold H^{N}. Take another primary Hopf manifold $H^{\prime N}$ of Theorem 3. Let $\omega: H^{\prime N} \rightarrow H^{N}$ be the covering map. We denote by Y^{\prime} a connected component of $\omega^{-1}(Y)$.

Theorem 4. The algebraic dimension of Y is $n-1$ if and only if the C^{*}-action φ on Y^{\prime} reduces to a complex torus action.

Proof. Assume that $a(Y)=n-1$. Since $a\left(Y^{\prime}\right)=a(Y)=n-1, Y^{\prime}$ has an ($n-1$)-dimensional algebraic family of elliptic curves.

The moduli of curves depends continuously on the parameters. Hence, by Proposition 3, the moduli are constant. Since every curve in Y is φ-invariant, the C^{*}-action reduces to a complex torus action on the open dense subset of Y^{\prime} and therefore on the whole Y^{\prime}.

Conversely, assume that φ reduces to a complex torus action $\dot{\psi}$ on Y^{\prime}. Then \mathscr{Y}^{\prime} is an affine variety in C^{N} with the C^{*}-action $\tilde{\psi}$ induced by $\tilde{\varphi}$. Moreover the action $\tilde{\psi}$ is compatible with g^{\prime}, where g^{\prime} is a contracting automorphism to O of C^{N} defining $H^{\prime N}$. It is not difficult to check that the C^{*}-action $\tilde{\psi}$ on \mathscr{Y}^{\prime} is algebraic. (Construct a contracting automorphism on $C \times \mathscr{Y}^{\prime} \times \mathscr{Y}^{\prime}$ which leaves invariant the closure $\bar{\Gamma}$ of the graph Γ of $\tilde{\psi}$, where $\bar{\Gamma}$ is an analytic subset of $C \times \mathscr{Y}^{\prime} \times \mathscr{Y}^{\prime}$. Use the result of [2] to show that $\bar{\Gamma}$ is an algebraic subset of $C \times \mathscr{Y}^{\prime} \times \mathscr{Y}^{\prime}$.) Hence, by Proposition (1.1.3) in Orlik-Wagreich [5], there is an embedding $j: \mathscr{V}^{\prime} \rightarrow C^{N^{\prime}}$ for some N^{\prime} and a C^{*}-action $\hat{\psi}^{\prime}$ on $C^{N^{\prime}}$ such that $j\left(\mathscr{Y}^{\prime}\right)$ is $\tilde{\psi}^{\prime}-$ invariant and that $\tilde{\psi}^{\prime}$ induces $\tilde{\psi}$ on \mathscr{V}^{\prime}. Moreover, by a suitable choice of coordinates (z_{1}, \cdots, z_{N}) on $C^{N^{\prime}}$, the action $\widetilde{\psi}^{\prime}$ on $C^{N^{\prime}}$ can be written as

$$
\tilde{\psi}^{\prime}\left(\rho,\left(z_{1}, \cdots, z_{N^{\prime}}\right)\right)=\left(\rho^{q_{1}} z_{1}, \cdots, \rho^{q_{N^{\prime}}} z_{N^{\prime}}\right),
$$

where the q_{i} 's are positive integers. There exists a constant α such that $\tilde{\psi}_{\alpha}^{\prime}$ induces g^{\prime} on \mathscr{Y}^{\prime}. Then $Y^{\prime}=\mathscr{Y}^{\prime}-\{O\} /\left\langle g^{\prime}\right\rangle$ can be considered as a submanifold of $C^{N^{\prime}}-\{O\} /\left\langle\tilde{\psi}_{\alpha}^{\prime}\right\rangle$.

The following theorem is known.
Theorem (Ueno [8]). Let M_{1} be a subvariety of a compact complex variety M_{0}. Then

$$
\begin{equation*}
\operatorname{dim} M_{1}-a\left(M_{1}\right) \leqq \operatorname{dim} M_{0}-a\left(M_{0}\right) \tag{18}
\end{equation*}
$$

Now it is clear that $a\left(C^{N^{\prime}}-\{O\} /\left\langle\tilde{\psi}_{a}^{\prime}\right\rangle\right)=N^{\prime}-1$. Hence, by (18), we get $a\left(Y^{\prime}\right) \geqq \operatorname{dim} Y^{\prime}-1$. Since $a\left(Y^{\prime}\right)<\operatorname{dim} Y^{\prime}$, we obtain $a\left(Y^{\prime}\right)=a(Y)=n-1$.
Q.E.D.

Remark 5. Topologically, any submanifold of a Hopf manifold is diffeomorphic to a fibre bundle over a 1-dimensional circle of which the transition function has a finite order as an element of the diffeomorphism group of the fibre. This can be seen without difficulty from Theorem 3.

Remark 6. A compact complex surface S is a submanifold of a Hopf manifold if and only if S is a relatively minimal surface of class $V I_{0}, V I I_{0}$-elliptic or a Hopf surface (see [3] for the proof of the "if" part). Let S be a submanifold of a Hopf manifold. It is clear by Proposition 3 that S is relatively minimal. By Theorem $1, S$ is not algebraic. Hence $a(S) \leqq 1$. Assume that $a(S)=1$. Then, by Theorem 1, there exists a flat line bundle L on S such that the mapping $\Phi_{L}: S \rightarrow P^{n}$ defined by the linear system $|L|$ gives an algebraic reduction of S which is defined everywhere. Put $\Delta=\Phi_{L}(S)$. Let η be the line bundle on Δ associated to
a hyperplane section of Δ. Then we have $\Phi_{L}^{*} \eta=L$. We note that every fibre of $\Phi_{L}: S \rightarrow \Delta$ is a non-singular elliptic curve (Proposition 3). We indicate by $b_{i}(M)$ the i-th Betti number of a manifold M. It is clear that $b_{1}(\Delta) \leqq b_{1}(S) \leqq b_{1}(\Delta)+2$. Assume first that $b_{1}(\Delta)=b_{1}(S)$. Since L is a flat line bundle on S, L is raised from a group representation ρ of $H_{1}(S, Z)$ into C^{*}. Let m be a certain positive integer such that ρ^{m} is trivial on the torsion part of $H_{1}(S, Z)$. Then, in view of $b_{1}(\Delta)=b_{1}(S)$, there exists a flat line bundle ξ on Δ such that $\Phi_{L}^{*} \xi=L^{m}$. Hence we get $\Phi_{L}^{*} \zeta=\Phi_{L}^{*} \eta^{m}$. Since $\Phi_{L}^{*}: H^{1}\left(\Delta, O^{*}\right) \rightarrow H^{1}\left(S, O^{*}\right)$ is an injection, this implies that the ample line bundle η on Δ is flat. This is absurd. Hence we get $b_{1}(\Delta)<b_{1}(S)$. Next assume that $b_{1}(S)=b_{1}(\Delta)+2$. By Corollary to Theorem 3, we get $b_{2}(S)=2 b_{1}(\Delta)+2$. This implies that the dual of the homology class represented by a general fibre is a Betti base of $H^{2}(S, Z)$. This contradicts Theorem 1. Hence we conclude that $b_{1}(S)=b_{1}(\Delta)+1$. Therefore $b_{1}(S)$ is odd. Hence S is either a surface of VI_{0} or VII_{0}-elliptic. Consider the case $a(S)=0$. By the classification theory of surfaces [4], a relatively minimal surface with no non-constant meromorphic functions and vanishing Euler number is either a complex torus or a surface of VII_{0}. A complex torus has a positive algebraic dimension if it contains a divisor. Hence by Proposition 3 we infer that S is of VII_{0}-class. Moreover $b_{1}(S)=1$ and $b_{2}(S)=0$. Hence, by Theorem 34 [4], S is a Hopf surface.

References

[1] H. Cartan, Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic Geometry and Topology, Princeton Univ. Press, 1964, 90-102.
[2] Ma. Kato, A generalization of Bieberbach's example, Proc. Japan Acad., 50 (1974), 329-333.
[3] Ma. Kato, Complex structures on $S^{1} \times S^{5}$, J. Math. Soc. Japan, 28 (1976), 550-576.
[4] K. Kodaira, On the structure of compact complex analytic surfaces, II, IV, Amer. J. Math., 88 (1966), 682-721, 90 (1968), 1048-1066.
[5] P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with C^{*} action, Ann. of Math., 93 (1971), 205-228.
[6] L. Reich, Das Typenproblem bei formal-biholomorphen Abbildungen mit anziehendem Fixpunkt, Math. Ann., 179 (1969), 227-250.
[7] L. Reich, Normalformen biholomorpher Abbildungen mit anziehendem Fixpunkt, Math. Ann., 180 (1969), 233-255.
[8] K. Ueno, Classification of algebraic varieties and compact complex spaces, Lecture notes in Math., 439, Springer.
[3A] Ma. Kato, On a characterization of submanifolds of Hopf manifolds, Complex analysis and algebraic geometry, Iwanami, Tokyo, 191-206.

[^0]: Received June 30, 1978

 * In [2], the condition (iii) is forgotten.

