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On Bounded Solutions of $x^{\prime\prime}=t^{\beta}x^{1+\alpha}$

Tosiya SAITO

Keio University

\S 1. In this paper, we consider a second order nonlinear differential
equation

(1) $x^{\prime}=t^{\beta}x^{1+\alpha}$ $(^{\prime}=d/dt)$

where $\alpha$ and $\beta$ are real numbers and $\alpha>0$ . This equation includes, as
its special case, the equation

$x’=t^{1-m}x^{m}$ , $1<m<3$ ,

which is known as Emden’s equation [1].
The solutions of (1) considered here are those which assume real

values for real $t$ . Therefore, for any given $\alpha$ and $\beta,$
$t^{\beta}$ and $x^{1+\alpha}$ must

be regarded as representing real-valued branches. So it is quite natural
to assume that

(1) the domain in which the equation (1) is considered is

$ G:0<t<\infty$ , $ 0\leqq x<\infty$ ,

(2) $x^{1+\alpha}$ and $t^{\beta}$ represent their nonnegative-valued branches in $G$ .
The purpose of the present paper is to show that the equation (1)

has a one-parameter family of (positive) bounded solutions if $\beta$ satisfies
a certain condition. Here, by a bounded solution, we mean a solution
$x(t)$ such that $x(t)$ and $x^{\prime}(t)$ are both bounded for $ 0<t<\infty$ .

\S 2. Let $x(t)$ be a bounded solution of (1). Since

$x^{\prime}(t)=t^{\beta}(x(t))^{1+\alpha}\geqq 0$

in $G$ by our assumptions given at the outset, $x^{\prime}(t)$ is a nondecreasing
function of $t$ . So if $x^{\prime}(a)>0$ for some $a>0$ , we have

$x^{\prime}(t)\geqq x^{\prime}(a)$ for $t\geqq a$ .
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Integrating both sides from $a$ to $t(>a)$ , we get the following inequality:

$x(t)-x(a)\geqq x(a)(t-a)$

which obviously contradicts the boundedness of $x(t)$ . Hence $x^{\prime}(t)$ must
be nonpositive for every bounded solution $x(t)$ .

Therefore every bounded solution $x(t)$ turns out to be nonincreasing.
Consequently if we exclude the trivial solution $x(t)=0,$ $x(t)$ has a positive
limit as $t\rightarrow 0$ . Thus we get

PROPOSITION 1. If $x(t)$ is a nontrivial bounded solution of (1), then

$x’(t)\leqq 0$ and $\lim x(t)>0$ .
For the existence of a nontrivial bounded solution, $\beta$ cannot be an

arbitrary real number. This is shown by the following

PROPOSITION 2. If $\beta\leqq-1$ , the equation (1) has no bounded non-
trivial solution.

PROOF. Suppose that $\beta\leqq-1$ . If there exists a nontrivial bounded
solution $x(t)$ of (1), then $\lim_{t\rightarrow 0}x(t)>0$ by Proposition 1. Hence for suit-
ably small $\delta>0$ , there exists $m>0$ such that

$(x(t))^{1+\alpha}>m$ for $ 0<t<\delta$ .
Then

$x^{\prime\prime}(t)=t^{\beta}(x(t))^{1+\alpha}>mt^{\beta}$ , $ 0<t<\delta$ .
Integrating both sides from $\epsilon$ to $t$ where $ 0<\epsilon<t<\delta$ , we obtain

$x’(t)-x’(\epsilon)>(m/(\beta+1))\cdot(t^{\beta+1}-\epsilon^{\beta+1})$ , if $\beta<-1$ ,

and

$x(t)-x’(\epsilon)>m(\log t-\log\epsilon)$ , if $\beta=-1$ .
In both cases, the right-hand members of these inequalities tend $to.:_{5}\infty$

as $\epsilon\rightarrow 0$ . This implies

$\lim_{\rightarrow 0}x^{\prime}(\epsilon)=-\infty$

in contradiction with the boundedness of the solution $x(t)$ .
So hereafter we assume that $\beta>-1$ and write the equation (1) in

a form:



BOUNDED SOLUTIONS 59

(2) $x^{\prime\prime}=t^{\alpha\lambda-2}x^{1+\alpha}$ , $\alpha>0$ , $\lambda>0$ , $\alpha\lambda>1$ .
\S 3. First we notice that

$x=\psi(t)=(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda}$

is a solution of (2). This can be verified by direct calculation.

PROPOSITION 3. Let $x=\phi(t)$ be an arbitrary nontrivial bounded solu-
tion of (2) and $y(t)$ be a function defined by

(3) $\phi(t)=\psi(t)(y(t))^{1/\alpha}$ ,

$or$ , written explicitly, $by$

(4) $y(t)=[\lambda(\lambda+1)]^{-1}t^{\alpha\lambda}(\phi(t))^{\alpha}$ .
Then the function $z(y)$ defined by

(5) $y=y(t)$ , $z=ty^{\prime}(t)$ , $ 0<t<\infty$ ,

is a solution of the differential equation

(6) $\frac{dz}{dy}=_{\ovalbox{\tt\small REJECT},\alpha yz}^{-\lambda(\lambda+1)\alpha^{2}y^{2}+(2\lambda+1)\alpha yz-(1-\alpha)z^{2}+\lambda(\lambda+1)\alpha^{2}y^{3}}$

such that
(1) $z(y)$ is defined for $0<y<1$ ,
(2) $z(y)\geqq 0$ for $0<y<1$ ,
(3) $\lim_{y\rightarrow 0}z(y)=\lim_{y\rightarrow 1}z(y)=0$ .
Proof of this proposition is divided into several steps. First it is

easy to show that $z(y)$ defined by (5) satisfies (6). Indeed, substituting
the expression (3) into the equation (2), we obtain

$t^{2}yy^{\prime}+(\alpha^{-1}-1)t^{2}y^{2}-2\lambda tyy’+\alpha\lambda(\lambda+1)(y^{2}-y^{8})=0$ .
Then, if we notice that

$ty^{\prime}=z$ , $t^{2}y^{\prime}=z\frac{dz}{dy}-z$ ,

we are immediately led to the equation (6).
To prove that $z(y)$ has the properties (1), (2) and (3), we begin with

the following two lemmas.

LEMMA 1. If $\phi(t)$ is a nontrivial bounded solution of (2), then
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$\phi(t)<\psi(t)$ for $ 0<t<\infty$ ,

and hence $\lim_{t\rightarrow\infty}\phi(t)=0$ .
PROOF. Since

$\lim_{t\rightarrow 0}\psi(t)=\infty$

and $\phi(t)$ is bounded, we have $\phi(t)<\psi(t)$ if $t$ is sufficiently small. If the
conclusion of the lemma does not hold, then there exists $\tau>0$ such that

$\phi(t)<\psi(t)$ , $ 0<t<\tau$ ,
$\phi(\tau)=\psi(\tau)$ .

Then obviously $\phi^{\prime}(\tau)\geqq\psi(\tau)$ . However, since $\phi(\tau)=\psi(\tau)$ and $\phi(\tau)=\psi(\tau)$

imply $\phi(t)=\psi(t)$ by the uniqueness of the solution, the case $\phi(\tau)=\psi(\tau)$

must be excluded and we have $\phi(\tau)>\psi’(\tau)$ . This is turn implies that
$\phi(t)>\psi(t)$ if $ t>\tau$ and $ t-\tau$ is suitably small.

Suppose that there exists $\tau_{1}>\tau$ such that

$\phi(t)>\psi(t)$ , $\tau<t<\tau_{1}$ ,
$\phi(\tau_{1})=\psi(\tau_{1})$ .

Then, by the same reasoning as above, we get

(7) $\phi^{\prime}(\tau_{1})<\psi’(\tau_{1})$ .
Since $\phi(t)>\psi(t)$ for $\tau<t<\tau_{1}$ , the following inequality must hold for
$\tau<t<\tau_{1}$ :

$\phi^{\prime}(t)=t^{\alpha\lambda-2}(\phi(t))^{1+\alpha}>t^{\alpha\lambda-2}(\psi(t))^{1+\alpha}=\psi(t)$ .
Integrating both sides of this inequality from $\tau$ to $t(\tau<t<\tau_{1})$ , we get

$\phi(t)-\phi^{\prime}(\tau)>\psi’(t)-\psi(\tau)$ ,

or

(8) $\phi^{\prime}(t)>\psi’(t)+(\phi^{\prime}(\tau)-\psi(\tau))$ .
As (8) is valid for $\tau<t<\tau_{1}$ and $\phi(\tau)>\psi’(\tau)$ we obtain

$\phi(\tau_{1})>\psi(\tau_{1})$

in contradiction with (7).
Hence no such $\tau_{1}$ exists and (8) holds for $\tau<t<\infty$ . Then the inte-

gration of (8) from $\tau$ to $t(>\tau)$ will yield
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$\phi(t)>\psi(t)+(\phi^{\prime}(\tau)-\psi(\tau))(t-\tau)$ .
Since $\psi(t)\rightarrow 0$ as $ t\rightarrow\infty$ and $\phi^{\prime}(\tau)-\psi^{\prime}(\tau)>0$ , this implies

$\lim_{t\rightarrow\infty}\phi(t)=\infty$ .

This contradicts with the boundedness of $\phi(t)$ and the lemma is proved.
For any nontrivial bounded solution $\phi(t)$ of (2), we define a function

$f(t, \tau)$ by

$f(t, \tau)=\tau^{\lambda}\phi(\tau)t^{-\lambda}$ ,

where $\tau$ is an arbitrary positive number. Evidently $f(\tau, \tau)=\phi(\tau)$ .
LEMMA 2. For any $\tau>0$ , we have

$\phi(t)\geqq f(t, \tau)$ , $\tau\leqq t$ .
PROOF. Direct calculation will give

$\phi(t)-f^{\prime}’(t, \tau)=t^{\alpha\lambda-2}(\phi(t))^{1+\alpha}\tau^{-\alpha\lambda}(\phi(\tau))^{-a}[(\tau^{\lambda}\phi(\tau))^{\alpha}-\lambda(\lambda+1)(\frac{\tau^{\lambda}\phi(\tau)}{t^{\lambda}\phi(t)})^{1+\alpha}]$ .

Since $\phi(t)<\psi(t)=(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda}$ by Lemma 1,

$\tau^{\lambda}\phi(\tau)<\tau^{\lambda}\psi(\tau)=(\lambda(\lambda+1))^{1/\alpha}$ .
Hence

$\phi^{\prime}(t)-f^{\prime\prime}(t, \tau)<t^{\alpha\lambda-2}(\phi(t))^{1+\alpha}\tau^{-\alpha\lambda}(\phi(\tau))^{-\alpha}\lambda(\lambda+1)[1-(\frac{\tau^{\lambda}\phi(\tau)}{t^{\lambda}\phi(t)})^{1+\alpha}]$ .

Therefore, if

$t^{\lambda}\phi(t)\leqq\tau^{\lambda}\phi(\tau)$ ,

or equivalently if

(9) $\phi(t)\leqq\tau^{\lambda}\phi(\tau)t^{-\lambda}=f(t, \tau)$ ,

we have

(10) $\phi(t)<f^{\prime}(t, \tau)$ .
If we assume that the conclusion of the lemma does not hold, we

are led to the following alternative:
(i) there exist $\tau_{1}$ and $\tau_{2}(\tau\leqq\tau_{1}<\tau_{2})$ such that
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(11) $\left\{\begin{array}{l}\phi(\tau_{1})=f(\tau_{1}, \tau)\\\phi(t)<f(t, \tau)\\\phi(\tau_{l})=f(\tau_{s}, \tau)\end{array}\right.$

$\tau_{1}<t<\tau_{2}$ ,

(ii) there exists $\tau_{1}\geqq\tau$ such that

(12) $\left\{\begin{array}{ll}\phi(\tau_{1})=f(\tau_{1}, \tau), & \\\phi(t)<f(t, \tau), & \tau_{1}<t<\infty.\end{array}\right.$

In the first case, the inequality (9) and hence the inequality (10)
holds for $\tau_{1}\leqq t\leqq\tau_{2}$ . Integrating both sides of (10) from $\tau_{1}$ to $t(\tau_{1}<t<\tau_{2})$ ,
we get

$\phi(t)-\phi(\tau_{1})<f’(t, \tau)-f’(\tau_{1}, \tau)$ ,

or

(13) $\phi^{\prime}(t)<f^{\prime}(t, \tau)+(\phi(\tau_{1})-f^{\prime}(\tau_{1}, \tau))$ , $\tau_{1}<t<\tau_{2}$ .
If we integrate (13) from $\tau_{1}$ to $\tau_{2}$ and notice the relation (11), then we
get

$0<(\phi(\tau_{1})-f’(\tau_{1}, \tau))(\tau_{2}-\tau_{\iota})$ .
Since $\tau_{2}-\tau_{1}>0$ , this yields

$\phi(\tau_{1})>f’(\tau_{1}, \tau)$

which is absurd since the first two relations of (11) obviously imply

(14) $\phi(\tau_{1})\leqq f’(\tau_{1}, \tau)$ .
Next consider the case (ii) in which (12) holds. Then the inequality

(13) holds for $\tau_{1}<t<\infty$ . Integrating it from $\tau_{1}$ to $t(t>\tau_{1})$ and taking
the relation (12) into account, we get

$\phi(t)<f(t, \tau)+(\phi^{\prime}(\tau_{1})-f’(\tau_{1}, \tau))(t-\tau_{1})$ .
If $\phi(\tau_{1})<f’(\tau_{1}, \tau)$ , this leads us to

$\lim_{t\rightarrow\infty}\phi(t)=-\infty$

which is impossible. Hence, by (14), we must have

$\phi^{\prime}(\tau_{1})=f’(\tau_{1}, \tau)$

and the inequality (13) will become



BOUNDED SOLUTIONS 63

$\phi(t)<f^{\prime}(t, \tau)$ , $\tau_{1}<t<\infty$ .
So, if we choose $\tau_{1}^{\prime}>\tau_{1}$ , we have

(15) $\phi^{\prime}(\tau_{1})<f’(\tau_{1}^{\prime}, \tau)$ .
On the other hand,

$f’(\tau_{1}, \tau_{1}^{\prime})-f’(\tau_{1}, \tau)=-\lambda\tau_{1}^{\prime\lambda}\phi(\tau_{1}^{\prime})\tau_{1}^{\prime-\lambda-1}+\lambda\tau^{\lambda}\phi(\tau)\tau_{1}^{\prime-\lambda-1}$

$=\lambda\tau_{1}^{-1}(\tau^{\lambda}\phi(\tau)\tau_{1}^{\prime-\lambda}-\phi(\tau_{1}))$ .
As we have assumed that

$\phi(t)<f(t, \tau)$ , $\tau_{1}<t<\infty$ ,

we have

$\phi(\tau_{1})<f(\tau_{1}, \tau)=\tau^{\lambda}\phi(\tau)\tau_{1}^{-\lambda}$ .
Thus it follows that

$f’(\tau_{1}^{\prime}, \tau_{1}^{\prime})>f’(\tau_{1}^{\prime}, \tau)$ .
From this and (15), we get an inequality

(16) $\phi^{\prime}(\tau_{1}^{\prime})<f’(\tau_{1}^{\prime}, \tau_{1}^{\prime})$ .
Since $\phi(\tau_{1}^{\prime})=f(\tau_{1}^{\prime}, \tau_{1}^{\prime})$ , it follows from (16) that

$\phi(t)<f(t, \tau_{1})$ , $\tau_{1}^{\prime}<t<\tau_{2}^{\prime}\leqq\infty$ ,

and this implies

$\phi(t)<f’(t, \tau_{1}^{\prime})$ , $\tau_{1}<t<\tau_{2}^{\prime}\leqq\infty$ .
So we can repeat the argument given above replacing $\tau_{1}$ and $\tau_{l}$ by $\tau_{1}^{\prime}$

and $\tau_{l}^{\prime}$ respectively. Since the inequality (16) excludes the case
$\phi(\tau_{1}^{\prime})=f’(\tau_{1}, \tau_{1}^{\prime})$ ,

the final part of our discussion is now unnecessary and we are led to
the contradiction. Thus we have proved the lemma.

PROOF OF PROPOSITION 3. By the two lemmas just proved, we have

$f(t, \tau)=\tau^{\lambda}\phi(\tau)t^{-\lambda}\leqq\phi(t)<\psi(t)=(\lambda(k+1))^{1/\alpha}t^{-\lambda}$ , $\tau\leqq t<\infty$ .
This can easily be rewritten as
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$\frac{1}{\lambda(\lambda+1)}\tau^{\alpha\lambda}(\phi(\tau))^{\alpha}\leqq\frac{1}{\lambda(\lambda+1)}t^{\alpha\lambda}(\phi(t))^{\alpha}<1$ .

Recalling the definition of $y(t)$ given by (4), this means that

(17) $y(\tau)\leqq y(t)<1$ , $\tau\leqq t<\infty$ ,

which shows that $y(t)$ is a nondecreasing function of $t$ . Hence

$z(y)=ty’(t)\geqq 0$ , $ 0<t<\infty$ .
Consequently, in order to show that $y(t)$ has the properties $(l)$ and (2)

stated in the Proposition 3, it remains to prove that

$\lim_{t\rightarrow 0}y(t)=0$ , $\lim_{t\rightarrow\infty}y(t)=1$ .

Since $y(t)$ is defined by (4):

$y(t)=[k(\lambda+1)]^{-1}t^{\alpha\lambda}(\phi(t))^{\alpha}$ , $\alpha>0$ , $\lambda>0$ ,

and $\phi(t)$ is bounded, the first relation $\lim_{t\rightarrow 0}y(t)=0$ is immediate.
Since (17) shows that $y(t)$ is nondecreasing and bounded from above,

the existence of $\lim_{t\rightarrow\infty}y(t)$ is obvious. Let us denote this limit by $c$ .
Then since

$\lim_{t\rightarrow\infty}t^{\lambda}\phi(t)=\lim_{t\rightarrow\infty}[\lambda(\lambda+1)y(t)]^{1/\alpha}=(\lambda(\lambda+1))^{1/\alpha}c^{1/\alpha}$ ,

$\lim_{t\rightarrow\infty}t^{\lambda}\psi(t)=[\lambda(\lambda+1)]^{1/\alpha}$ ,

the limit

$\lim_{t\rightarrow\infty}\frac{t^{\lambda}\phi(t)}{t^{\lambda}\psi(t)}=\lim_{t\rightarrow\infty}\frac{\phi(t)}{\psi(t)}$

exists and is equal to $c^{1/\alpha}$ . As $\lim_{t\rightarrow\infty}\phi(t)=0$ by Lemma 1 and

$\lim_{t\rightarrow\infty}\psi(t)=\lim_{t\rightarrow\infty}(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda}=0$

we can apply the well-known l’Hospital’s theorem and get

$\lim_{t\rightarrow\infty}\frac{\phi(t)}{\psi(t)}=\lim_{t\rightarrow\infty}\frac{\phi^{\prime}(t)}{\psi’(t)}=c^{1/\alpha}$ .

However, as

$\lim_{t\rightarrow\infty}\psi^{\prime}(t)=\lim_{t\rightarrow\infty}[-\lambda(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda-1}]=0$ ,



BOUNDED SOLUTIONS 65

l’Hospital’s theorem can be applied again and

(18) $\lim_{t\rightarrow\infty}\frac{\phi(t)}{\psi(t)}=\lim_{t\rightarrow\infty}\frac{\phi(t)}{\psi’(t)}=c^{1/\alpha}$ .
On the other hand, from

$\phi(t)=t^{\alpha\lambda-2}(\phi(t))^{1+\alpha}$ , $\psi(t)=t^{a\lambda-2}(\psi(t))^{1+\alpha}$ ,

we also get

$\lim_{t\rightarrow\infty}\frac{\phi(t)}{\psi’(t)}=\lim_{t\rightarrow\infty}\frac{(\phi(t))^{1+\alpha}}{(\psi(t))^{1+\alpha}}=(c^{1/\alpha})^{1+\alpha}=c^{1/\alpha+1}$ .

Comparing this with (18), we obtain

$c=\lim_{t\rightarrow\infty}y(t)=1$

which is the required result.
Finally we have to prove (3). Direct calculation shows that

(19) $z(y(t))=ty^{\prime}(t)=\alpha\lambda y(t)+[\lambda(\lambda+1)]^{-1}t^{\alpha\lambda+1}[(\phi(t))^{\alpha}]$ .
As $c$ was proved to be equal to 1, (18) implies that

$\lim\underline{(\phi(t))^{\alpha}}=1$ .
$t\rightarrow\infty(\psi(t))^{\alpha}$

So, by applying l’Hospital’s theorem again,

$\lim_{t\rightarrow\infty}\frac{[(\phi(t))^{\alpha}]}{[(\psi(t))^{\alpha}]}=1$ .

From this we get

$\lim=1\underline{t^{\alpha\lambda+1}[(\phi(t))^{\alpha}]}$ .
$t\rightarrow\infty t^{\alpha\lambda+1}[(\psi(t))^{\alpha}]$

As direct calculation shows

$\lim_{t\rightarrow\infty}t^{\alpha\lambda+1}[(\psi(t))^{\alpha}]^{\prime}=\lim_{t\rightarrow\infty}t^{\alpha\lambda+1}[\lambda(\lambda+1)t^{-\alpha\lambda}]=-\alpha\lambda^{2}(\lambda+1)$ .
Hence

$\lim_{t\rightarrow\infty}t^{a\lambda+1}[(\phi(t))^{\alpha}]=\lim_{t\rightarrow\infty}t^{\alpha\lambda+1}[(\psi(t))^{\alpha}]=-\alpha\lambda^{2}(\lambda+1)$ .
Thus we have
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$\lim_{t\rightarrow\infty}z(y(t))=\alpha\lambda\lim_{t\rightarrow\infty}y(t)+[\lambda(\lambda+1)]^{-1}\lim_{t\rightarrow\infty}t^{\alpha\lambda+1}[(\phi(t))^{\alpha}]^{\prime}$

$=\alpha\lambda+[\lambda(\lambda+1)]^{-1}(-\alpha\lambda^{2}(\lambda+1))=0$ .
Since $y(t)\rightarrow 1$ as $ t\rightarrow\infty$ , we get

$li^{mz(y)=0}$ .
To prove that

$\lim^{z(y)=0}$ ,

we have to show that

$\lim_{t\rightarrow 0}z(y(t))=0$ .
However, since

$\lim_{t\rightarrow 0}y(t)=0$

and $\phi(t)$ and $\phi(t)$ are bounded as $t\rightarrow 0$ , this follows immediately from
(19).

This completes the proof of the Proposition 3.

\S 4. This section is devoted to the proof of

PROPOSITION 4. The diferential equation (6):

$\frac{dz}{dy}=\frac{-\lambda(\lambda+1)\alpha y+(2\lambda+1)\alpha yz-(1-\alpha)z^{2}+\lambda(\lambda+1)\alpha^{2}y^{s}}{\alpha yz}$

has one and only one solution $z(y)$ such that

$z(y)>0$ for $0<y<1$ ,
and

$\lim_{l\sim}z(y)=\lim_{v\rightarrow 1}z(y)=0$ .
PROOF. Introducing a new parameter $s$ , we write the equation (6)

in the following form:

$\frac{dy}{ds}=\alpha yz$ ,
(20)

$\frac{dz}{ds}=-\lambda(\lambda+1)\alpha^{2}y+(2\lambda+1)\alpha yz-(1-\alpha)z^{2}+\lambda(\lambda+1)\alpha^{2}y^{3}$ .
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As can easily be seen, $y=z=0$ and $y=1,$ $z=0$ are the only critical points
of (20).

First let us investigate the behaviour of orbits near $y=1,$ $z=0$ . For
that purpose, we put

$ y=1+\eta$ , $ z=\zeta$ .
Then (20) is transformed into

$\frac{d\eta}{ds}=\alpha\zeta+\cdots$ ,
(20’)

$\frac{d\zeta}{ds}=\lambda(\lambda+1)\alpha^{2}\eta+(2\lambda+1)\alpha\zeta+\cdots$ ,

where the unwritten part represents the terms whose degrees are greater
than 1. Since the eigenvalues of a matrix

$\left(\begin{array}{ll}l & \alpha\\\lambda(\lambda+1)\alpha^{2} & (2\lambda+1)\alpha\end{array}\right)$

are

$\mu=\frac{1}{2}[(2\lambda+1)\alpha-\sqrt{(2\lambda+1)^{2}\alpha^{2}+4\lambda(\lambda+1)\alpha^{3}}]<0$ ,

and

$\mu^{\prime}=\frac{1}{2}[(2\lambda+1)\alpha+\sqrt{(2\lambda+1)^{2}\alpha^{l}+4\lambda(\lambda+1)\alpha^{3}]}>0$ ,

$\eta=\zeta=0$ is a saddle point. Two orbits tending to this saddle point as
$ s\rightarrow\infty$ can be expressed as

$\eta=a_{1}(ce^{\mu\iota})+a_{2}(ce^{\mu})^{2}+\cdots$ ,
(21)

$\zeta=b_{1}(ce^{\mu\epsilon})+b_{l}(ce^{\mu})^{2}+\cdots$ ,

where the power series in $ce^{\mu}$ in the right-hand members are convergent
in the neighbourhood of $ s=\infty$ . Substituting the above expression into
(20’) and comparing the coefficients, we get

$\frac{b_{1}}{a_{1}}=\frac{\mu}{\alpha}$ .
Therefore the curve consisting of these two orbits together with the
saddle point $\eta=\zeta=0$ is expressed in a form
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$\zeta=\frac{\mu}{\alpha}\eta+\cdots$

where the right-hand member is a power series in $\eta$ convergent in the
neighbourhood of $\eta=0$ .

In the same way, the curve representing another two orbits tending
to $\eta=\zeta=0$ as $ s\rightarrow-\infty$ together with the saddle point $\eta=\zeta=0$ is express-
ed as

$\zeta=\frac{\mu^{\prime}}{\alpha}\eta+\cdots$ .

Returning to the original variables $y$ and $z$ , these two curves passing
through the saddle point $y=1,$ $z=0$ are expressed by the following power
series in $y-1$ :

(22) $ Z=_{\alpha}^{A_{(y-1)+}}\cdots$ ,

(22’) $ z=\frac{\mu^{\prime}}{\alpha}(y-1)+\cdot$ . . .

Since $\mu/\alpha<0$ and $\mu^{\prime}/\alpha>0$ , only the curve (22) intersects the domain

$0<y<1$ , $z\geqq 0$ .
So we have only to consider the curve (22), and especially a part of the
curve lying to the left of $y=1$ . As is clear from the expression (21),
this left-half part of the curve represents an orbit which approaches the
critical point $(1, 0)$ from the left as $ s\rightarrow\infty$ . We shall now show that
this orbit tends to $(0,0)$ as $ s\rightarrow-\infty$ .

We denote by $C$ the arc of a parabola

$z=f(y)=\alpha(x+1)(y-y^{2})$

lying between $y=0$ and $y=1$ and by $D$ the domain bounded by $C$ and
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the segment $0\leqq y\leqq 1$ on the y-axis.
On the open segment $0<y<1,$ $z=0$ , we have

$\frac{dy}{ds}=0$ , $\frac{dz}{ds}=\lambda(\lambda+1)\alpha^{2}(y^{3}-y^{2})<0$

which shows that the orbits of (20) passing through this segment go
out of $D$ as $s$ increases.

On the arc $C$, we have

$\frac{d}{ds}(z-f(y))=\alpha^{2}(\alpha+1)(\lambda+1)^{2}y^{2}(y-y^{2})>0$ .

Hence the orbits passing through $C$ also go out of $D$ as $s$ increases.
Therefore every orbit starting from inside of $D$ can never leave $D$ as
$s$ decreases to $-\infty$ .

Now let us return to the orbit which approaches $(1, 0)$ from the left
as $ s\rightarrow\infty$ and show that this orbit lies in $D$ . Since the slope of the
curve (22) and that of the curve $C$ at $(1, 0)$ are $\mu/\alpha$ $(<0)$ and
$f’(1)=-\alpha(\lambda+1)(<0)$ respectively, what we have to show is $\mu/\alpha>-\alpha(\lambda+1)$ .

As was already given

$\mu=\frac{1}{2}[(2\lambda+1)\alpha-\sqrt{(2\lambda+1)^{2}\alpha^{2}+4\lambda(\lambda+1)\alpha^{\epsilon}]}$

and so

Since $(2\lambda+1)^{2}>4\lambda(\lambda+1)$ , we have

$\frac{\mu}{\alpha}>(\lambda+\frac{1}{2})(1-\sqrt{1+\alpha})$ .

Hence

$\frac{\mu}{\alpha}-(-\alpha(\lambda+1))>(\lambda+\frac{1}{2})(1-\sqrt{1+\alpha})+\alpha(\lambda+1)$

$=(\sqrt{1+\alpha}-1)(\sqrt{1+\alpha}\lambda+\sqrt{1+\alpha}+\frac{1}{2})>0$

and we get the required result.
Therefore the orbit with which we are now concerned belongs to $D$
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if $s$ is sufficiently large. So, from what we have shown above, it can
never leave $D$ as $ s\rightarrow-\infty$ and hence its $\alpha$-limit set belongs to $D$. Since

$\frac{dy}{ds}=\alpha yz>0$

inside $D$ , a point $(y(s), z(s))$ on the orbit keeps on moving to the left as
$ s\rightarrow-\infty$ . Therefore its a-limit set cannot be a closed curve. Hence,
from the well-known Poincar\’e-Bendixson theory, it tends to a critical
point as $ s\rightarrow-\infty$ . Since the only critical point other than $(1, 0)$ is
$y=z=0$ , we get the desired result

$\lim_{\rightarrow-\infty}y=\lim_{\rightarrow-\infty}z=0$ .
Also, since the curve $z=z(y)$ lies in the inside of $D$ for $0<y<1$ , it is
obvious that $z(y)>0$ for $0<y<1$ .

So, if we denote by $z(y)$ the restriction within $0<y<1$ of the func-
tion given by the power series (22), it fulfills all the requirements stated
in the proposition.

\S 5. By Proposition 4, we now know the unique existence of the
solution $z(y)$ of the differential equation (6):

$\frac{dz}{dy}=_{\ovalbox{\tt\small REJECT},\alpha yz}^{-\lambda(\lambda+1)\alpha^{2}y^{2}+(2\lambda+1)\alpha yz-(1-\alpha)z^{\mathfrak{g}}+\lambda(\lambda+1)\alpha^{2}y^{3}}$

such that

$z(y)>0$ for $0<y<1$ .
$\lim_{\nu\rightarrow 0}z(y)=\lim_{\nu\rightarrow 1}z(y)=0$ .

Let $y(t)$ be an arbitrary solution of the equation

(23) $t\frac{dy}{dt}=z(y)$ .
Then, if we put

(24) $\phi(t)=\psi(t)(y(t))^{1/\alpha}=(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda}(y(t))^{1/\alpha}$ ,

$x=\phi(t)$ is evidently a solution of the equation (2). So it remains for us
to prove that

(1) $y(t)$ is defined for $ 0<t<\infty$ , and
(2) $\phi(t)$ and $\phi^{\prime}(t)$ are bounded for $ 0<t<\infty$ .
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The solution of (23) such that $y(t_{0})=y_{0}(0<t_{0}<\infty, 0<y_{0}<1)$ is given
implicitly by

$\int_{\nu_{0}}^{y(t)}\frac{dy}{z(y)}=\int_{t_{0}}^{t}\frac{dt}{t}=\log t-\log t_{0}$ .

From this we can easily see that the inverse function $t(y)$ of $y(t)$ is an
increasing function defined for $0<y<1$ , because $z(y)>0$ for $0<y<1$ .
Therefore, to prove (1), it is sufficient to prove that

$\lim_{\nu\rightarrow 0}t(y)=0,$ $\lim_{y\rightarrow 1}t(y)=\infty$ .

For that purpose, we need the explicit expression of $z(y)$ in the
neighbourhood of $y=0$ and $y=1$ . For $y=1$ , this has already been ob-
tained and is given by (22):

$ z=\frac{\mu}{\alpha}(y-1)+\cdots$

where the unwritten terms are the power series in $y-1$ beginning with
the term whose degree is greater than 1.

To obtain the expression of $z(y)$ at $y=0$ , we put

$z=yu$ .
Then (6) is transformed into

$\frac{du}{dy}=^{-\lambda(\lambda+1)\alpha^{2}+(2\lambda+1)\alpha u-u^{2}+\lambda(\lambda+1)\alpha^{2}y}\ovalbox{\tt\small REJECT}\alpha yu$

Next we put

$u=aN+v$ ,

and the equation is again transformed into

$ y\frac{dv}{dy}=\frac{\lambda(\lambda+1)\alpha^{l}y+\alpha v-v^{2}}{\alpha^{2}\lambda+\alpha v}=(x+1)y+\frac{1}{\alpha\lambda}v+\cdots$

where the power series in $y$ and $v$ on the right-hand side is convergent
in the neighbourhood of $y=v=0$ .

$y=0$ is a well-known Briot-Bouquet type singularity. Since $\alpha\lambda>1$ ,
$ 1/\alpha\lambda$ is positive and is not an integer. So the general solution of this
equation can be expressed in a form

$v=\sum_{n+’>0}v_{mn}y^{m}(Cy^{1/\alpha\lambda})^{n}$
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where $C$ is an arbitrary constant. Therefore, by giving $C$ an adequate
value $C_{0}$ , we get the following expression of $z(y)$ valid in the neigh-
bourhood of $y=0$ :

(25)
$z(y)=y\cdot(ax+v)=\alpha xy+y\sum_{*n+’>0}v_{nn}y^{n}(C_{0}y^{1/\alpha\lambda})^{n}$ .

From (22) we get

(26) $\int_{y_{0}}^{\nu}\frac{dy}{z(y)}=\frac{\alpha}{\mu}\log(y-1)+\cdots$

in the neighbourhood of $y=1$ where the unwritten terms are bounded
as $y\rightarrow 1$ , and from (25) we also get

(27) $\int_{\nu_{0}}^{y}\frac{dy}{z(y)}=\frac{1}{\alpha\lambda}\log y+\cdots$

where the unwritten terms are bounded as $y\rightarrow 0$ . As $\alpha/\mu<0$ and $1/\alpha\lambda>0$ ,
we have

$\lim_{y\rightarrow 1}\int_{y_{0}}^{\nu}\frac{dy}{z(y)}=\infty$ ,

From this and the relation

$\lim_{\sim}\int_{u_{0}}^{\nu}\frac{dy}{z(y)}=-\infty$ .

(28) $\int_{\nu_{0}}^{l}\frac{dy}{z(y)}=\log t-\log t_{0}$ ,

we get

(29) $\lim_{\rightarrow 1}t(y)=\infty$ , $\lim_{y\sim}t(y)=0$ .
Thus we have proved (1).

From (26), (27), (28) and (29), we can immediately derive the bound-
edness of $\phi(t)$ at $t=0$ and $ t=\infty$ . For example, from (27) and (28), we
get

$t/t_{0}=y^{1/\alpha\lambda}e^{F(y)}$ or $y=(t/t_{0})^{\alpha\lambda}e^{-\alpha\lambda F(y)}$

where $F(y)$ is bounded as $y\rightarrow 0$ . Since

$\phi(t)=(\lambda(\lambda+1))^{1^{\prime}\alpha}t^{-\lambda}(y(t))^{1/\alpha}$

we have

$\phi(t)=(\lambda(\lambda+1))^{1/\alpha}t_{0}^{-\lambda}e^{-\lambda F(y)}$ .
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Therefore

$ 0<\lim_{t\rightarrow 0}\phi(t)=\lim_{\nu\rightarrow 0}(\lambda(\lambda+1))^{1/\alpha}t_{0}^{-\lambda}e^{-\lambda F(y)}<\infty$ .
Analogously we can show that

$\lim_{t\rightarrow\infty}\phi(t)<\infty$ .
However, to prove (2), we need more detailed knowledge about $y(t)$

because we have still to show the boundedness of $\phi(t)$ .
In the neighbourhood of $y=1$ , the equation (23) can be written as

$ t\frac{dy}{dt}=\frac{\mu}{\alpha}(y-.1)+\cdots$

by (22). Hence the general solution of (23) is of the form

$ y(t)=1+Ct^{\mu/\alpha}+\cdots$

in the neighbourhood of $ t=\infty$ where the unwritten part is the power
series in $Ct^{\mu/\alpha}$ starting with the term whose degree is at least 2 and $C$

is an arbitrary constant. Therefore

$\phi(t)=(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda}(y(t))^{1/\alpha}$

(30)
$=(\lambda(\lambda+1))^{\iota/\alpha}t^{-\lambda}(1+(C/\alpha)t^{\mu/\alpha}+\cdots)$

where the power series in $t^{\mu/\alpha}$ in the parenthesis is convergent in the
vicinity of $ t=\infty$ . As $\lambda$ is positive and $\mu/\alpha$ is negative, we have

$\lim_{t\rightarrow\infty}\phi(t)=\lim_{t\rightarrow\infty}\phi(t)=0$

which shows the boundedness of $\phi$ and $\phi$ at $ t=\infty$ .
Next let us show the boundedness of $\phi(t)$ at $t=0$ . First we notice

that

(31)
$ 0<\lim_{t\rightarrow 0}t^{-\alpha\lambda}y(t)<\infty$ .

This follows immediately from the relation

$ 0<\lim_{t\rightarrow 0}\phi(t)=\lim_{t\rightarrow 0}(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda}(y(t))^{1/\alpha}<\infty$

which we have just proved above.
By direct calculation, we get

$\phi(t)=(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda-1}y^{1/\alpha-1}(-\lambda y+a^{-1}ty^{\prime}(t))$

$=(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda-1}y^{1/\alpha-1}(-\lambda y+\alpha^{-1}z(y))$ .
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Since $z=y\cdot(\alpha\lambda+v)$ by (25),

$\phi(t)=(\lambda(h+1))^{1/\alpha}t^{-\lambda-\iota}y^{1/\alpha}(v/\alpha)$

$=(\phi(t)/\alpha)\cdot t^{-1}v$ .
As we already know that $\phi(t)$ is bounded as $t\rightarrow 0$ , what we have to
show is

$\lim_{t\rightarrow 0}t^{-1}v<\infty$ .
Since $v$ is expressed as

$v=\sum_{n+\cdot>0}v_{*\hslash}y^{n}(C_{0}y^{1/\alpha\lambda})^{n}$

in the neighbourhood of $y=0$ and $\lim_{yr}t(y)=0$ , it is sufficient to prove
that

$\lim_{t\rightarrow 0}t^{-1}y<\infty$ and $\lim_{t\rightarrow 0}t^{-1}y^{1/\alpha\lambda}<\infty$ .
However, since $\alpha\lambda>1$ , we have only to prove the latter inequality. But
this is obvious from (31). Thus we have proved the boundedness of
$\phi(t)$ at $t=0$ .

As the expression of $\phi(t)$ given by (30) shows, $\phi(t)$ contains an
arbitrary constant $C$. Hence the totality of nontrivial bounded solutions
of (2) constitutes a one-parameter family.

Summarizing the results obtained so far, we get the following
theorem.

THEOREM. The diferential equation

$x^{\prime}’=t^{\beta}x^{1+\alpha}$ , $\alpha>0$ ,

has $a$ one-parameter family of nontrivial bounded solutions if and only
if $\beta>-1$ .

Finally we add a short remark about the analytical expression of
$\phi(t)$ .

At $t=\infty,$ $\phi(t)$ is expressed in a form (30):

$\phi(t)=(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda}(1+Ct^{\mu/a}+\cdots)$ .
(Here we replaced the arbitrary constant $ C/\alpha$ by $C.$ ) This shows that
every nontrivial bounded solution of (2) is asymptotic to the solution
$\psi(t)=(\lambda(\lambda+1))^{1/\alpha}t^{-\lambda}$ as $ t\rightarrow\infty$ .

The analytical expression of $\phi(t)$ at $t=0$ can be obtained from (25):
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$z(y)=ty’=y\cdot(\alpha\lambda+\sum_{m+’\iota>0}v_{mn}y^{m}(C_{0}y^{1/\alpha\lambda})^{n})$ .
As can easily be verified, this equation is equivalent to a system

$ty’=\alpha xy(1+\sum_{n\cdot+’>0}c_{nn}y^{m}w^{n})$

$tw’=w(1+\sum_{m+n>0}c_{mn}y^{m}w^{n})$ , $ c_{mn}=v_{mn}/\alpha\lambda$ .
Since $t=0$ is a Briot-Bouquet type singularity of this system and
$\alpha\lambda>1,$ $y(t)$ can be expressed as a double power series in $t$ and $t^{\alpha\lambda}$ con-
vergent in the neighbourhood of $t=0$ if $ax$ is not an integer. Since
$t^{-\alpha\lambda}y(t)$ has a finite positive limit as $t\rightarrow 0$ by (31), $y(t)$ has the form

$y(t)=t^{\alpha\lambda}\Phi(t)$

where $\Phi(t)$ is a convergent double power series in $t$ and $t^{\alpha\lambda}$ starting with
the positive constant term. Hence

$\phi(t)=(\lambda(\lambda+1))^{1/a}t^{-\lambda}(y(t))^{1/\alpha}$

admits following double power series expansion in the neighbourhood of
$t=0$ :

$\phi(t)=\sum_{m+’\iota\geq 0}a_{mn}t^{m}t^{\alpha\lambda^{l}n}$ , $a_{00}>0$ ,

unless $\alpha\lambda$ is an integer.
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