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Introduction

In classical algebraic geometry, the following theorem due to Cast-
elnuovo-Enriques-Zariski is fundamental, [9].

THEOREM A. A non-singular projective surface $S$ is minimal if $S$

is relatively minimal and if $S$ is not a ruled surface.
In view of Enriques’ criterion on ruled surfaces, the condition that

$S$ is not ruled may be replaced by $\kappa(S)\geqq 0$ . Here, $\kappa(S)$ denotes the
Kodaira dimension of $S$ . Thus, we obtain

THEOREM B. A non-singular projective surface $S$ is minimal if $S$

is relatively minimal surface with $\kappa(S)\geqq 0$ .
In this paper we shall consider analogues of the above facts in

proper birational geometry. The category in which we shall work is
that of schemes over the field of complex numbers $C$.

In place of birational morphism and birational map in the classical
theory, we shall use proper birational morphism and strictly birational
map or proper birational map, respectively (see [2]). Thus for open
surfaces, we shall define the concepts of relatively minimal surface and
minimal surface. Using the notion of logarithmic Kodaira dimension
we shall establish a theorem analogous to Theorem $B$ (Theorem 1).
Moreover, the notion of $\partial$-manifold (V, $D$) will be introduced which con-
sists of a non-singular complete algebraic variety $\overline{V}$ and a divisor with
normal crossings $D$ on $\overline{V}$. We shall study algebraic geometry for
$\partial$-manifolds. The notions of relatively $\partial$-minimal model and properly
$\partial$-minimal or $\partial$-minimal model will be introduced. For a $\partial$-surface $(\overline{S}$ ,
$D)$ with $\overline{\kappa}(\overline{S}-D)=2$ , an analogue of Theorem $B$ will be established
(Theorem 2).
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30 SHIGERU IITAKA

Finally, we shall discuss how to determine minimal completions of a
given surface $S$ with $\overline{\kappa}(S)\geqq 0$ and we shall give a precise definition of
the logarithmic Chem number $\overline{c}_{1}^{2}(S)$ of a surface $S$.

The author would like to express his heartfelt thanks to Dr. T.
Fujita. Without his advice, Lemma 1 would not be formulated.

\S 1. For simplicity, we use the following conventions.
Manifold means a non-singular algebraic variety and surface means

a manifold of dimension 2. But curve is understood to be an algebraic
variety of dimension 1. Namely, a curve may have singularities.

First, we introduce the concept of relatively minimal manifold which
may not be complete. Fix a manifold V. $V$ is called a relatively minimal
manifold if and only if any proper birational morphism $\varphi:V\rightarrow V_{1},$ $V_{1}$

being a manifold, tums out to be isomorphic. Note that this definition
of minimality coincides with that of Zariski’s minimality when $V$ is
complete (see [9]). We prove the existence of relatively minimal model
in our sense, that is, in proper birational geometry.

PROPOSITION 1. For a given manifold $V$, there exist a relatively
minimal manifold $V_{*}$ and a proper birational morphi$sm\psi;V\rightarrow V_{*}$ .

In order to prove this, we aim to define a subspace $B(V)$ of $H^{2}(\overline{V})$

which stands for $H^{2}(\overline{V}, Q)$ as follows: Let $\overline{V}$ be a smooth completion of
$V$ with boundary D. $\sum\Gamma_{j}=D$ is a sum of irreducible components $\Gamma_{j}$

of $D$. The number of $\Gamma_{j}’ s$ is indicated by $r(D)$ . We have an exact
sequence of homology groups:

$\rightarrow H_{n-1}(D)\rightarrow H_{2n-1}(\overline{V})\rightarrow H_{2’-1}(\overline{V}, D)$

$\rightarrow H_{2n-2}(D)\rightarrow H_{2n-},(\overline{V})\rightarrow H_{2n-2}(\overline{V}, D)$

where $n=\dim V$. Then by means of Poincar\’e duality and Lefschetz
duality, it yields the following exact sequence:

$0\rightarrow H^{1}(\overline{V})\rightarrow H^{1}(V)\rightarrow H_{2n-2}(D)=\oplus Q\Gamma_{j}$

$\rightarrow H^{f}(\overline{V})\rightarrow H^{2}(V)\rightarrow H_{2n-\S}(D)$ .
We denote the image of $H^{2}(\overline{V})\rightarrow H^{2}(V)$ by $B(\overline{V}, D)$ . Then we have the
following exact sequences:

$(*)$ $0\rightarrow H^{1}(\overline{V})\rightarrow H^{1}(V)\rightarrow H_{2n-2}(D)\rightarrow H^{2}(\overline{V})\rightarrow B(\overline{V}, D)\rightarrow 0$ ,
$0\rightarrow B(\overline{V}, D)\rightarrow H^{2}(V)\rightarrow H_{a’-s}(D)$ .

It has been shown that $B(\overline{V}, D)$ depends only on $V$ (for example, see
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[1] p. 3). Here we shall give an elementary proof. Let $\overline{V}^{1}$ be another
completion of $V$ with smooth boundary $D^{1}$ such that the identity $V\rightarrow V$

defines a birational morphism $f:\overline{V}^{1}\rightarrow\overline{V}$. Then, letting $\sum\Delta_{j}$ be the irre-
ducible decomposition of $D^{1}$ , we have the commutative diagram

$...\rightarrow\oplus Q\Delta_{j}\rightarrow H^{2}(\overline{V}^{1})\rightarrow B(\overline{V}^{1}, D^{1})\rightarrow 0$

$\downarrow$
$\downarrow f_{*}^{2}$

$\downarrow f_{\star}^{2}$

$...\rightarrow\oplus Q\Gamma_{i}\rightarrow H^{2}(\overline{V})\rightarrow B(\overline{V}, D)\rightarrow 0$

in which the horizontal sequences are exact. On the other hand, $f_{l}^{2}$ is
surjective, since $f_{\star}^{2}$ is the dual of $f^{*2}$ : $H^{2}(\overline{V})\rightarrow H^{2}(\overline{V}^{1})$ which is injective
(see [8]). Hence, $\overline{f}_{\star}^{2}$ : $B(\overline{V}^{1}, D^{1})\rightarrow B(\overline{V}, D)$ is also surjective. Moreover,
from the exact commutative diagram:

$0\rightarrow B(\overline{V}^{1}, D^{1})\rightarrow H^{2}(V)$

$\downarrow f_{\star}^{2}$ $\downarrow l$

$0\rightarrow B(\overline{V}, D)\rightarrow H^{2}(V)$

we infer that $\overline{f}_{\star}^{2}$ is also injective. Hence, $B(\overline{V}^{1}, D^{1})\rightarrow\sim B(\overline{V}, D)$ .
By $B(V)$ we denote $B(\overline{V}, D)$ and we write $\beta(V)=\dim B(V)$ . From

the exact sequence $(*)$ , and the formula [3, p. 529], we derive the fol-
lowing

Formula. $\beta(V)=b_{l}(\overline{V})-r(D)+\overline{q}(V)-q(\overline{V})$ .
Now let $f:\overline{V}\rightarrow\overline{V}_{1}$ be a birational morphism between complete mani-

folds $\overline{V}$ and $\overline{V}_{1}$ . Putting $F=f(SuppR_{f})$ where $R_{f}$ is the ramification
divisor of $f$, we get codim $F\geqq 2$ , and $SuppR_{f}=f^{-1}(F)$ by Zariski’s Main
Theorem. Note that $f^{-1}(F)$ is the support of the ramification divisor $R_{f}$ .
By codim $F\geqq 2$ , we have $H^{2}(\overline{V}_{1}-F)=B(\overline{V}_{1}-F)=H^{2}(\overline{V}_{1})$ . Since $V_{0}=\overline{V}-$

$f^{-1}(F)\rightarrow\sim V_{1}-F$, we infer that

$b_{2}(\overline{V}_{1})=\beta(\overline{V}_{1}-F)=\beta(V_{0})=b_{2}(\overline{V})-r(f^{-1}(F))+\overline{q}(V_{0})-q(\overline{V})$ .
On the other hand, $\overline{q}(V_{0})=\overline{q}(\overline{V}_{1}-F)=\overline{q}(\overline{V}_{1})=q(\overline{V}_{0})$ , since codim $F\geqq 2$ .
Thus we obtain

$(**)$ $b_{2}(\overline{V})=b_{2}(\overline{V}_{I})+r(f^{-1}(F))=b_{l}(\overline{V}_{1})+r(R_{f})$ .
Accordingly, we conclude that $b_{2}(\overline{V})\geqq b_{2}(\overline{V}_{1})$ and that $b_{2}(\overline{V})=b_{2}(\overline{V}_{1})$ if and
only if $f$ is isomorphic.

LEMMA 1. Let $f:V\rightarrow V_{1}$ be a proper birational morphism, $V$ and
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$V_{1}$ being man’ifolds. Then $\beta(V)\geqq\beta(V_{1})$ . Moreover, if $\beta(V)=\beta(V_{1^{\backslash }}$,

then $f$ is isomorphic.

PROOF. We choose suitable completions $\overline{V}$ and $\overline{V}_{1}$ of $V$ and $V_{1}$ wit
smooth boundaries $D$ and $D_{1}$ , respectively, such that the rational ma
$g:\overline{V}\rightarrow\overline{V}_{1}$ defined by $f$ is a morphism. Then by the formula, we have

$\beta(V)-\beta(V_{1})=b_{2}(\overline{V})-b_{2}(\overline{V}_{1})-r(D)+r(D_{1})$ .
Let $Z=(R_{g})_{red}$ and let $\sum Z_{j}$ be the irreducible decomposition of $Z$. Pu
$X=\{\sum Z_{j};Z_{\dot{f}}\subset D\}$ and $Y=\{\sum Z_{i};Z_{l}\not\subset D\}$ . Then $Z=X+Y$. Hence by tb
above formula $(**)$ , we have

$b_{2}(\overline{V})-b_{2}(\overline{V}_{1})=r(Z)=r(X)+r(Y)$ .
Furthermore, $r(X)=\gamma(D)-r(D_{1})$ and $Y$ coincides with the closure $\mathfrak{c}$

$SuppR_{f}$ . Thus we obtain

$\beta(V)-\beta(V_{1})=r(Y)=r$($the$ closure of Supp $R_{f}$).

This completes the proof of Lemma 1.
Needless to say, Proposition 1 is derived easily from Lemma 1.
In general, for a given variety $V$ , there exists a relatively minima

manifold $V_{*}$ which is properly birationally equivalent to $V$. Such a $V$

is called a relatively minimal model of $V$ .
Next we shall give a definition of minimal model. Let $V$ be

manifold. $V$ is called minimal or properly minimal manifold if an
only if any strictly birational or any proper birational map (see [2, $|$

$\varphi:V^{1}\rightarrow V,$ $V^{1}$ being a manifold, turns out to be a morphism, respectivel]

It is clear that a minimal manifold is properly minimal and that
properly minimal manifold is relatively minimal. For a given variet
$V$, a properly minimal or minimal manifold that is proper birationall
equivalent to $V$ is called a properly minimal model or manimal mod $($

of $V$ , respectively. A properly minimal model is unique, if it $exist|$

When a relatively minimal manifold has only one relatively $\min{\rm Im}$ }

model, it is a properly minimal model. For a given properly minim}

manifold $V^{*}$ that is proper birationally equivalent to an algebraic variet
$V$, we have

PBir(V) $=PBir(V^{*})=Aut(V^{*})$ .
\S 2. The following theorem is a counterpart of Theorem $B$ in $pr|$

per birational geometry.
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THEOREM 1. Let $S$ be a surface with $\overline{\kappa}(S)\geqq 0$ . Then $S$ is relatively
minimal if and only if $S$ is minimal.

PROOF. Suppose that $S$ is a relatively minimal but not minimal
surface with $\overline{\kappa}(S)\geqq 0$ . Then there exists a strictly birational map
$\varphi:S^{1}\rightarrow S$ such that $S^{1}$ is a surface and that $\varphi$ is not defined at $p$ of $S^{1}$ .
$\varphi(p)$ is a (reducible) curve by Z.M.T. By the definition of strictly ra-
tional map, we have a proper birational morphism $\mu:S_{2}\rightarrow S^{1},$ $S_{2}$ being a
surface, and a birational morphism $g:S_{2}\rightarrow S$ such that $ g=\varphi\circ\mu$ . Since $\mu$

is proper, $\mu^{-1}(p)$ is a complete curve, which is an exceptional curve of
the first kind. Denote by $E_{i}$ the irreducible components of $\mu^{-1}(p)$ , hence
$\mu^{-1}(p)=\sum E_{i}$ . We may assume that $E_{1}$ is an irreducible exceptional
curve of the first kind. If $g(E_{1})$ is a point, we contract $E_{1}$ to a non-
singular point and thus we obtain a surface $S_{\$}$ and a proper birational
morphism $\lambda;S_{2}\rightarrow S_{3}$ , i.e., $S_{2}$ is a blowing up of $S_{3}$ . Then $g^{\prime}=g\circ\lambda^{-1}$ and
$\mu^{\prime}=\mu\circ x^{-1}$ are both morphisms, since $g’(p)$ and $\mu^{\prime}(p)$ are points (see
Figure 1). Hence, we can replace $S_{2}$ by $S_{3}$ . After a finite succession of

FIGURE 1

such replacements, we have an irreducible exceptional curve of the first
kind $E_{1}$ such that $C_{1}=g(F_{1})$ is a curve. Since $E_{1}$ is complete, so is $C_{1}$ .
Hence $C_{1}$ is a closed curve in $\overline{S}$ which is a completion of $S$ with smooth
boundary $D$ , hence $ C_{1}\cap D=\emptyset$ . By $K=K(\overline{S})$ we denote a canonical divi-
sor on $\overline{S}$ . From $E_{1}^{2}=-1$ , follows $C_{1}^{2}\geqq-1$ . Precisely speaking, let
$\nu_{i}(i=1, \cdots, s)$ denote the multiplicities of $C_{1}$ at (infinitely near) singular
points of $C_{1}$ . Then

$C_{1}^{2}=-1+\sum\nu_{j}^{2}+t$ ,
$(*)$ $(K, C_{1})=-1-\sum\nu_{j}-t$ ,

$2\pi(C_{1})-2=\sum\nu_{j}(\nu_{j}-1)’$ .
These follow from the fact that $g$ is composed of blowing ups (see [9]).
$t$ equals the number of blowing ups whose centers are non-singular (in-
finitely near) points of $C_{1}$ .
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Thus we have two cases.
Case 1: $C_{1}^{2}=-1$ and $(K, C_{1})=-1$ . Then $C_{1}$ is an irreducible excep-

tional curve of the first kind, which is contractible. This contradicts
the relative minimality.

Case 2: $C_{1}^{2}\geqq 0$ . Then $(K, C_{1})\leqq-2$ . Since $ C_{\iota}\cap D=\emptyset$ , we have
$(K+D, C_{1})=(K, C_{1})\leqq-2$ . We use the following lemma.

LEMMA 2. Let $C$ be an irreducible curve on a complete surface $\overline{S}$

and $D$ a divisor. $As\epsilon ume$ that $C’\geqq 0$ .
(i) If $\kappa(D,\overline{S})\geqq 0$ , then $(D, C)\geqq 0$ .
(ii) If $C^{2}>0$ and $\kappa(D,\overline{S})>0$ , then $(D, C)>0$ .

Here, $\kappa(D,\overline{S})$ means the D-dimension of $\overline{S}$, (see [8]).

PROOF. After replacing $D$ by some multiple of $D$, we may assume
that $D$ is effective. We write $D=\sum r_{i}C_{i}$ where the $C_{i}$ are irreducible
components of $D$ . By assumption, $(C_{l}, C)\geqq 0$ for any $i$ . As for (II), we
may assume that dim $|D|\geqq 1$ . Let $p$ be a point of $C$. Then $|D|_{p}=$

{$ D_{1}\in|D|;p\in$ Supp $D_{1}$} $\neq\emptyset$ . Hence, a member $\Delta$ of $|D|_{p}$ is written as
$sC+\sum r_{:}C_{i}$ , where we use the following convention: If $C$ is not a com-
ponent of $\Delta$ , we put $s=0$ and choose $C_{1}$ such that $ C\cap C_{1}\neq\emptyset$ . And if $C$

is a component of $\Delta$ , the $C_{i}$ are different from $C$. Thus

$(D, C)=sC^{2}+\sum r_{:}(C_{i}, C)>0$ . Q.E.D.

Now we proceed with the proof of Theorem 1.

By Lemma 2 (i), we get $\overline{\kappa}(S)=-\infty$ .
This contradicts the hypothesis and we complete the proof.

REMARK. If $\overline{q}(S)>0$ , we have the quasi-Albanese map $\alpha_{s}:S\rightarrow \mathscr{A}_{s}$ ,
[3]. Let $S$ be a surface that has no minimal model. Then by Theorem
1, it follows that $\overline{\kappa}(S)=-\infty$ . Hence, $\alpha_{s}(S)$ is a curve $\Delta$ . Thus the
curve $C_{1}$ constructed in the proof of Theorem 1 is contained in a fiber
of $\alpha_{s}:S\rightarrow\Delta$ . Hence, $C_{l}^{g}\leqq 0$ , and so $C_{l}^{g}=0$ by Case 2.

A manifold $V$ is called strongly minimal if and only if any strictly
rational map $\varphi:W\rightarrow V,$ $W$ being a manifold, turns out to be a morphism.
For example, a manifold that does not contain any complete rational
curves is strongly minimal. In particular, an affine manifold is strong-
ly minimal. Hence, an affine plane is a strongly minimal surface, whose
logarithmic Kodaira dimension is $-\infty$ .

\S 3. Let $\overline{V}$ be a complete manifold and $D$ a divisor with normal
crossings on $\overline{V}$. We say that $\overline{V}$ is a completion of $V=\overline{V}-D$ with
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ordinary boundary $D$ . In the previous papers [2], [3], we assumed that
each component of $D$ is non-singular and called $\overline{V}$ a completion of $V$

with smooth boundary $D$ . In this paper, we employ the following
terminology: $\partial$-manifold means a couple (V, $D$) consisting of a complete
manifold $\overline{V}$ and a divisor $D$ with normal crossings on $\overline{V}$. Now we shall
introduce the category of $\partial$-manifolds. A morphism $f:(\overline{V}, D)\rightarrow(\overline{V}_{1}, D_{1})$

is understood as a morphism $f:\overline{V}\rightarrow\overline{V}_{1}$ satisfying that $f^{-1}(D_{1})\subset D$. In
other words, putting $V=\overline{V}-D$ and $V_{1}=\overline{V}_{1}-D_{1},$ $f|V$ is a morphism of
$V$ into $V_{1}$ . Moreover, a rational map $\varphi:(\overline{V}, D)\rightarrow(\overline{V}_{1}, D_{1})$ is understood
as a rational map $\varphi:\overline{V}\rightarrow\overline{V}_{1}$ such that $\varphi|V$ is a strictly rational map
from $V$ to $V_{1}$ . $f:(\overline{V}, D)\rightarrow(\overline{V}_{1}, D_{1})$ is a proper morphism or map if $f|V$:
$V\rightarrow V_{1}$ is proper.

In order to avoid confusion, morphism, rational map, $\cdot$ . . in this
category are written as $\partial$-morphism, rational $\partial- map,$ $\cdots$ .

Next we introduce the notion of minimality in the category of
$\partial$-manifolds. We define (V, $D$) to be relatively $\partial$-minimal if any proper
birational $\partial$-morphism (V, $D$) $\rightarrow(\overline{V}_{1}, D_{1})$ turns out to be isomorphic. Given
(V, $D$), by Lemma 1, we have a relatively $\partial$-minimal $(V_{*}, D_{*})$ such that
there exists a proper birational $\partial$-morphism (V, $D$) $\rightarrow(\overline{V}_{*}, D_{*})$ . Such a
$(V_{*}, D_{*})$ is called a relatively $\partial$-minimal model of (V, $D$).

Suppose that $(\overline{S}, D)$ is a relatively $\partial$-minimal surface. Then each
component $C$ of $D$ does not satisfy the condition that $C^{2}=-1,$ $\pi(C)=0$

and $(C, D’)=1$ or 2, where $C+D^{\prime}=D$ . If a divisor $D$ with normal cross-
ings has the same property as above, $D$ is called a minimal boundary
of $S=\overline{S}-D$ . It is easy to verify that a $\partial$-surface $(\overline{S}, D)$ is relatively
$\partial$-minimal if and only if $S=\overline{S}-D$ is relatively minimal and $D$ is a
minimal boundary.

In what follows, we use the following symbol $[C:D]=(C, D’)$ , when
$C$ is a component of a boundary $D$ and $C+D^{\prime}=D$ .

PROPOSITION 2. Let $(\overline{S}, D)$ be a relatively $\partial$-minimal surface and
assume that $\kappa(\overline{S})\geqq 0$ or $\overline{\kappa}(S)=2$ where $S=\overline{S}-D$ , as usual. Then any
proper birational $\partial$-map $\varphi:(\overline{S}^{I}, D^{1})\rightarrow(\overline{S}, D)$ turns out to be a morphism.

PROOF. Suppose that $\varphi$ is not defined at $p\in D^{1}$ . As in the proof
of Theorem 1, we have a $\partial$-surface $(\overline{S}_{2}, D_{2})$ and proper birational $\partial$-mor-
$phIsm8\mu:(\overline{S}_{2}, D_{2})\rightarrow(\overline{S}^{1}, D^{1})$ and $g;(\overline{S}_{2}, D_{2})\rightarrow(\overline{S}, D)$ such that $ g=\varphi\circ\mu$ . We
may assume that there exists an irreducible exceptional curve of the
first kind $E_{1}$ on $\overline{S}_{2}$ such that $C_{1}=g(E_{1})$ is also a curve. Since $S$ is
minimal by Theorem 1 and since $g$ is proper, $C_{1}$ is a component of $D$ .
$F:=g^{*}(C_{1})-E_{1}$ (subtraction as divisor) is effective and g-exceptional. Put
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$C_{1}+D^{\prime}=D$ . Then,

$[C_{1}:D]=(C_{1}, D^{\prime})=(g^{*}(C_{1}), g^{*}(D’))=(E_{1}, g^{*}(D’))$ .
Noting that $(g^{*}(D’), E_{1})=(g^{-1}(D^{\prime}), E_{1})$ , we define $B$’ and $F^{\prime}$ by $B’+E_{1}=L$

and $g^{-1}(D’)+F’=B$’ where $B^{\prime}$ and $F$ ‘ are effective divisors. Thus,

$(E_{1}, g^{*}(D’))\leqq(E_{1}, g^{*}(D’))+(E_{1}, F’)=(E_{1}, B’)=[E_{1}:D_{2}]$ .
Contracting $E_{1}$ to a non-singular point $x$ , we have a $\partial$-surface $(\overline{S}_{3},$ $D_{\#}$

such that $S_{2}$ is a blowing up of $S_{\epsilon}$ at $x$ , which defines a proper birationa
$\partial$-morphism $\lambda;(\overline{S}_{2}, D_{2})\rightarrow(\overline{S}_{3}, D_{2})$ . Define $\rho=\mu\circ x^{-1}$ , which is a $\partial$-morphism

FIGURE 2

On the other hand, $D^{1}$ has only normal crossings and hence, $D_{3}=\rho^{-1}(D_{1}$

has only normal crossings, too. Therefore, $[E_{1}:D_{2}]=(E_{1}, B^{\prime})=the$ multi
plicity of $D_{3}$ , which is smaller than 3. Accordingly, we obtain

$[C_{1}:D]=(C_{1}, D’)\leqq(E_{1}, B’)\leqq 2$ .
Case 1: $C_{1}$ is a non-singular curve. Then

$(K+D, C_{1})=2\pi(C_{1})-2+(D^{\prime}, C_{1})\leqq-2+2=0$ .
Recalling that $D$ is a minimal boundary, we see that $C_{1}^{2}\geqq 0$ and $[C_{1}:D]\leqq 2$

Hence, $(K, C_{1})=2\pi(C_{1})-2-C_{1}^{2}\leqq-2$ . This implies that $\kappa(\overline{S})=\kappa(K,\overline{S})=-\alpha$

by Lemma 2 (i). Therefore, by the classification theory due to Enri
ques, $\overline{S}$ is an irrational ruled surface or a rational surface. In th $($

former case, we consider the Albanese fibered surface $\alpha=\alpha_{s}:\overline{S}\rightarrow 1^{\prime}$

where $Y=\alpha(\overline{S}),$ $\pi(Y)$ equals $q(\overline{S})$ . Since $C_{\iota}=P^{1},$ $\alpha(C_{1})$ is a point $a$ $eY$

For a general point $y\in Y$, define $C_{y}=\alpha^{-1}(y)$ , which satisfies that $\pi(C_{y})=1$

and $(C_{y}, D^{\prime})=(C_{1}, D’)\leqq 2$ . Thus we see that

$\overline{\kappa}(C_{y}-C_{y}\cap D^{\prime})\leqq 0$ .
Hence, by Theorem 4 ([2] p. 184), $\overline{\kappa}(S)\leqq 1$ . This contradicts the hypo
thesis.
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Next we assume that $\overline{S}$ is rational. Then by Riemann-Roch Theorem,
we have

dim $|C_{1}|\geqq C_{1}(C_{1}-K)/2\geqq 1$ .
A general member $C_{u}$ of $C_{1}|$ satisfies that $\pi(C_{u})=0$ and $(C_{u}, D^{\prime})=$

$(C_{1}, D^{\prime})\leqq 2$ . Hence, from the same argument as in the former case, it
follows that $\overline{\kappa}(S)\leqq 1$ . This is a contradiction.

Case 2: $C_{1}$ is a singular curve. Then $g|E_{1}:E_{1}\rightarrow C_{1}$ is a proper bira-
tional morphism, which is a reduction of singularities of $C_{1}$ . Let $p_{1}$ be
a singular point of $C_{1}$ . $p_{1}$ is an ordinary double point, because $D$ is a
divisor with normal crossings. Hence, we have two points $x$ and $x^{\prime}$ on
$S_{2}$ such that $g(x)=g(x^{\prime})=p_{1}$ . Put $E_{2}=g^{-1}(p_{1})\subset\overline{S}_{2}$ . Then $E_{2}\subset B$

’ and
$(E_{2}, E_{1})=2$ . If $C_{1}$ had another singular point $p_{2}$ , then $B$’ would have
another component $E_{3}=g^{-1}(p_{2})$ satisfying that $(E_{3}, E_{1})=2$ . Hence,

$2\geqq(B^{\prime}, E_{1})\geqq(E_{2}+E_{3}, E_{1})=4$ .
This would be a contradiction. Define $B^{\prime\prime}$ by $B^{\prime}=B^{\prime}+E_{2}$ . Then by the
same reasoning as before, we have $(B‘‘, E_{1})=0$ . Hence, we conclude that
$C_{1}$ is a connected component of $D$ with only one double point. This
implies that $\pi(C_{1})=1$ and so
$(***)$ $(K+D, C_{1})=2\pi(C_{1})-2=0$ .

FIGURE 3

Since $C_{1}^{2}\geqq-1+2^{2}=3$ , we have $(K, C_{1})\leqq-3$ . Hence, $\kappa(\overline{S})=-\infty$ . Thus in
view of the hypothesis, we have $\overline{\kappa}(S)=2$ . By Lemma 2 (ii), we obtain
$(K+D, C_{1})>0$ . This contradicts $(***)$ .

A $\partial$-manifold (V, $D$) is called properly $\partial$-minimal (resp. $\partial$-minimal)
manifold if and only if any proper birational $\partial$-map (resp. any birational
$\partial$-map): $(\overline{V}_{1}, D_{1})\rightarrow(\overline{V}, D)$ turns out to be a morphism. Thus, Proposition
2 is restated as follows: A relatively minimal $\partial$-surface $(\overline{S}, D)$ with
$\overline{\kappa}(\overline{S}-D)=2$ or $\kappa(\overline{S})\geqq 0$ is properly $\partial$-minimal.
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THEOREM 2. Let $(\overline{S}, D)$ be a relatively $\partial$-minimal surface $wil$

$\overline{\kappa}(\overline{S}-D)=2$ or $\kappa(\overline{S})\geqq 0$ . Suppose that any exceptional curve C’ of $ti$

first kind which is not contained in $D$ satisfies that $(C^{\prime}, D)\geqq 3$ . The
$(\overline{S},\overline{D})$ is $\partial$-minimal.

PROOF. We use the same notation as in the proofs of Proposition
and Theorem 1. The case we have to consider here is the case in whic
$C_{1}\not\subset D$ . Then we have

$(K+D, C_{1})=-1-\dot{\sum}\nu_{\dot{f}}-t+(D, C_{1})$ .
Since $(D, C_{1})\leqq 2$ , we get $(K+D, C_{1})\leqq 1$ . The equality holds if and onl
if $s=t=0$ and $(D, C_{1})=2$ . This case does not occur by the hypothesi
Hence, $(K+D, C_{1})\leqq 0$ . By hypothesis again, we have $C_{1}^{2}\geqq 0$ . Using tl
same argument as before, we obtain $\overline{\kappa}(S)\leqq 1$ and $\kappa(\overline{S})=-\infty$ . Q.E.1

Example (cf. [6]). Let $\Delta$ be a union of lines $\Delta_{0},$

$\cdots,$
$\Delta_{q}$ in $P^{2}$ . $D$

fine $S=P^{2}-\cup\Delta_{j}$ . Since $S$ is affine, $S$ is strongly minimal. Pu
$\Sigma_{a}=\{p\in P^{2};mult_{p}(\Delta)\geqq 3\}$ and let $\Sigma_{3}$ consist of $s$ points $p_{1},$ $\cdots,$ $p.$ . $E$

blowing $P^{a}$ up at centers $p_{1},$ $\cdots,$ $p.$ , we have the standard completion
of $S$ with smooth boundary $D$ . Assume $\overline{\kappa}(S)=2$ . If $\Delta$ is of type $\prod_{a}$

$K+D$ is not ample. In fact, letting $\Delta_{0}$ be a line connecting $p_{1}$ with 1
the proper transform $\Delta_{0}^{\prime}$ of $\Delta_{0}$ is an exceptional curve of the first kir
such that $[\Delta_{0}^{\prime}:D]=2$ . Hence, $D$ is not a minimal boundary. If $\Delta$ is $n($

of type $\prod_{a,b}$ , then $K+D$ is ample, by Theorem 3 [6]. We shall look $f_{t}$

an irreducible exceptional curve $C_{1}$ of the first kind which is not co
tained in $D$ such that $(C_{1}, D)=1$ or 2. Such a $C_{1}$ satisfies the conditi $($

that $\mu(C_{1})\cap\Delta$ consists of two points. Then it is easy to see that $\mu(t$

is also a line. Further, $(K+C_{1}+D, C_{1})=0$, i.e., $K+C_{1}+D$ is not ampl
Hence $\mu(C_{1})+\Delta$ is of type $\prod_{a.b}$ . In this case we say that $\Delta$ is of $ty$]
$\prod_{a-1,b-1}$ . We conclude that if $\Delta$ is neither of type $\prod_{a,b}$ nor of $ty$]

$\Pi_{a,b}$ $a+b=q+2$

FIGURE 4
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$\Pi_{a,b}$ , then the $\partial$-surface $(\overline{S}, D)$ consisting of the standard completion $\overline{S}$

and its boundary $D$ is $\partial$-minimal.

\S 4. We shall study relatively $\partial$-minimal surfaces $(\overline{S}, D)$ with
$\overline{\kappa}(\overline{S}-D)\geqq 0$ . First we recall the definition of a canonical blowing up.
For a $\partial$-surface $(\overline{S}, D)$ , letting $p\in D$ , we define the blowing up $\lambda;\overline{S}^{1}=$

$Q_{p}(\overline{S})\rightarrow\overline{S}$ and put $D^{1}=\lambda^{-1}(D)$ . If $p$ is a double point of $D,$ $\lambda;(\overline{S}^{1}, D^{1})\rightarrow$

$(\overline{S}, D)$ is called a canonical blowing up.

PROPOSITION 3. Let $(\overline{S}, D)$ and $(\overline{S}_{1}, D_{1})$ be relatively $\partial$-minimal sur-
faces such that $S=\overline{S}-D=\overline{S}_{1}-D_{1}$ . We assume that $\overline{\kappa}(S)\geqq 0$ . Let
$\varphi:(\overline{S}, D)\rightarrow(\overline{S}_{1}, D_{1})$ be a birational $\partial$-map. Then there exists a composi-
tion of canonical blowing ups $\mu:(\overline{S}_{2}, D_{2})\rightarrow(\overline{S}, D)$ such that $ g=\varphi\circ\mu$ is a
proper birational $\partial$-morphism. $g$ is also a composition of canonical
blowing $ups$ .

PROOF. Let $\mu:(\overline{S}_{2}, D_{2})\rightarrow(\overline{S}, D)$ be a proper birational $\partial$-morphism such
that $ g=\varphi\circ\mu$ is a proper birational $\partial$-morphism with $\mu|_{s}=id$ . Then $\mu$ is
a composition of blowing ups. We shall prove that a non-canonical
blowing up in the decomposition of $\mu$ is not necessary to eliminate the
points of indeterminacy of $\varphi$ . Let $\lambda$ be the first non-canonical blowing
up in $\mu$ . Namely, there exists a composition of canonical blowing ups
$\mu_{1}:(\overline{S}, D_{4})\rightarrow(\overline{S}, D)$ and a proper birational $\partial$-morphism $\mu_{2}:(\overline{S}_{2}, D_{2})\rightarrow(\overline{S}_{3}, D_{\epsilon})$

such that a non-canonical blowing up $\lambda;(\overline{S}_{3}, D_{3})\rightarrow(\overline{S}_{4}, D_{4})$ satisfies $\mu=$

$\mu_{1}\circ x\circ\mu_{2}$ (see Figure 5). The center of $\lambda$ is denoted by $w\in D_{3}$ . Let $\Gamma$

FIGURE 5

be the irreducible component of $D_{3}$ which contains $w$ . Putting $F=$

$\mu_{2}^{-1}(\lambda^{-1}(w))$ , we shall prove that $g(F)$ is a point, in other words, $F$ is
g-exceptional. We assume that $g(F)i8$ a curve. Let $\Gamma^{*}$ be the proper
transform of $\Gamma$ by $(x\circ\mu_{2})^{-1}$ . Then $g(\Gamma^{*})$ is a point. Actually, if $g(\Gamma^{*})$

is a curve, then $g(F)$ remains to be an exceptional curve of the first
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FIGURE 6

kind with $[g(F):D_{1}]=1$ . This contradicts the hypothesis that $D_{1}$ is a
minimal boundary. We write $g$ as a composition of blowing ups $g=$

$h_{1^{\circ}}\cdots\circ h_{m}$ . Then there exists an $i$ such that $h\circ\cdots\circ h_{n*}(\Gamma^{*})$ is a curve
$\tilde{\Gamma}$ and $h_{i-1}(\tilde{\Gamma})=a$ point. Denoting $g_{1}=h_{i}\circ\cdots\circ h_{m}$ and $g_{2}=h_{1}\circ\cdots\circ h_{-1}$ , we
see that $\tilde{F}=g_{1}(F)$ remains to be an exceptional curve of the first kind
satisfying that $[\tilde{F}:g_{1}(D_{2})]=1$ . If $\tilde{F}$ is reducible, we can contract some
curves in $\tilde{F}$ to obtain the irreducible $\tilde{F}$. Thus we may assume $\tilde{F}$ to be
irreducible. Moreover, $[\tilde{\Gamma}:g_{1}(D_{2})]\leqq 2$ , since $g_{2}(\tilde{\Gamma})$ is a point and $g_{2}(g_{1}(D_{2}))$

is a divisor with normal crossings.
We can contract $\tilde{\Gamma}$ to a non-singular point. Then we obtain a blow-

ing up $\sigma:\overline{S}_{5}=g_{1}(\overline{S}_{2})\rightarrow\overline{S}_{6}$ . Letting $Z=\sigma(F)$ and $D_{6}=\sigma(g_{1}(D_{l}))$ , we have
$Z^{2}=0,$ $Z\cong P^{1}$ , and $(Z, D_{6})=1$ . Since $(\overline{S}, D)$ is not properly $\partial$-minimal, $\overline{S}$

is a ruled surface by Theorem 2. Thus, $Z$ is a fiber of the fiber space
$\pi:\overline{S}\rightarrow Y$ and so $\overline{\kappa}(S)\leqq\overline{\kappa}(Z-Z\cap D_{6})+\dim Y=-\infty$ .

This contradicts the hypothesis.
Hence, we may delete non-canonical blowing ups $\lambda$ from $\mu:\overline{S}_{2}\rightarrow\overline{S}$ .

Thus we take a composition of canonical blowing ups $\mu$ such that $g=$

$\varphi\circ\mu$ is a proper birational morphism. We shall prove that $g$ is also a
composition of canonical blowing ups. Note the following

LEMMA 3. Let $g:(\overline{S}, D)\rightarrow(\overline{S}_{1}, D_{1})$ be a proper birational $\partial$-morphism.
Suppose that $g$ is a composition of $\alpha$ canonical blowing ups and $\beta$ non-
canonical blowing $ups$ . Then

$(K(\overline{S})+D)^{2}=(K(\overline{S}_{1})+D_{1})^{2}-\beta$ .
Proof is easy and omitted.
We proceed with the proof of Proposition 3. By Lemma 3 applied

to $\mu$ and $g$ , we have $(K(\overline{S}_{2})+D_{2})^{2}=(K(\overline{S})+D)^{2}$ and $(K(\overline{S}_{2})+D_{2})^{2}\leqq(K(\overline{S}_{1})+D_{1})^{2}$ .
Thus we obtain
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$(K(S)+S)^{2}\geqq(K(S_{1})+D_{1})^{2}$ .
Similarly, $(K(\overline{S}_{1})+D_{1})^{2}\geqq(K(\overline{S})+D)^{2}$ . Hence,

$(K(\overline{S})+D)^{2}=(K(\overline{S}_{1})+D_{1})^{2}$ .
This implies that $g$ is composed of canonical blowing ups. Q.E.D.

COROLLARY. Let $S$ be a surface with $\overline{\kappa}(S)\geqq 0$ . Then $(K(\overline{S})+D)^{2}$

does not depend upon the choice of completions $\overline{S}$ of $S$ with ordinary
boundaries $D$, provided $D’ s$ are minimal boundaries.

For a surface $S$ we define the logarithmic Chern numbers $\overline{c}_{1}^{2}(S)$ and
$\overline{c}_{2}(S)$ as follows (see [6], [7]):

$\overline{c}_{1}^{2}(S)=\sup$ {$c_{1}(\Theta(\log D))^{2}[\overline{S}];(\overline{S},$ $D)$ being a $\partial$-surface such that $S=\overline{S}-D$}

$\overline{c}_{2}(S)=\sup$ {$c_{2}(\Theta(\log D))[S]$ ; as above}.
Here $\Theta(\log D)$ is the dual sheaf of $\Omega^{1}(\log D)$ . Note that $\overline{c}_{2}(S)$ is the
Euler characteristic of $S,$ $[7]$ . Moreover, when $\overline{\kappa}(S)\geqq 0,\overline{c}_{1}^{2}(S)=(K(\overline{S})+D)^{2}$

where $D$ is a minimal boundary.
By the proposition above, we shall determine all relatively $\partial$-minimal

models $(\overline{S}, D)$ when $S=\overline{S}-D$ is given in the case of $\overline{\kappa}(S)=1$ .
First we define elementary transformations for a given $\partial$-surface

$(\overline{S}, D)$ . If there is an irreducible component $C$ of $D$ such that $C^{2}=0$ ,
$\pi(C)=0$ , and $[C:D]=1$ or 2, we consider a canonical blowing up
$\lambda;(\overline{S}^{1}, D^{1})\rightarrow(\overline{S}, D)$ whose center $p\in C\cap D^{\prime},$ $D=C+D’$ . The proper trans-
form C’ satisfies $C^{\prime 2}=-1$ and $\pi(C’)=0$ . Hence, contracting C’ to a non-
singular point by a blowing up $\lambda_{1}$ , we have a new $\partial$-surface $(S_{1}, D_{1})$ .
The birational map $\varphi$ defined to be the composition of $\lambda^{-1};(\overline{S}, D)\rightarrow(\overline{S}^{I}, D^{1})$

and $\lambda_{1};(\overline{S}^{1}, D^{1})\rightarrow(\overline{S}_{1}, D_{1})$ is called an elementary transformation of the
first kind or the second kind, respectively, according to $[C:D]=1$ or 2.

Irreducible components defined in the above figure have the follow-
ing self-intersection numbers: $(\theta’)^{2}=\theta^{2}-1,$ $(\theta_{1}^{\prime})^{2}=\theta_{1}^{2}-1,$ $(\theta_{2}^{\prime})^{2}=\theta_{2}^{2}+1$ , and
$(\theta)^{2}=\theta^{2}$ . To make things clear, we say that $\varphi$ is an elementary trans-
formation at $p$ with axis $C$ and $\varphi$ is denoted by $elm[p, C]$ . We can re-
peat elementary transformations at $p$ (resp. $p’$ ) with axis $C$ (resp. $E^{\prime}$)
and so on. A b-times composition of such transformations is written as
$elm^{b}[p, C]$ .

THEOREM 3. Let $(\overline{S}, D)$ and $(D)\frac{}{S}$ be relatively minimal $\partial$-surfaces
where $S=\overline{S}-D=\overline{S}_{1}-D_{1}$ . Suppose that $\overline{\kappa}(S)=1$ . Then $(\overline{S}_{1}, D_{1})$ is ob-
tained from $(\overline{S}, D)$ by a finite succession of compositions of $elm^{m}[p_{i}, C_{i}]$
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$\underline{X}$
$\underline{\hat{\lambda}_{1}}$

$\underline{\lambda_{1}}$

$\underline{X}$

FIGURE 7

in which the $C_{i}$ are parallel.

PROOF. By the fundamental theorem on logarithmic Kodaira dimer
sion ([2] Theorem 5), we have the logarithmic canonical fibered $surfac\epsilon$

$f:\overline{S}\rightarrow W$ and $f_{1}:\overline{S}_{1}\rightarrow W_{1},$ $W$ and $W_{\iota}$ being complete non-singular curv$ef$

Assume that the identity: $S\rightarrow S$ induces a proper birational map $\varphi:\overline{S}\rightarrow_{\llcorner}^{\overline{(}}$

that is not a morphism. $\varphi$ induces the linear isomorphism from $T_{m}(S)--$

$H^{0}(m(K(S_{1})+D_{1}))$ into $T.(S)=H^{0}(m(K(S)+D))$ , which determines an is $($

morphism $\varphi:W\rightarrow W_{1}$ . Thus we have the following diagram.

$f\downarrow\underline{\psi}\downarrow WW_{1}\overline{S}\overline{S}_{1}\underline{\varphi}f_{1}$

FIGURE 8
Take a point $p_{1}\in\overline{S}_{1}$ at which $\varphi^{-\iota}$ is not defined. Then by the proof $0$

Proposition 2, we have an irreducible exceptional curve of the secon
kind $C$ on $\overline{S}$ such that $C^{2}\geqq 0$ and $[C:D]\leqq 2$ . Since $\psi$ is an isomorphisn
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$C$ is a fiber of $f:\overline{S}\rightarrow W$. Hence, $C^{2}=0,$ $\pi(C)=0$ and $[C:D]=2$ . Set
$w=f(C)$ and $u=\psi(w)$ . We eliminate the points of indeterminacy of $\varphi$

by a composition of canonical blowing ups $\mu:\overline{S}_{2}\rightarrow\overline{S}$ . $f\circ\mu:\overline{S}_{2}\rightarrow W$ is the
logarithmic canonical fibered surface of $\overline{S}_{2}$ and we write $ g=\varphi\circ\mu$ as
usual. The reduced divisor $\mu^{-1}(C)$ is written as $C^{*}+\sum E_{j}$ , in which $C^{*}$

is the proper transform of $C$ . By hypothesis, $g(C^{*})$ is a point $q$ . Hence,
if $C^{*2}\leqq-2$ , then there exists an irreducible exceptional curve of the
first kind in $g^{-1}(q)$ , say $E_{1}$ . After contracting such $E_{1}$ , we conclude
that $C^{*2}=-1$ . This implies that the centers of $\mu$ belong to one of the
two points $C\cap D$ ’ where $D=C+D^{\prime}$ . Thus we have the following figure:

FIGURE 9

After changing the indices of $E_{j}^{\prime}s$ , if necessary, we assume $ C^{*}\cap E_{1}\neq\emptyset$ ,
$E_{1}\cap E_{2}\neq\emptyset,$

$\cdots,$
$E_{n-1}\cap E_{n}\neq\emptyset,$ $n+1=r(g^{-1}(C))$ . If $E_{1}^{2}=-1$ , then contract

$C^{*}$ . The proper transform $E_{1}$ has the vanishing self-intersection number.
This yields that $n=1$ and $\varphi=elm[p, C]$ locally around $C$. If $E_{1}^{2}=-2$

and $E_{j}^{2}=-2$ or $-1$ for any $j\in[2, n]$ , then repeat contractions starting
from $C^{*}$ . Thus we finally have

$E_{1}^{2}=E_{2}^{2}=\cdots=E^{2}=-2$ , and $E_{n}^{2}=-1$ .
It is easy to see that $\varphi$ is expressed near $C$ as an n-times composition
of elementary transformations of the second kind. In other words,
$\varphi=elm^{n}[p, C]$ locally around $C$. The final case is the case where there
exists $i$ such that $E_{i}^{2}\leqq-3$ . Let $E_{t}$ correspond to a fiber $C_{1}$ by $g$ . Then
$E_{n}+E_{n-1}+\cdots+E_{t+\iota}$ is an exceptional curve of the first kind that is
g-exceptional. Hence, there exists an irreducible exceptional curve of
the first kind $E_{k},$ $n\geqq k\geqq l+1$ . Contract such an $E_{k}$ and repeat. At last
we may assume that $l=n$ . Thus, $C^{*}+E_{1}+\cdots+E_{n-1}$ is an exceptional
curve of the first kind, which is a bamboo. If there exists $E_{j}(1\leqq j\leqq E_{n-1})$

which is an exceptional curve of the first kind, contract it. Even after
such contractions, $C^{*}+E_{1}+\cdots+E_{n-1}$ has the same property, i.e., $C^{*2}=-1$

and it is exceptional. Thus, we may assume that $E_{j}^{2}\leqq-2$ for any
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$j\in[1, n-1]$ . We claim that $E_{j}^{2}=-2$ for any $j\in[1, n-1]$ . Actually, if
there exists $E_{m}$ such that $E_{n*}^{2}\leqq-3$ , we let $i$ be the minimal number
among such $m$ . Contract $C^{*}$ and let $E_{1}^{\prime}$ be the proper transform of $E_{1}$ ,
which is an exceptional curve of the first kind, if $1\leqq i-1$ . Then contract
$E_{1}^{\prime}$ , again. Continuing these contractions we arrive at the following
bamboo

FIGURE 10

where $E^{l2}\leqq-2,$ $E_{i+1}^{2}\leqq-2,$ $\cdots,$ $E_{-1}^{2}\leqq-2$ . Thus $E’+E_{i+1}+\cdots+E_{n-1}$ could
not be an exceptional curve of the first kind. This contradicts the fact
that $C^{*}+E_{1}+\cdots+E_{n-1}$ is exceptional. Performing the same processes,
we conclude that

$\varphi=elm’[p, C]\circ elm^{n}[q, C’]\circ\cdots\circ\cdots$ .
COROLLARY. Let $S$ be a surface with $\overline{\kappa}(S)\geqq 1$ . Take an arbitrary

completion $\overline{S}$ of $S$ with ordinary boundary $D$ such that $D$ is a minimal
boundary. Then $(K(\overline{S}))^{2},$ $(K(\overline{S}), K(\overline{S})+D),$ $(K(\overline{S})+D)^{2}$ do not depend upon
the choice of $\partial$-surface $(\overline{S}, D)$ such that $S=\overline{S}-D$.

Thus we can define logarithmic Chern numbers of $S$ with $\overline{\kappa}(S)\geqq 1$

as follows:
$c_{1}^{2}(S)=(K(\overline{S}))^{2}$ ,

$\overline{C}{}_{1}C_{1}(S)=(K(\overline{S}), K(\overline{S})+D)$ ,
$\overline{c}_{1}^{2}(S)=(K(\overline{S})+D)^{2}$ .

EXAMPLE. Let $S=A^{2}-V(x^{2}-y^{3})$ . Then $S=P^{2}-C_{1}UC_{2},$ $C_{1}$ being the
infinite line and $C_{2}$ being the closure of $V(x^{2}-y^{3})$ . By a 6-times composi-
tion of blowing ups, we have a completion $\overline{S}$ of $S$ with smooth boundary $D$ .

FIGURE 11
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Here, the entity $X^{a}$ is the proper transform of $X^{a-1}$ by a blowing
up. Let $H$ represent a line on $P^{2}$ and the total transform of $Y$ is de-
noted by the same symbol Y. Then

$D+K\sim H-F_{2}-E_{3}-F_{3}$ ,
$K\sim-3H+E_{1}+E_{2}+E_{3}+F_{1}+F_{2}+F_{3}$ .

Hence,

$c_{1}^{2}(S)=3,\overline{c}{}_{1}C_{1}(S)=0,\overline{c}_{1}^{2}(S)=-2$ .
The configurations of minimal boundaries of $S$ are as follows:

FIGURE12

Each point indicates the irreducible component of $D$ with its self-
intersection number.

REMARK. The determination of all $\overline{\partial}$-surfaces $(\overline{S}, D)$ with $S=\overline{S}-D$

for a given surface $S$ is rather difficult when $\overline{\kappa}(S)=0$ . But it can be
done in a similar way to Theorem 3. For this, we refer the reader
to [5].
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