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Introduction

A holomorphic automorphism $g$ of a complex space ee is called a
contraction to a point $ 0\in$ ee if $g$ satisfies the following three conditions:

(i) $g(O)=O$ ,
(ii) $\lim_{\nu\rightarrow+\infty}g^{\nu}(x)=O$ for any point $x\in \mathfrak{X}$ ,
(iii) for any small neighborhood $U$ of $O$ in $\mathfrak{X}$ , there exists an integer

$\nu_{0}$ sueh that $g^{\nu}(U)\subset U$ for all $\nu\geqq\nu_{0}$ ,
where $g^{\nu}$ is the v-times composite of $g$ . By $[2]^{*}$ , the complex space $\mathfrak{X}$

which admits a contracting automorphism is holomorphically isomorphic
to an algebraic subset of $C^{N}$ for some $N$. We identify $\mathfrak{X}$ to the algebraic
subset of $C^{N}$ . Then there exists a contracting automorphism $ g\sim$ of $C^{N}$ to
the origin $0$ such that $g\sim|ae=g$ ([2], [3]). Obviously the action of $ g\sim$ on
$C^{N}-\{O\}$ is free and properly discontinuous. Hence the quotient space
$ H=C^{N}-\{O\}/\langle g\sim\rangle$ is a compact complex manifold which is called a primary
Hopf manifold. Sometimes we indicate by $H^{N}$ an N-dimensional primary
Hopf manifold. The compact complex space $\mathfrak{X}-\{O\}/\langle g\rangle$ is clearly an
analytic subset of a primary Hopf manifold. A compact complex mani-
fold $X$ of dimension $n(n\geqq 2)$ is called a Hopf manifold if its universal
covering is holomorphically isomorphic to $C^{\prime}-\{O\}$ (Kodaira [4]).

The purpose of this paper is to show several properties of subvarieties
of Hopf manifolds.

\S 1. Hopf manifolds.

The following proposition shows that it is sufficient to consider only
subvarieties of primary Hopf manifolds.

PROPOSITION 1. Any Hopf manifold is a submanifold of a (higher
dimensional) primary Hopf manifold.
Received June 30, 1978
*In [21, the condition (iii) is forgotten.
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PROOF. Let $X$ be any Hopf manifold. Then, by definition, there
exists a group $G$ of holomorphic transformations of $C^{\#}-\{0\}$ such that
$X=C^{\iota}-\{O\}/G(n=\dim X\geqq 2)$ . It follows from a theorem of Hartogs
that any element of $G$ can be extended to a holomorphic transformation
of $C$“. Hence we may assume that each element of $G$ is a holomorphic
transformation of $C^{n}$ which fixes the origin $0eC^{n}$ . By the same argument
as in [4] pp. 694-695, $G$ contains a contraction.

For each element $x\in G$ , we denote by $dx(O)$ the jacobian matrix at
the origin $0eC^{n}$ .

LEMMA 1. An element $x\in G$ is a contraction if and only if
$|\det(dx(O))|<1$ .

PROOF. If $x\in G$ is a contraction, then any eigenvalue $\alpha$ of $dx(O)$

satisfies $|\alpha|<1$ (see [3] for the detail). Hence $|\det(dx(O))|<1$ . Con-
versely, let $x$ be an element of $G$ satisfying $|\det(dx(O))|<1$ . Let $g$ be
a contraction contained in $G$ . Since $ C^{n}-\{O\}/\langle g\rangle$ is compact, the index
of the infinite cyclic subgroup $\{g\}$ generated by $g$ is finite in $G$ . Now
assume that $x$ is not a contraction. Then $x^{f}$ is not a contraction for any
integers $n$ . Hence $x^{\prime n}\neq g^{m}$ for any pair of integers $n$ and $m$ except
$n=m=0$ . This implies that $\{x\}\cap\{g\}=\{1\}$ . This contradicts the fact that
$\{g\}$ is of the finite index in $G$ . Q.E.D.

Let $U$ be a subgroup of $G$ defined by

$U=\{x\in G:|\det(dx(O))|=1\}$ .
Obviously $U$ is a normal subgroup of $G$ .

LEMMA 2. There exists an infinite cyclic subgroup $Z$ of $G$ such that
$G$ is the $semi- di\gamma ect$ product of $Z$ and $U;G=Z\cdot U$.

PROOF. Define a group homomorphism $l:G\rightarrow R$ by

$l(x)=-\log|\det(dx(O))|$ $(x\in G)$ .
Let $g_{1}\in G$ be a contraction. Then the index $d$ of the infinite cyclic group
$\{l(g_{1})\}$ generated by $l(g_{1})$ in $l(G)$ is finite. Hence $d^{-1}l(g_{1})$ is a minimum
positive element of $l(G)$ . Let $g$ be an element of $G$ such that $l(g)=d^{-1}l(g_{1})$ .
We put $Z=\{g\}$ . Then it is clear that $G=Z\cdot U$. Q.E.D.

LEMMA 3. $U$ is a finite normal $subg\gamma oup$ of $G$ .
PROOF. Clear by Lemma 2.
Now continue the proof of Proposition 1. It is easy to see that any
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holomorphic transformation $u$ of $C^{n}$ which fixes the origin is linear, if
$u$ is of the finite order. Hence $U$ is a finite subgroup of GL $(n, C)$ .
Hence, by H. Cartan [1], $\mathfrak{X}=C^{n}/U$ is a complex space with unique possible
singularity at $\overline{O}$ , where $\overline{O}$ is the corresponding point to the origin $O\in c*$ .
The generator $g$ of $Z$ induces a contracting automorphism $\overline{g}$ of ee such
that $\overline{g}(\overline{O})=\overline{O}$ . Hence $ X=\mathfrak{X}-\{\overline{O}\}/\langle\overline{g}\rangle$ is a submanifold of a primary Hopf
manifold as we have seen in the introduction. Q.E.D.

\S 2. Line bundles defined by divisors.

Let $M$ be an arbitrary compact complex manifold and $N$ be a divisor
of $M$. The line bundle $[N]$ defined by $N$ is an element of $H^{1}(M, 0^{*})$ .
There is a natural homomorphism $i:H^{1}(M, C^{*})\rightarrow H^{1}(M, 0^{*})$ induced by
the natural injection $C^{*}\rightarrow 0^{*}$ . If $[N]$ is in the image of $i$ , then $[N]$ is
called a flat line bundle. In other words, $[N]$ is locally flat if and only
if its transition functions can be written by constant functions.

Now let $ g\sim$ be any contracting automorphism of $C^{N}$ which fixes the
origin $O\in C^{N}$ . Then, by L. Reich ([6], [7]), we can choose a system of
coordinates of $C^{N}$ such that $ g\sim$ can be written in the following form:

$z_{1}^{\prime}=\alpha_{1}z_{1}$

$z_{2}^{\prime}=z_{1}+\alpha_{2}z_{2}$.
$z_{r_{1}}^{\prime}=z_{r_{1}-1}+\alpha_{1}z_{r_{1}}$

$z_{\gamma_{1}+1}^{\prime}=\alpha_{r_{1}+1}z_{r_{1}+1}+P_{r_{1}+1}(z_{1}$ , $\cdot$ . $z_{r_{1}})$

(1) .
$z_{r_{1}+r_{2}}^{\prime}=z_{r_{1}+r_{2}-1}+\alpha_{r_{1}+r_{2}}z_{r_{1}+r_{2}}+P_{r_{1}+r_{2}}(z_{1}$ , $\cdot$ . . $z_{r_{1}})$

$z_{r_{1}+r_{2}+1}^{\prime}=\alpha_{r_{1}+r_{2}+1}z_{r_{1}+r_{2}+1}+P_{r_{1}+r_{2}+1}(z_{1}, \cdots, z_{r_{1}+r_{2}})$

.
$z_{N}^{\prime}=z_{N-1}+\alpha_{N}z_{N}+P_{N}(z_{1}, \cdots, z_{r_{1}+r_{2}+\cdots+r_{t^{l-1}}})$ ,

where $1>|\alpha_{1}|\geqq\cdots\geqq|\alpha_{N}|>0,$ $\mu$ is the number of Jordan blocks of the
linear part, $P_{j}(\gamma_{1}+\cdots+r_{\epsilon}<j\leqq r_{1}+\cdots+\gamma_{\epsilon+1})$ are finite sums of monomials
$z_{1}^{m_{1}}\cdots z_{r_{\delta}}^{m_{r_{f}}}$ which satisfy

$\alpha_{j}=\alpha_{1}^{m_{1}}\cdots\alpha_{r_{\theta}}^{m_{r_{S}}}$ ,
(2)

$m_{1}+\cdots+m_{r_{g}}\geqq 2$ (all $m_{\iota}>0$).

Let $\tilde{\omega}:C^{N}-\{O\}\rightarrow H=C^{N}-\{O\}/\langle g\sim\rangle$ be the covering projection. For any
analytic subset $X$ in $H$, the set $\tilde{\omega}^{-1}(X)$ is an analytic subset in $C^{N}-\{0\}$ .
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If $d{\rm Im} X\geqq 1$ , then by a theorem of Remmert-Stein, $\mathfrak{X}=\tilde{\omega}^{-1}(X)\cup\{O\}$ is
an analytic subset of $C^{N}$ . In what follows, we indicate by the script
letters the analytic subsets in $C^{N}$ corresponding in the above manner to
the analytic subsets of $H$ written by the Roman letters. An analytic
subset is called a var’iety if it is irreducible.

Assume that $X$ is an analytic subvariety in $H$ of $\dim X\geqq 2$ and that
$D$ is an analytic subvariety of codimension 1 in $X$. It is clear that ee
and $\mathscr{G}$ are both $ g\sim$-invariant in $C^{N}$, i.e., $g(\mathfrak{X})=\mathfrak{X}$ and $g(\mathscr{G})=\mathscr{G}$.

LEMMA 4 ([2]). There exists a non-constant $holomo\gamma phic$ function $f$

$on$ ee such that $ g^{*}f=affo\gamma$ some constant a $(0<|a|<1)$ and that $f|_{\ovalbox{\tt\small REJECT}}=0$ .
REMARK 1. In [2], the word “variety” is used as “analytic set”.
Let $X$ be a non-singular manifold. Consider $f$ of Lemma 4 as a

multiplicative multi-valued holomorphic function on $X$ (K. Kodaira [4]
p. 701). The divisor $D_{1}=(f)$ is well-defined. The equation $g^{*}f=\alpha f$

implies that the line bundle $[D_{1}]$ is flat of which the transition functions
are some powers of $\alpha$ . We summarize these facts as follows.

THEOREM 1. Let $X$ be a submanifold of $H$ and $D$ an efective divisor
on X. Assume that $\dim X\geqq 2$ . Then then exists an effective divisor $E$

on $X$ such that the line bundle $[D+E]$ is flat of which the transition
functions are some powers of a certain constant $a\in C^{*}(0<|\alpha|<1)$ .

REMARK 2. The following example shows that there are cases such
that the “additional” effective divisor $E$ of Theorem 1 is indispensable.

Let $(x_{0}, x_{1}, x_{2}, x_{3})$ be a standard system of coordinates of $C$ . Fix a
complex number $a$ such that $0<|\alpha|<1$ . Let $ g\sim$ be a contracting holomorphic
automorphism of $C^{4}$ defined by

$g:\sim(x_{0}, x_{1}, x_{2}, x_{8})-\succ(\alpha x_{0}, ax_{1}, \alpha x_{2}, \alpha x_{S})$ .
Define $ g\sim$-invariant subvarieties of $C$ by

$\mathfrak{X};x_{0}x_{1}=x_{g}x_{3}$

and

$\mathscr{A}:x_{3}=0$ .
Denote the intersection $\mathfrak{X}\cap\ovalbox{\tt\small REJECT}$ by $\mathscr{L}$ Then $\mathscr{L}=\{x_{0}=x_{s}=0\}\cup\{x_{1}=x_{l}=0\}$ .
We put

$\mathscr{L}_{1}=\{x_{0}=x_{\theta}=0\}$
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and

$\mathscr{L}_{2}=\dagger x_{1}=x_{3}=0\}$ .
Then $S=\mathscr{L}-\{O\}/\langle\tilde{g}\rangle,$ $ S_{1}=\mathscr{L}_{1}-\{O\}/\langle g\sim\rangle$ and $ S_{2}=\mathscr{L}_{2}-\{O\}/\langle g\sim\rangle$ are subvarieties
of a compact complex manifold $ X=\mathfrak{X}-\{O\}/\langle g\sim\rangle$ . It is clear that $[S_{1}+S_{2}]=$

$[S]$ is flat. We shall prove that either $[S_{1}]$ or $[S_{2}]$ is not flat. Assume
that both $[S_{1}]$ and $[S_{2}]$ are flat. Let $U=\{U_{\lambda}\}$ be a sufficiently fine finite
open covering of $X$. We represent $[S_{1}]$ as a l-cocycle $\{c_{1\lambda\mu}\}eZ^{1}(\mathfrak{n}, C^{*})$ .
Since $\dim H^{0}(X, O[S_{1}])>0$ , there exists a non-zero section $\varphi_{1}$ which vanishes
exactly on $S_{1}$ . Let $\varphi_{1\lambda}=c_{1t^{\ell}}\varphi_{1\mu}$ on $U_{\lambda}\cap U_{\mu}$ . As we can easily see,

$\eta_{1}=\frac{d\varphi_{1\lambda}}{\varphi_{1\lambda}}=\frac{d\varphi_{1\mu}}{\varphi_{1\mu}}=\cdots$

is a meromorphic l-form on $X$. Since $\mathfrak{X}-\{0\}$ is simply connected,

$f_{1}(x)=\exp\int^{x}\eta_{1}$

is a holomorphic function on $\mathfrak{X}-\{O\}$ such that $g\sim*f_{1}=\beta_{1}f_{1}(\beta_{1}\in C^{*}, 0<|\beta_{1}|<1)$

which vanishes exactly on $\mathscr{L}_{1}-\{0\}$ with multiplicity 1. Since ee is normal
at $0,$ $f_{1}$ uniquely extends to a holomorphic function on $\mathfrak{X}$ . Comparing the
initial terms of $g\sim*f_{1}$ and $f_{1}$ at $O$ , we see that $\beta_{1}$ is some power of $\alpha$ , i.e.,
$\beta_{1}=\alpha^{m_{1}}(m_{1}\geqq 1)$ . By the same manner, we construct $f_{2}$ for a non-zero
section $\varphi_{2}\in H^{0}(X, O[\downarrow S_{2}])$ such that $g\sim*f_{2}=\alpha^{m_{2}}f_{2}(m_{2}\geqq 1)$ . Let $f_{0}$ be a restriction
of a holomorphic function $x_{3}$ to $\mathfrak{X}-\{0\}$ . Then $g\sim*f_{0}=\alpha f_{0}$ . It is easy to
see that $f=f_{1}\cdot f_{2}\cdot f_{0}^{-1}$ is a non-vanishing holomorphic function on $\mathfrak{X}-\{0\}$

such that $g\sim*f=\alpha^{m_{1}+m_{2}-1}f(m_{1}+m_{2}-1\geqq 1)$ . But this does not occur if
$\dim X>1$ . In fact, using the non-vanishing holomorphic function $f$, we
get the following commutative diagram:

$\mathfrak{X}-\{O\}---,$ $\mathfrak{X}-\{O\}$

$\downarrow f$ $\downarrow f$

$C^{*}\rightarrow C^{*}\underline{\times\alpha^{m_{1}+m_{2}-1}}$

Then $f$ induces a proper surjective holomorphic mapping $\overline{f}:X\rightarrow C^{*}/$

$\langle a^{m_{1}+m_{2}-1}\rangle$ . For any point $\tau\in C^{*}/\langle\alpha^{m_{1}+m_{2}-\iota}\rangle,\overline{f}^{-1}(\tau)=X_{f}$ is a compact sub-
variety in $X$. Hence $\tilde{\omega}^{-1}(X_{f})$ is a complex analytic subset in $C^{4}-\{0\}$ whose
connected components are compact, where $\tilde{\omega}$ is the covering map $C-$
$\{O\}\rightarrow C^{4}-\{O\}/\langle\tilde{g}\rangle$ . This implies that $\tilde{\omega}^{-1}(X_{f})$ is a countable union of points.
Hence $\dim X_{f}=0$ . This contradicts $\dim X>1$ . This implies that either
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$[S_{1}]$ or $[S_{2}]$ is not flat.

REMARK 3. If $\dim X=2$ , then $[D]$ is always flat ([3]).

\S 3. Some properties of subvarieties.

By Lemma 5 in [2], we have easily

PROPOSITION 2. Let $Y_{1}$ and $Y_{2}$ be $subva\gamma iet\prime ies$ of a (primary) Hopf
manifold $H$ such that $Y_{1}\subset Y_{2}$ and $0<n_{1}=\dim Y_{1}<n_{2}=\dim Y_{2}$ . Then there
exists a sequence of $subva\gamma\prime ietiesW_{0},$ $W_{1},$

$\cdots,$ $W_{p}(p=n_{2}-n_{1})$ in $H$ with
following properties:

(i) $W_{0}=Y_{1},$ $W_{p}=Y_{2}$ ,
(ii) $W_{i}\subset W_{i+1}(i=0, \cdots, p-1),$ $\dim W_{i}+1=\dim W_{i+1}$ .
PROPOSITION 3. Let $ H^{N}=C^{N}-\{O\}/\langle g\sim\rangle$ be a $prima\gamma y$ Hopf manifold.

Then
(a) any positive dimensional subvariety in $H^{N}$ contains a $cu\gamma ve$ ,
(b) any irreducible curve in $H^{N}$ is non-singular elliptic,
(c) $ fo\gamma$ any elliptic curve $C$ in $H^{N}$ , there exist an eigenvalue $a$ of

$ g\sim$ , a constant $\beta$ and $ce\gamma tain$ positive $intege\gamma sm,$ $n$ with $ a^{n}=\beta$
’ such that

$C$ is isomorphic to $ C^{*}/\langle\beta\rangle$ .
PROOF. (a) Let Ybe a n-dimensional subvariety in $H^{N}(n\geqq 1)$ . For any

integer $k(1\leqq k\leqq N)$ , the $(N-k)$-dimensional subspace $C^{N-k}$ defined by $z_{1}=$

$...=z_{k}=0$ is $ g\sim$-invariant. There exists an integer $k$ such that $\dim(C^{N-(k-1)}\cap$

$\mathscr{F})=1$ . Then $\tilde{\omega}((C^{N-(k-1)}\cap \mathscr{F})-\{0\})$ is a l-dimensional analytic subset of Y.
(b) Let $C$ be any irreducible curve in $H^{N}$ . Then $\mathscr{G}$ is a l-dimensional

analytic subset of $C^{N}$ . Let $\mathscr{G}_{0}$ be one of the irreducible components of
$\mathscr{G}$. Then, for some positive integer $n_{0},$ $g^{n_{0}}$ acts on $\mathscr{G}_{0}$ as a contracting
automorphism of $\mathscr{G}_{0}$ . Let $\lambda;\mathscr{G}_{0}^{*}\rightarrow \mathscr{G}_{0}$ be the normalization of $\mathscr{G}_{0}$ .
Then $g^{n_{0}}$ naturally induces a contracting automorphism of $\mathscr{G}_{0}^{*}$ . By [2],
$\mathscr{G}_{0}^{*}\cong C$. It is clear that $\lambda^{-1}(O)$ consists of one point 0*. Hence $\mathscr{G}_{0}-$

$\{O\}\cong \mathscr{G}_{0}^{*}-\{O^{*}\}\cong C^{*}$ . Thus $C^{*}$ is an infinite cyclic unramified covering of
$C$ . Therefore $C$ is a non-singular elliptic curve.

(c) Consider the $ g\sim$-invariant subspaces $C^{N-k}$ defind in (a). For $k=$

$0,$ $C^{N-k}$ is the total space. Fix the integer $k(0\leqq k\leqq N-1)$ such that
$\mathscr{G}\subset C^{N-k}$ and $\mathscr{G}\not\subset C^{N-k-1}$ . If $\mathscr{G}\cap C^{N-k-1}$ contains a point $p$ other than $0$ ,
then $\mathscr{G}\cap C^{N-k-1}$ contains an infinite sequence of points $g\sim(p)\rightarrow 0(n=1,2, \cdots)$ .
Hence one of the irreducible components of $\mathscr{G}$ is contained in $C^{N-k\leftrightarrow 1}$ . Since
$ g\sim$ is transitive over all the irreducible components of $\mathscr{G}$, this implies
that $\mathscr{G}\subset C^{N-k-1}$ , contradiction. Therefore $\mathscr{G}\cap C^{N-k-1}=\{0\}$ . Hence $f=$
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$z_{k+11C^{N-k}}$ , the restriction of $z_{k+1}$ to $C^{N-k}$ , vanishes nowhere on $\mathscr{G}-\{0\}$ .
Moreover $f$ satisfies the equation $g^{*}f=\alpha_{k+1}f$. Hence we get the following
commutative diagram:

$\mathscr{G}-\{O\}\rightarrow^{g}r_{\mathscr{G}-\{O\}}$

$\downarrow f$ $\downarrow f$

$c*\underline{\alpha_{k}}\rightarrow C^{*}+1$

This induces a covering $\overline{f}:C\rightarrow C^{*}/\langle\alpha_{k+1}\rangle$ . Since both $C$ and $ C^{*}/\langle\alpha_{k+1}\rangle$ are
non-singular elliptic curves, $\overline{f}$ has no branch points by the Hurwitz’s
formula. Hence there exist $\beta\in C^{*}$ and positive integers $m,$ $n$ such that
$ C\cong C^{*}/\langle\beta\rangle$ and $a_{k+1}^{m}=\beta^{n}$ . Q.E.D.

REMARK 4. By Propositions 2 and 3 (a), it follows that any n-
dimensional subvariety of a Hopf manifold contains subvarieties of
arbitrary dimensions less than $n$ .

\S 4. Subvarieties of algebraic dimension $0$ .
In general, let $M$ be a compact complex analytic subvariety. Then

the field $\mathscr{M}\swarrow(M)$ of all meromorphic functions on $M$ has the finite trans-
endental degree $a(M)$ over $C$. We call $a(M)$ the $algeb\gamma aic$ dimension of
$M$. It is well-known that $a(M)\leqq\dim M$. The number $\dim M-a(M)$ is
called the $algeb\gamma a\dot{w}$ eodimension of $M$.

THEOREM 2. Let $Y$ be a $subva\gamma iety$ of dimension $k$ in N-dimensional
$p\gamma ima\gamma y$ Hopf manifold $H^{N}$ . Assume that $a(Y)=0$ . Then the number
of $(k-1)$-dimensional $subva\gamma ieties$ in $Y$ is at most $N$.

Before proving the theorem, we shall make some preparations.
Let $\alpha_{1},$ $\cdots,$ $\alpha_{N}$ be the eigenvalues of $g\sim((1))$ . Put $\theta_{j}=\log a_{j},$ $(0\leqq\arg\theta_{j}<$

$2\pi,$ $j=1,2,$ $\cdots,$ $N$). Let $K$ be a vector space over the field of rational
numbers $Q$ generated by the elements $2\pi\sqrt{-1},$ $\theta_{1},$

$\cdots,$
$\theta_{N}$ . Choose a basis

$\tau_{0},$ $\tau_{1},$ $\cdots,$ $\tau_{\lambda}$ of $K$ so that following conditions may be satisfied:
(i) $\tau_{0}=2\pi\sqrt{-1}$,
(ii) { $\tau_{1},$ $\cdots$

(iii) for $anyv\geqq 1,\tau_{\nu}is1inear1yindependent\tau_{\lambda}$
} $isasubsetof\{\theta_{1},\cdots,\theta_{N}\}$ ,

to $Q\tau_{0}+Q\tau_{1}+\cdots+Q\tau_{\nu-1}$ ,
(iv) if $\tau_{\nu}=\theta_{j},$ $\tau_{\mu}=\theta_{k}$ and $\nu<\mu$ , then $j<k$ .

It is easy to check that we can choose such a basis. We denote by $a_{\iota_{\nu}}$

the element of $\{\alpha_{1}, \cdots, a_{N}\}$ corresponding to $\tau_{\nu}$ . Note that $\tau_{\nu}=\theta_{i_{\nu}}=$

$\log\alpha_{i_{\nu}}(\nu=1,2, \cdots, \lambda)$ . If the equation
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$\alpha_{l_{\mu}}=\alpha_{1}^{a_{1}}\cdots\alpha_{\iota}^{a_{l}}$ $(l<i_{\nu})$

holds for some integers $a_{1},$ $\cdots,$ $a_{\iota}$ , then

$\tau_{\nu}=\theta_{:_{\nu}}=\sum_{j=1}^{\iota}a_{;}\theta_{j}+p\tau_{0}$ $(p\in Z)$ .
Since $\sum_{j=1}^{l}a_{j}\theta_{\dot{f}}$ is written by a linear combination of $\tau_{0},$ $\tau_{1},$ $\cdots,$ $\tau_{\nu-1}$ , this
is absurd. Therefore $\alpha_{i_{\nu}}$ has no such relations. Hence by (1),

$z_{i}^{\prime}=a_{\iota_{\nu}}z_{i}$ $(\nu=1,2, \cdots, \lambda)$ .
PROOF OF THEOREM 2. We may assume that $Y$ can not be contained

any primary Hopf manifold of dimension less than $N$. Let $D$ be a sub-
variety of codimension 1 in Y. By Lemma 4, $\mathscr{G}$ is contained in the
zero locus of a non-constant holomorphic function $f$ on $\mathscr{F}$ such that
$g\sim*f=af(0<|\alpha|<1)$ . There exist some integers $m,$ $m_{1},$ $\cdots,$ $m_{\lambda}$ such that

$\alpha^{m}=\alpha_{t_{1}}^{\prime n_{1}}\cdots\alpha_{i_{\lambda}}^{n_{\lambda}}$ .
Put

$h=z_{1}^{n_{1}}\cdots z_{i_{\lambda}}^{m_{\lambda}}$ .
Since $Y$ is not contained in any lower dimensional primary Hopf manifold,
$h$ is not equal to zero on $\mathscr{F}$. Hence both $f^{m}$ and $h$ are eigenfunctions
of $g\sim*of$ which the eigenvalues are the same $\alpha^{n}$ . Then $h/f^{*}$ defines a
non-zero meromorphic function on Y. By the assumption $a(Y)=0,$ $h/f^{m}=$

constant $=c\neq 0$ . Hence we get

(3) $h=cf^{n}$ .
Let $Z_{i_{\nu}}(\nu=1, \cdots, \lambda)$ be analytic subsets of $Y$ corresponding to $\{z_{i_{y}}=0\}\cap \mathscr{F}$.
The equation (3) implies that $D$ is contained in $\cup\oint_{=\iota}Z_{i_{y}}$ . Since $\lambda\leqq N$,
this proves the theorem. Q.E.D.

\S 5. $C^{*}$-actions.

PROPOSITION 4. There exists a $holomo\gamma phic$ mapping

$\tilde{\varphi}:C\times C^{N}\rightarrow C^{N}$

($D$ (1)

$(t, z)\mapsto\tilde{\varphi}_{t}(z)$

which satisfies the following $prope\gamma\theta ies$ :
(i) for every $t\in C,\tilde{\varphi}_{t}$ is a $holomo\gamma phicautomo\gamma phism$ of $C^{N}$ which

fixes the origin,
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(ii) $\tilde{\varphi}_{\iota+\epsilon}=\tilde{\varphi}_{t}\circ\tilde{\varphi}.$ ,
(iii) $the\gamma e$ exists an integer $n_{0}$ such that $\tilde{\varphi}_{1}=\tilde{g}’ 0$

(iv) every $g\sim- inva\gamma iant$ subvariet,ies ,in $C^{N}$ is $\tilde{\varphi}_{t}$-invariant for all
$t\in C$.

We say that an analytic subset of $C^{N}$ is $\tilde{\varphi}- inva\gamma iant$ , if it is $\tilde{\varphi}_{t^{-}}$

invariant for all $t\in C$.
PROOF. Let $\alpha_{\iota_{1}},$ $\cdots,$ $a_{i_{\lambda}}$ be the eigenvalues of $ g\sim$ considered in \S 4.

For any eigenvalue $\alpha_{j}$ of $ g\sim$ , there exist some integers $m_{j},$ $m_{\dot{g}_{1}},$
$\cdots$ , $m_{i_{\lambda}}$

such that

$a_{j}^{m_{j}}=\alpha_{i_{1}}^{m_{g_{1}}}\cdots\alpha_{\ell_{\lambda}}^{m_{g_{\lambda}}}$ $(j=1,2, \cdots, N)$ .
Put $n_{0}=m_{1}\cdots m_{N}$ and $g_{0}=g^{n_{0}}$ . We define

(4) $\alpha_{i_{\nu}}^{t}=\exp t\tau_{\nu}$ $(t\in C, v=1,2, \cdots, x)$ ,

and

(5) $\alpha_{J^{*0^{t}}}^{\prime}=\exp(tn_{j}\sum_{\nu=1}^{\lambda}m_{j_{\nu}}\tau_{\nu})$ $(n_{j}=n_{0}m_{j}^{-1}, j=1,2, \cdots, N)$ .
Let $R(a_{1}^{n_{0}}, \cdots, a_{N}^{n_{0}})=1$ be any relation among the eigenvalues of $g_{0}$ ,

where $R(u_{1}, \cdots, u_{K})$ is a product of some (possibly negative) powers of
$u_{j}(j=1, 2a_{N} N)$ , $u_{j}$ being indeterminates. Now let $R(u_{1}, \cdots, u_{N})=$

$u_{1}^{a_{1}}\cdots u_{N}$ $(a_{j}\in Z)$ . Then, for $t\in C$,

(6) $R(\alpha_{1}^{n_{0}t}, \cdots, \alpha_{N}^{n_{0}t})=a_{1}^{a_{1}n_{0}t}\cdots\alpha_{N}^{a_{N}n_{0}t}$

$=\exp(t\sum_{j=1}^{N}a_{j}n_{j}\sum_{\nu=1}^{\lambda}m_{j_{\nu}}\tau_{\nu})$

$=\exp(t\sum_{\nu=1}^{\lambda}(\sum_{j=\iota}^{N}a_{j}n_{j}m_{J_{\nu}})\tau_{\nu})$ .
Put $t=1$ in (6). Then we get

$\sum_{\nu=1}^{i}(\sum_{\dot{g}=1}^{N}a_{j}n_{j}m_{j_{\nu}})\tau_{\nu}=p\tau_{0}$ $(p\in Z)$ .
Hence we get $p=0$ and $\sum_{j=1}^{N}a_{j}n_{j}m_{J_{\nu}}=0(\nu=1,2, \cdots, \lambda)$ . Therefore

(7) $R(\alpha_{1}^{n_{0}t}, \cdots, \alpha_{N}^{n_{0}t})=1$

for all $t\in C$. Put $\beta_{j}=\alpha_{\dot{f}}^{n_{0}}$ . By (1), the j-th coordinate of the point $g_{0}^{n}(z)$

is given by

(8) $(g_{0}^{n}(z))_{j}=\beta_{j}^{n}\{z_{j}+Q_{j}(n, z_{1}, \cdots, z_{i-1})\}$ ,
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where $Q_{j}$ is a polynomial of $n,$ $z_{1},$ $\cdots,$ $z_{j-1}$ . Replace $n$ and $\beta_{j}^{n}$ of (8) by
$t$ and $\alpha_{j^{0^{t}}}=\beta_{j}^{t}$ , respectively. Then we get a holomorphic automorphism
$\tilde{\varphi}$ of $C^{N}$ defined by

$(\tilde{\varphi}_{t}(z))_{\dot{f}}=\beta_{\dot{f}}^{t}\{z_{j}+Q_{j}(t, z_{1}, \cdots, z_{\dot{f}-1})\}$ .
We shall prove that $\tilde{\varphi}=\{\tilde{\varphi}_{t}\}_{\iota eC}$ satisfies the desired conditions. The

condition (i) and (iii) are clearly satisfied. To prove the condition (ii)
is satisfied we put

$z=\left(\begin{array}{l}z_{1}\\\vdots\\ z_{N}\end{array}\right)$ , $Q(t, z)=(Q_{N}(t,z)Q_{1}(t,.z))$ and $A^{t}=\left(\begin{array}{lll}\beta_{1}^{t} & & 0\\ & \ddots & \\0 & & \beta_{N}^{t}\end{array}\right)$

.
We write $\tilde{\varphi}_{t}(z)$ as
(9) $\tilde{\varphi}_{t}(z)=A^{t}(z+Q(t, z))$ .
Again we put

(10) $d(t, s, z)=\tilde{\varphi}_{+}.(z)-\tilde{\varphi}_{t}\circ\tilde{\varphi}.(z)$ .
It is sufficient to prove that $d(t, s, z)$ vanishes identically. By (9),

(11) $d(t, s, z)=A^{t+*}(z+Q(t+s, z))-A^{t}(A^{\epsilon}(z+Q(s, z))+Q(t, A(z+Q(s, z))))$

$=A^{t+\iota}Q(t+s, z)-A^{t+}Q(s, z)-A^{t}Q(t, A^{\iota}(z+Q(s, z)))$ .
Let $Q_{\dot{f}}(\epsilon, z)=\sum q_{t_{1}\cdots l_{j-1}}(s)z\dot{i}^{1}\cdots z_{j-\overline{1}}^{i_{\dot{f}1}}$ be the j-th component of $Q(s, z)$ , where
$i_{1},$

$\cdots,$ $i_{J-1}$ satIsfy $\beta_{1}^{i_{1}}\cdots\beta_{\dot{f}1}^{1_{\dot{f}-1}}-=\beta_{\dot{f}}$ and $i_{\iota}>0$ . Then, by (7),

$Q_{j}(t, A(z+Q(s, z)))$

$=\sum q_{i_{1}\cdots i_{\dot{f}-1}}(t)\{\beta_{1}^{l}(z_{1}+Q_{1}(\epsilon, z))\}^{\iota_{1}}\cdots\{\beta j_{-1}(z_{l-1}+Q_{i-1}(s, z))\}^{i_{j-1}}$

$=\beta_{f}:\sum q_{t_{1}\cdots i_{j-1}}(t)(z_{1}+Q_{1}(s, z))^{c_{1}}\cdots(z_{i-1}+Q_{\dot{f}-1}(s, z))^{c_{j-1}}$ .
Hence we get

(12) $A^{t}Q(t, A(z+Q(s, z)))=A^{t+*}Q(t, z+Q(\epsilon, z))$ .
Combining (11) with (12), we obtain

$d(t, s, z)=A^{t+\iota}(Q(t+s, z)-Q(\epsilon, z)-Q(t, z+Q(\epsilon, z)))$ .
Hence it is sufficient to show that

$d_{1}(t, s, z)=Q(t+s, z)-Q(s, z)-Q(t, z+Q(s, z))$

vanishes identically. Note that every component of $d_{1}(t, s, z)$ is a poly-
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nomial of $t,$ $s$ , and $z$ .
Fix any integer $t=m$ . Since $d_{1}(m, n, z)$ vanishes identically for any

$n\in Z$, the algebraic subset in $C^{N+1}$ defined by

$\{(\epsilon, z)eC^{N+1} : d_{1}(m, \epsilon, z)=0\}$

contains infinitely many N-dimensional subspaces of $C^{N+1}$ . Hence we infer
that $d_{1}(m, s, z)$ vanishes identically for any integer $m$ . Again, since
$d_{1}(m, s, z)=0$ for any $m\in Z$, the algebraic subset in $C^{N+2}$ defined by
$d_{1}(t, s, z)=0$ contains infinitely many $(N+1)$-dimensional subspaces of $C^{N+2}$ .
Hence we conclude that $d_{1}$ vanishes identically on $C^{N+2}$ . Therefore the
condition (ii) is satisfied.

Next we prove that the condition (iv) is satisfied. We need the
following

LEMMA 5. Let $\mathscr{F}$ be a g-\sim and $\varphi$-invariant analytic $subva\gamma\prime iety$ in
$C^{N}$ . Let gy be a $pu\gamma e$ l-codimensional $g\sim- inva\gamma iant$ analyt’ic subset of
$\mathscr{F}$. Then each irreducible component of $\ovalbox{\tt\small REJECT}$ is $\tilde{\varphi}$-invariant.

PROOF. By Lemma 4, there exists a holomorphic function $f$ on $\mathscr{F}$

such that $g\sim*f=\alpha f(0<|\alpha|<1)$ and that $f|_{:\tau}=0$ . Here we shall prove the
following equation:

(13) $\tilde{\varphi}_{t}^{*}f=\alpha^{t}f$ .
Once the equation (13) is proved, the lemma is clear. In fact, each irre-
ducible component of $\ovalbox{\tt\small REJECT}$ is an irreducible component of the zero locus
of $f$. Since everything continuously varies depending on $t,$ (13) implies
that the irreducible components of $\ovalbox{\tt\small REJECT}$ is $\tilde{\varphi}$-invariant.

We put

$M(\alpha)=\{h\in P_{y} : g^{*}\sim h=\alpha h\}$ .
Then $M(a)$ is a finite dimensional vector space over $C$ (cf. [2]). Let $\sigma_{1}$ ,.., $\sigma$. be a basis of $M(\alpha)$ . Put $\sigma_{i}^{\iota}(z)=\sigma_{i}(\tilde{\varphi}_{t}(z))(i=1,2, \cdots, s)$ . Since $\mathscr{F}$

is $\tilde{\varphi}_{\iota}$-invariant, the elements $\sigma_{1}^{t},$

$\cdots,$
$\sigma_{l}^{t}$ form another basis of $M(\alpha)$ . Hence

there exist some constants $c_{ij}(t)$ depending on $t$ such that

$\sigma_{l}^{t}=\sum_{j=1}^{l}c_{\ell j}(t)\sigma_{j}$ .
We claim that $C(t)=(c_{ij}(t))$ is holomorphically dependent on $t$ . In fact,
we can choose points $z_{1},$ $\cdots,$ $z_{\iota}\in \mathscr{F}$ such that
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$S=\left(\begin{array}{lll}\sigma_{1}(z_{1}) & \cdots & \sigma_{1}(z.)\\\vdots & & \vdots\\\sigma.(z_{1}) & \cdots & \sigma.(z.)\end{array}\right)$

is a non-singular matrix. Then,

(14) $\left(\begin{array}{lll}\sigma_{1}^{t}(z_{1}) & \cdots & \sigma_{\iota}^{t}(z.)\\\vdots & & \vdots\\\sigma^{t}.(z_{1}) & \cdots & \sigma^{t}.(z.)\end{array}\right)S^{-1}=C(t)$ .

Since the left hand side of (14) is holomorphically dependent on $t,$ $C(t)$

is holomorphic.
It is easy to see that $\{C(t)\}_{teC}$ is a l-parameter subgroup of GL $(s, C)$ ,

satisfying the equality,

(15) $C(n)=aI$ $(n\in Z)$ .
Hence there exist a matrix $A$ which has the Jordan canonical form and
a non-singular matrix $P$ such that

$C(t)=P^{-1}\exp(tA)P$ .
By (15), $A$ is a diagonal matrix. Put $P^{-1}\sigma_{j}=\tau_{j}(j=1,2, \cdots, s)$ . Then,

(16) $\tau_{j}^{t}=(extta;)\tau_{\dot{f}}$ $(j=1,2, \cdots, s)$ ,

where $a_{1},$ $\cdots,$ $a$. are the diagonal components of $A$ . Comparing the
initial terms of the both sides of (16), we get

(17) $\exp ta_{\dot{f}}=\exp\sum_{\nu=1}^{\lambda}tn_{\dot{f}_{\nu}}\tau_{\nu}$ $(j=1,2, \cdots, s)$ ,

for some integers $n_{l_{\nu}}$ . Letting $t=1$ , we get

$a=\exp a_{j}=\exp\sum_{\nu=1}^{\lambda}n_{i_{\nu}}\tau_{\nu}$ $(j=1,2, \cdots, s)^{1}|$

Hence for any $i$ and $j$ ,

$\sum_{\nu=1}^{\lambda}(n_{j_{\nu}}-n_{i_{y}})\tau_{\nu}=p_{:;T_{0}}$ ,

choosing some integers $p_{\iota j}$ . Since $\tau_{0},$ $\tau_{1},$ $\cdots,$ $\tau_{\lambda}$ are linearly independent
over $Q$ , this implies that $n_{i_{\nu}}=n_{i_{\nu}}$ and $p_{tj}=0$ . Hence $\exp ta_{j}=\exp ta_{i}$ for
any $i$ and $j$ . Therefore $C(t)$ is a scalar matrix:

$C(t)=a^{t}I$ $(\alpha^{t}=\exp ta_{j})$ .
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Since $f\in M(a),$ $f$ can be expressed as
$f=c_{1}\tau_{1}+\cdots+c.\tau_{*}$ $(c_{j}eC)$ .

Then $\tilde{\varphi}_{t}^{*}f=\sum_{j}c_{j}\tilde{\varphi}_{t}^{*}\tau_{j}=\alpha^{t}\sum c_{j}\tau_{j}=\alpha^{t}f$. Q.E.D.

Proof of (iv). By Lemma 5 [2], there exists a sequence $\{\mathscr{C}_{\dot{f}}^{\wedge}:j=$

$0,1,$ $\cdots,$ $p$} of $ g\sim$-invariant subvarieties of $C^{N}$ such that $\mathscr{C}_{0}\nearrow=a$ given g-\sim
invariant subvariety $\mathscr{G}^{\prime},$ $\mathscr{G}_{j}^{\prime}\subset \mathscr{C}_{j+1}^{\vee},$ $\dim Z\ovalbox{\tt\small REJECT}_{j}^{\wedge}+1=\dim \mathscr{C}_{i+1}^{\wedge}$ and $\mathscr{C}_{p}^{\wedge}=$

$C^{N}(p=N-\dim \mathscr{C}_{0}^{\prime})$ . Since $C^{N}$ is obviously g-\sim and $\tilde{\varphi}$-invariant, we infer
that $\mathscr{C}^{\prime}$ is $\tilde{\varphi}$-invariant by the previous lemma. Q.E.D.

As a corollary, we obtain

THEOREM 3. For any $p\gamma ima\gamma y$ Hopf manifold $H^{N},$ $the\gamma e$ exists
$anothe\gamma p\gamma ima\gamma y$ Hopf manifold $H^{\prime N}$ with following properties:

(i) $H^{\prime N}$ is a finite cyclic $un\gamma amifiedcove\gamma\prime ing$ of $H^{N}$ ,
(ii) $H^{\prime N}$ has a free $C^{*}$-action $\varphi=\{\varphi_{\tau}\}_{\tau ec}$. such that every $pos$ itive

dimensional $subva\gamma iety$ in $H^{\prime N}$ is $\varphi$-invariant.

PROOF. Let $ H^{\prime}=C^{N}-\{O\}/\langle g^{n_{0}}\sim\rangle$ . Then everything is clear from Prop-
osition 4.

COROLLARY. The $ Eule\gamma$ number of a submanifold of a Hopf manifold
is equal to $0$ .

PROOF. By Theorem 3, every submanifold of a Hopf manifold has
a finite unramified covering which admits a free $S^{1}$-action. Hence the
Euler number vanishes. Q.E.D.

\S 6. Subvarieties of algebraic codimension 1.

Let $Y$ be a n-dimensional $(n\geqq 2)$ subvariety of a primary Hopf
manifold $H^{N}$. Take another primary Hopf manifold $H^{rN}$ of Theorem 3.
Let $\omega:H^{\prime N}\rightarrow H^{N}$ be the covering map. We denote by $Y^{\prime}$ a connected
component of $\omega^{-1}(Y)$ .

THEOREM 4. The $algeb\gamma aic$ dimension of $Y$ is $n-1$ if and only if
the $ C^{*}- action\varphi$ on $Y^{\prime}\gamma educes$ to a complex torus action.

PROOF. Assume that $a(Y)=n-1$ . Since $a(Y^{\prime})=a(Y)=n-1,$ $Y^{\prime}$ has
an $(n-1)$-dimensional algebraic family of elliptic curves.

The moduli of curves depends continuously on the parameters. Hence,
by Proposition 3, the moduli are constant. Since every curve in $Y$ is
$\varphi- invariant$ , the $C^{*}$-action reduces to a complex torus action on the open
dense subset of $Y^{\prime}$ and therefore on the whole $Y^{\prime}$ .
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Conversely, assume that $\varphi$ reduces to a complex torus action $\psi$ on
$Y^{\prime}$ . Then $\mathscr{F}^{\prime}$ is an affine variety in $C^{N}$ with the $C^{*}$-action $\tilde{\psi}$ induced
by $\tilde{\varphi}$ . Moreover the action $\tilde{\psi}$ is compatible with $g^{\prime}$ , where $g^{\prime}$ is a con-
tracting automorphism to $0$ of $C^{N}$ defining $H^{\prime N}$ . It is not difficult to
check that the $C^{*}$-action $\tilde{\psi}$ on $\mathscr{F}^{\prime}$ is algebraic. (Construct a contracting
automorphism on CX $\mathscr{F}^{\prime}\times \mathscr{F}^{\prime}$ which leaves invariant the closure $\overline{\Gamma}$ of the
graph $\Gamma$ of $\tilde{\psi}$ , where $\overline{\Gamma}$ is an analytic subset of CX $\mathscr{F}^{\prime}\times \mathscr{F}^{\prime}$ . Use the
result of [2] to show that $\overline{\Gamma}$ is an algebraic subset of $c\times \mathscr{F}^{\prime}\times \mathscr{F}^{\prime}.$ ) Hence,
by Proposition (1.1.3) in Orlik-Wagreich [5], there is an embedding
$i:\mathscr{F}^{\prime}\rightarrow C^{N^{\prime}}$ for some $N^{\prime}$ and a $C^{*}$-action $\hat{\psi}^{\prime}$ on $C^{N^{\prime}}$ such that $j(\mathscr{F}^{\prime})$ is $\tilde{\psi}^{\prime}-$

invariant and that $\tilde{\psi}^{\prime}$ induces $\tilde{\psi}$ on $\mathscr{F}^{\prime}$ . Moreover, by a suitable choice of
coordinates $(z_{1}, \cdots, z_{N})$ on $C^{N^{\prime}}$ , the action $\tilde{\psi}^{\prime}$ on $C^{N^{\prime}}$ can be written as

$\tilde{\psi}^{r}(\rho, (z_{1\prime}\cdots, z_{N^{\prime}}))=(\rho^{q_{1}}z_{1}, \cdots, \rho^{q_{N^{\prime}}}z_{N^{\prime}})$ ,

where the $q_{i}’ s$ are positive integers. There exists a constant $a$ such that
$\tilde{\psi}_{\alpha}^{\prime}$ induces $g^{\prime}$ on $\mathscr{F}^{\prime}$ . Then $Y^{\prime}=\mathscr{F}^{\prime}-\{O\}/\langle g^{\prime}\rangle$ can be considered as a sub-
manifold of $ C^{N^{\prime}}-\{O\}/\langle\tilde{\psi}_{a}^{\prime}\rangle$ .

The following theorem is known.

THEOREM (Ueno [8]). Let $M_{1}$ be a subvariety of a compact complex
$va\gamma ietyM_{0}$ . Then

(18) $\dim M_{1}-a(M_{1})\leqq\dim M_{0}-a(M_{0})$ .
Now it is clear that $a(C^{N^{\prime}}-\{O\}/\langle\tilde{\psi}_{\alpha}^{l}\rangle)=N^{\prime}-1$ . Hence, by (18), we get

$a(Y^{l})\geqq\dim Y^{\prime}-1$ . Since $a(Y^{\prime})<\dim Y^{\prime}$ , we obtain $a(Y^{\prime})=a(Y)=n-1$ .
Q.E.D.

REMARK 5. Topologically, any submanifold of a Hopf manifold is
diffeomorphic to a $fib\gamma e$ bundle over a l-dimensional $ci\gamma cle$ of whic $h$ the
$t\gamma ansition$ funct,ion has a finite order as an element of the $diffeomo\gamma phism$

$g\gamma oup$ of the fibre. This can be seen without difficulty from Theorem 3.

REMARK 6. A compact complex surface $S$ is a submanifold of a
Hopf manifold if and only if $S$ is a $\gamma elatively$ minimal surface of class
$VI_{0},$ $VII_{0}$-elliptic $0\gamma$ a Hopf $su\gamma face$ (see [3] for the proof of the “if”
part). Let $S$ be a submanifold of a Hopf manifold. It is clear by Pro-
position 3 that $S$ is relatively minimal. By Theorem 1, $S$ is not algebraic.
Hence $a(S)\leqq 1$ . Assume that $a(S)=1$ . Then, by Theorem 1, there exists
a flat line bundle $L$ on $S$ such that the mapping $\Phi_{L}:S\rightarrow P$“ defined by
the linear system $|L|$ gives an algebraic reduction of $S$ which is defined
everywhere. Put $\Delta=\Phi_{L}(S)$ . Let $\eta$ be the line bundle on $\Delta$ associated to
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a hyperplane section of $\Delta$ . Then we have $\Phi_{L}^{*}\eta=L$ . We note that every
fibre of $\Phi_{L}:S\rightarrow\Delta$ is a non-singular elliptic curve (Proposition 3). We
indicate by $b_{i}(M)$ the i-th Betti number of a manifold $M$. It is clear
that $b_{1}(\Delta)\leqq b_{1}(S)\leqq b_{1}(\Delta)+2$ . Assume first that $b_{1}(\Delta)=b_{1}(S)$ . Since $L$ is a
flat line bundle on $S,$ $L$ is raised from a group representation $\rho$ of $H_{1}(S, Z)$

into $C^{*}$ . Let $m$ be a certain positive integer such that $\rho^{m}$ is trivial on
the torsion part of $H_{1}(S, Z)$ . Then, in view of $b_{1}(\Delta)=b_{1}(S)$ , there exists
a flat line bundle $\xi$ on $\Delta$ such that $\Phi_{L}^{*}\xi=L^{rn}$ . Hence we get $\Phi_{L}^{*}\zeta=\Phi_{L}^{*}\eta^{m}$ .
Since $\Phi_{L}^{*}:$ $H^{1}(\Delta, O^{*})\rightarrow H^{1}(S, 0^{*})$ is an injection, this implies that the ample
line bundle $\eta$ on $\Delta$ is flat. This is absurd. Hence we get $b_{1}(\Delta)<b_{1}(S)$ .
Next assume that $b_{1}(S)=b_{1}(\Delta)+2$ . By Corollary to Theorem 3, we get
$b_{2}(S)=2b_{1}(\Delta)+2$ . This implies that the dual of the homology class repre-
sented by a general fibre is a Betti base of $H^{2}(S, Z)$ . This contradicts
Theorem 1. Hence we conclude that $b_{1}(S)=b_{1}(\Delta)+1$ . Therefore $b_{1}(S)$ is
odd. Hence $\downarrow S$ is either a surface of $VI_{0}$ or $VII_{0}$-elliptic. Consider the
case $a(S)=0$ . By the classification theory of surfaces [4], a relatively
minimal surface with no non-constant meromorphic functions and vanishing
Euler number is either a complex torus or a surface of $VII_{0}$ . A complex
torus has a positive algebraic dimension if it contains a divisor. Hence
by Proposition 3 we infer that $S$ is of $VII_{0}$-class. Moreover $b_{1}(S)=1$ and
$b_{2}(S)=0$ . Hence, by Theorem 34 [4], $S$ is a Hopf surface.
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