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Introduction.

Let 4, ---, 4, be projective lines on a complex projective plane P?,
where 4,7 4; for 1#j. We shall study algebro-geometric properties of the
complement S=P?*—J4,. For instance, we shall compute the logarithmic
geometric genus 7,, logarithmic irregularity g, logarithmic m-genus P,
logarithmic Kodaira dimension £, logarithmic Chern numbers ¢ ¢, of S
and establish fundamental relations among them. For the definitions of
Dy @, P,, £ we refer the reader to [4] and [5].

THEOREM 1. g=q holds. If ¢=2 and p,<q—1, then S=CxI, p,=
P,=0 for any m=1; i=—c, ¢:=83—2q, C,=1—q. If §,=1, q=2, then
S=C*, k=0 and ¢i=¢,=0. If p,=q—1=2, then S=C*xTI', g(I")=2 and
E(S)=rkI")=1; ¢i=¢c,=0. Finally, if P,=q, then p,=2q—4, F=2 and
bc,=2¢ck.

Summarizing the results, we obtain the following

TABLE
Type of 4 £ a=q 1—-¢+ D, é:2 é S
0 1 4 1 c:
I —co 1 0 0 0 cxr
=2 1—¢ 3—2q 1—q gN=q=1
II 0 2 0 0 0 C*xC*
114/, 1 =3 0 0 0 C*xTI',§(IN=q—1
111 2 >3 =1 =1 ;—2‘612

Here, type of 4 is defined as follows:
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FIGURE 1

Moreover, we shall use another kind of type of 4.

a-ple point

Type

”Gyb

FIGURE 2

Here, g+2=a+b5.
1t is clear that I=1,,,, II=1,,, and II'/,=11,,. S is a product of
two curves if and only if 4 is of type I1,,.

THEOREM II. Let p, «--, p, be the multiple (=3) points of 4=3.4;
and by y; denote the multiplicity of 4 at p;. Define the incomplete
linear system on P*:

A,=|m(q—2)H |pm , where B(m)=3, my;—2)p; .

Then A4, is simply generated by A,.
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THEOREM III. Let 4; be defined by the homogeneous linear Jorm L;
and regard 4, as an infinite line on P2 Putting A*=P*—4, and
letting M be the set of multiple (=2) points of A’N4. For any peM
with the multiplicity y=y(p), we have lines 4,, ---, 4,_, passing through
». We define homogeneous forms

(p) —
Fjp)__ II Li. Lk .
o0<i<v vsk<q
i# g

The divisor (F”) defined by F* belongs to 4,. Moreover, {(F”); pe M,
0<g<v(p)} ts the base of A,.

ExAMPLE. Consider the following triangle on P? and 6 points a, b,
c, d, ¢, f on it° Set Am:l4mH|m(a+b+c+d+e+f)' Then

dim 4,,=5m*+3m ,
and the base of 4, consists of

B+A+D+E, G+A+D+E, A+B+D+G,
E+B+D+G, B+C+D+E, B+C+G+E,
G+A+C+E, D+A+B+C, E+A+B+C.

'FIGURE 3

Here, A, B, --- are divisors defined in the Fig. 3.

The author would like to thank Mr. Y. Kawamata, and Mr. H.
Terao. Discussions with them were very helpful during the preparation
of this paper.

§1. Consider 4=4,+ ...+ 4, as a closed subscheme of P? and define
sets X, as follows:

2,={pe P mult,(4)=e}.
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Then we have X,=P? 3, =4. 3,—3, consists of double points, say o
points. Set X,={p, --, p,} and let v; indicate the multiplicity of 4 at
p;. Performing quadratic transformations successively with centers
P, *-+P,, We obtain a complete non-singular surface S and a birational
morphism 2#: S — P?. Then letting

E;=p(p;), 4* be the proper transform of 4, we have

prd=4*+3 \v;E; .
Since D:=p'(A)=4*+3, E;=(@+1)p*H—>,(v;—1)E; where H is the
(divisor of) line in P?, and since '

K(S)=K(P*+3,E; (which indicates a canonical divisor on S),

we obtain 53

KS)+D=(q—2)H—3(v;—2)E; .

Here, H stands for p*H.

Needless to say, D is a divisor with simple normal crossings.
Hence, S is a completion of S with smooth boundary D. The comple-
tion S constructed above is called the standard completion of S with
smooth boundary D.

Recalling the definitions;

p.(S)=dim T,(S), where T(S) stands for HS, Z(K(S)+D)),
P.(S)=dim HS, &(m(K(S)+D))),
3(S)=dim T(S), where T,(S) stands for HS, 2'log D),
£(S)=k(K®S)+D, S),

we obtain the following

PROPOSITION 1. @(S)=q and

= _(g—1)q @—=1;—2)
D,(S)= 5 > 5 .

ProorF. By Theorem 1 ([5]), we have
7(S)=b,(S)=q¢ .

In view of Serre duality, HZ(K(S_)+D)=H°(-D)=_O and HYK(S)+ D)=
HY(—D). Since S is a regular surface (that is, ¢(S)=0) and D is a con-
nected reduced divisor, we have the following exact sequence:

O——>C:H°(ﬂ’§)——+C=H°(&’D)——>Hl(ﬁ(—D))“*HI(ﬂE):O .



GEOMETRY ON COMPLEMENTS OF LINES IN P2 5

From this, it follows that HY(~”(— D)) (which is abbreviated to H'(— D))
vanishes. From the Riemann-Roch theorem, we derive

p$)= DIESED)

_g—1)g <E-1)E;—2)
==y, s . Q.E.D.

On the other hand, it is easy to see that

N g(g+1) _ < viv;—1)
(*) 3 St

* by counting the number of {4,N4;; for ¢#j}. Hence, we get another
formula of 7,.

5,(S)=3 (v;—~1)+0—q .

Fixing 4,, we have

= 45 4)= 3, G=DHH(EH-Z)N4,) .

Hence,
PS)= 3, =D+~ (Z,U4) .

Regarding 4, as an infinite line and putting A2=P2—A,,,>A‘}=A,-—Aq,
r.,=#{e-ple points of >, 4%}, we can rewrite the formula in Proposition 1
as follows:

Bi(S)=3, rle—1) -

Let I, be the linear form defining 4 in A*. Then T,(S)=>, Cdl,/l,,
T,(S)D, Cdl,Adl;/ll;. For pe A% we define the vector space W(p) by

W(p)={3 Cdl . Adl;/l,l;; 42N 459 p}.

Let ¢ be the multiplicity of 4 at p. Then we have the following fact:
i) W(p)n W(p")=0 for p+yp/,
ii) dim W(p)=e—1.

In order to prove ii), we let p=the origin and [;=z+8;w where
8,=0 and 1<j<e. Put w=wuz. Then dl;/l;=dz/z+B;du/(1+B;u) and
define w;=dl, Adl;/ll;=B;dzAdu/z(1+Bu). We see that dl;Adl;/ll;=
®;—w,. Thus, W(p)=:.,Cw; and it is clear that w,, ---, @, are linearly
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independent. Hence dim W(p)=e—1. Next we shall prove i). Put
p’=(1, 0) and choose w e W(p)N W(p’). Then

d d(z+8;w) _d(z+w—1) d(z+w—1+7,w)
7 N2 2+ Bw z+w—1 N2, 2+w—14+7w

where the ¢; and the J; are complex number and z+w—1+7,w=0 de-
fines the line passing through p»’. Introduce u# again by w=uz, we have

dz Bdu
———— _1—'-'3—: y d ’
. ADc 115 ¥ (z, w)dz A\du

in which +(2z, u) is a holomorphic function of 2z at z=0. Hence,
c,=+-+=c¢,=0 and so w=0.
By i) and ii), we get

dim 3 Cdl, Adl;/ll;=3 dim W(p)=> r.(e—1)=dim Ty(S) .
From this, follows the \
THEOREM 1. T(S)=>, W(p)=>, Cdl,Adl;/l;l;.

Note that this is a special case of Theorem ([1]).
The complete linear system [m(K(S)+ D) =|m(q—2)H—3, m(y,—2)E,|
corresponds bijectively to the (incomplete) linear system on P:

4,={Ce|m(g—2)H|; mult, (C)=m(v;—2)},

which may be written as |m(q—2)H |z, B(m) being 3, m(v;—2)p;.
In view of Theorem 1, we get the base of 4, as follows: For a
point p e U453, we put

Ip)={1 [0, ¢—1]; 4> p},
and fix 7, € I(p). We take 7€ I(p) and define effective divisors
G ={3*4;; jel0, g—1]—{i, i}} .

Then, {Gi¥; pe U4, 1€ I(p)—{i,}} is the base of 4,.
For this, follows Theorem III in the Introduction.

§2. In general, let V be a complete non-singular algebraic variety
and D a divisor with normal crossings on V. Then, 2'(log D) is a
locally free sheaf of rank n. @&(log D) is the dual sheaf of it.

Put ¢,(V, D)=c,(0 log D) e H*(V, Z) for any i. The following pro-
posistion is derived from the Hirzebruch formula of Riemann-Roch
theorem.



GEOMETRY ON COMPLEMENTS OF LINES IN P* 7

PROPOSITION 2. ¢, (V, D)[V]=yy,, where V=V —D and y, indicates
the Euler characteristic of V.

¢;(V, D) may be called the logarithmic Chern classes of (V, D). We
shall compute Chern numbers ¢?=c,(S, D)[S] and ¢,=c,(S, D)[D]. By
definition,

—¢,(0 log D)~ K(S)+D=(¢q—2)H~3, (v;—2)E; .

Hence, ¢i=(¢q—2)*—3, v,;—2)*=—5¢+33(v;,—1)+0)+4—s—0o. On the
other hand, ¢,=1—b,(S)+b,(S)—b,S), where b;(S) denotes the j-th Betti
number of S for j=1,2,3. By the formula: (Proposition 1 [5]) q(S)—
a(8)=b,(S)—b,(S), we have

b,(S)=q(8)=q .
PROPOSITION 3. b,(S)=p,(S) and by,(S)=0.

PrROOF. Since S is affine and 2-dimensional, it follows that b,(S)=0.
By the following lemma, we complete the proof. ‘

LEMMA 1 (Y. Norimatsu). In general, let S be a complete non-
singular surface and D a divisor with simple mormal crossings, that
18, D=>%_, D; has only normal crossings and each D; is non-singular.
Assume that S=P*—>, C,, the C, being trreducible curves. Then,

b:.(S)=D,(8)+ 3 9(D;)=D,(S)+ 3. 9(C.) ,
where g(C,) denotes the genus of C,.
PrOOF. From an exact sequence on S:
00— 2'—— Q'(log D) — DTp;,— 0,
follows the exact sequence:

0=H2") — H(2" log D) — @ HYD;, &)
j=1

2 HY(@) — H(2' log D) —> @ H'D,, &)
— HY@)=0.

Hence,
dim H(2 log D)=, g(D;)+dim(H2")/Im 5) ,
G(S)=dim H*(Q'log D)=s—dimIm .

On the other hand, by the Hodge theory due to Deligne [2],
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H*S, C)—=- HXS, &)PH(2"'log D)PHS, 2*log D)
=H'(2'log DYPH(2*(D)) .
Then,

b,(S)=2,(S)+ p,(S) +dim H(2'log D)
=P,(S)+ 2. 9(D;)+dim H'(2")+q(S)—s .

Since S=P*—->,C,, it follows that .
dim H(2")=8—q(S) and >, g(D;)=>,9(C,) .
Accordingly, we have
b.(S)=D4(S)+ 2 9(C)=D,S)+ 3. 9(Dy) -

COROLLARY. Under the same assumption as above, assume that
each C; 18 rational. Then b,(S)=7p,(S).

In other words, any 2-cocycle on S is cohomologous to a logarithmic
2-form. Thus, we have

RS S CESNCES I OO )

Thanks to the formula (x), we get
C,=—2¢+>, (v;,—1)+o+1.
Hence,
3c,—Cci=—q—1+s+o0.

If 4 is of type I, then 8¢,—¢:=—q—1+1=—q=0.
If 4 is of type II or II'/,, then 3¢,—¢i=—q—1+1+4+¢q=0.
In the other case, 3¢,—¢i=—(q+1)+s+0>0. Hence,

if £(S)=2, then 3c,>c?.

This is an analog of Miyaoka’s inequality in the theory of compact
complex surfaces.

Furthermore, by o, we denote the number of v-ple points of 4=J4;
(»=2). Then

53, — 201 =—8—3, (;—1)+2s+0=—3—3 0,(v—3) .

We note the following formula (see [3]).
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Formula. Let p,=#{j-gons in the configuration of 4 in P?}. Then

> 0.v—=8)+> p,(1—8)+3=0.

p.>0 if and only if 4 is of type I.
Thus we obtain the following

THEOREM 2. The notation being as in the above, we have
552— 1—_p2+2p9(.7 3)

If 4 4s of type I, in other words, ©f >0 and ¢:>0, then €/c,=5/2.
The equality holds tf and only if there are mo j-goms (j=4) in the con-
figuration of 4 in P*.

§3. We shall study K(S)+D in which S is a standard completion
of S with smooth boundary D.

THEOREM 3. If S is mot a product of two curves, then K(S)+D is
ample.

Proor. It has been proven that S with £(S)<1 is the product
CxI where C=C or C*. Hence, it suffices to show that, under the
assumption £(S)=2, S turns out to be the product of curves, if K(S)+D
is not ample. When #£(S)=2, we have four lines, say, 4,, 4, 4, 4,4
such that 4,4+ 4,4+ 4;+ 4, has only normal crossings. We write 4°=4,+
4+ 45+ 4, and S°=P*— 4. By definition, S is an open subset of S°. By
J we denote the open immersion S—S°. Then g is the completion of j.
Hence, the logarithmic ramification formula applied to j: S—S° yields

K(S)+D=p*(K(P*)+ £)+R,=H+R; .

Note that B;cD. Actually, letting S'=¢"(S° and D°= (4%, we have
a proper birational morphism j'=g¢S:S"—S° and an open immersion
A: Sc 8, whose completion is the identity S—S. Then it is easy to see
that R; is exceptional for g and R, the closure of D—D° Thus,
R;,=R;+ R, is contained in D.

Recalling the Nakai criterion on ample divisors, we shall study the
signature of (K(S)+D, I') for any irreducible curve I" on S.

Case i) I'¢D. Then (K(S)+D, I'N=(H, I'+(R;, IN=deg w(I")=1.

Case ii) I'=E,;. Then (KS)+D, E;)=v;—2>=1.

Case iii) I'=4,, that is, I" is a curve satisfying p#(I")=4, for some
line 4,c4. Then (K(S)+D I'=deg 4,+(R;, F) 1+(R; IN+(R;, IN=
1+(R, I'), because R, is exceptional for p=3'. Note that R,+D°=D.
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If 'cR, we have a reduced divisor D” such that B,=I"+D"”. In this
case, d,=p( ") g 4.
Changing the indices, if necessary, we write

{pn R p,}ﬂAa={p1, M) pa} .

It is clear that (¥, I')=1 for 1<j<a and that I*=1—a. If p, is the
vertex of 4° (in other words, p, € U,<ixi<i(4:N 4;)), then E, is not a com-
ponent of R;. Otherwise, E,CR;. Define B8 to be #({p, ---, pJN {the
vertices of 4°). We may write

{pn *t %y pa}n {the vertices of AO}:(plr *t % pﬂ} .

Since 4,7 4, we see 8=2. From the argument above, it follows that
Es;,,+---+E,CcR;. Hence,

(R:’" r)g(Eﬁ+1, F)+ e +(E¢v F)=a—‘:8 .

Moreover,
(R, N=I""+D", Nzl"=1—«a.

Hence,

(KS)+D, Nz1l+l1—a+a—B=2—B=0.
Therefore, the assumption (K(S)+D, I')=0 induces 8=2 and (D", I')=0.
If a>pB=2, it would imply the existence E, contained in D”. Hence,
D'NI'>(E, I'N'=one point. This contradicts D" NI"=@. Furthermore,

D’'NI'=Q yields the fact that p(D")N4,={p, p.}. Therefore, 4 is of
type II,,, in which a=y, b=y, and v, +v,=q+2. Q.E.D.

FIGURE 4

Let I" be an irreducible curve on S such that (K(S)+D, I')=0. Then,
as was seen above, I?=—1 and '~ P!. Such a I" is unique. And I’
is exceptional. Contracting I into a non-singular point 7, we obtain
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a quadratic transformation X:S=@Q,S,)—S,. By Fig. 4 we see that
S,=P'x P* and D,=%X(D)=4¢,x P'+ P'x%¥,, where the ¢, are sums of v;
points on P'. Hence, S=S,—D,=(P'—&,) x(P'—#,), a product of two
curves. Since K(S,) + D, = (K(P") +&,)x P'+P'x (K(P)+4,) where
deg(K(P)+9,)=—2+y,21, K(S,)+ D, is ample and simply generated.
Note that K(S)+D=X*(K(S,)+D,) is not ample, but simply generated.

PROPOSITION 4. Let V be a complete non-singular algebraic surface
and D a divisor with mormal crossings. Suppose that K(V)+D is
ample. Then any completion W of V=V —-D with smooth boundary 4
dominates V.

PROOF. Let @ be a birational map of W into ¥V which is defined by
id: V—V. Assuming that ¢ is not a morphism, we choose p at which
@ is not defined. There is another completion Z of V with smooth
boundary B such that A: Z —W and g: Z— V which are defined by id: V—V
are birational morphisms. Then g=¢-N. Hence g(\A7(p)) is a curve.
A "' (p) contains an exceptional curve E of the first kind. If g(E) is a
point, Z’ obtained from Z by contracting E to a non-singular point is
substituted for Z. Hence, we may assume that ¢g(E)=C is a curve.
Since Cc D and EcCB, we write D=D'+C and B=B’+E. Then it fol-
lows that (B’, E)=(D’, C). Next, contracting E to a point z we have a
non-singular surface Z, from which Z is obtained by a blowing up at
2: Z=Q,(Z). By N we denote the birational morphism: Z— Z, and we
write B,=\'(B). Since ME)= a point, we get a birational morphism
p: Z,—W which is an extension of the identity: Z,—B,=Z=W—4.
Since 4 is a divisor with simple normal crossings, B, has only simple
normal crossings. Hence, (B’, E)=the multiplicity of MUB’) at 2z<2.
Thus, we have (D', C)<(B’, E)<2. Finally, by the adjunction formula,

(K(V)+D, C)=(K(V)+C, C)+(D’, C)= —2+(D’, C)<0 .

This contradicts the hypothesis that K(S)+D is ample. Q.E.D.

Combining the above proposition with Theorem 3, we conclude: Let
S be a complement of lines in P? with £(S)=2. For any completion S’
with smooth boundary D’ of S, we have the birational morphism

_ P x P! if S is the product of curves
PS8 — g .
S otherwise

where (S, D) is the standard completion of S.

Therefore, let I" be an arbitrary irreducible curve such that ¢, (7")=0.
Then, if S is not the product of curves,
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(K(S")+ D', I'=(p*(K(S)+ D), I'+(R,, IN=(K(S)+D, 9, >0,
where R, indicates the logarithmic ramification divisor of o|S'.
PROPOSITION 5. Assume £(S)=2. Then

Aut(S), if S is mot a product of curves

Aut(S)c
ut(S) Aut(P*x PY), tf S 18 a product of curves .

This follows from Theorem 3 using a general result in {4]. Namely,
it will suffice to apply Proposition 2 in [4].

REMARK. This was proved by I. Wakabayashi by studying the effects
of quadratic transformations.
For a surface S=P*—4, we define

m(d)=#{4;N4,# D, J#1}
and .
m(S)=max{m(4,); <€[0, ql}.

If m(S)=1, then 4 is of type I.
If m(S)=2, then 4 is of type II.
Then we prove

PROPOSITION 6. If £(S)=2, then P,=2q—4. Moreover, if E(S)=2
and p,=2q—4, then 4 is of type Il ,_,.

ProOOF. We prove this by induction on q. If ¢=3, p,=q=3. Since
m(S)=3, there is a line, say 4,, such that m(S)=m(4,). Define S, to be
P*—4,U---Ud,. If £(S,)=2, then p,(S)=D0,(8S,)+m(4)—1=2(¢—1)—4+2=
2¢—4 by the induction hypothesis. If £(S,)=0 or 1, then 4, U---U4, is
of type II,,.,. Since £(S)=2, m(S)=q—1 follows. Thus,

D(S)=D0,(8)+m(S)—1=q—2+m(S)—1=2¢—4 .
If £(S,)= — oo, then £(S,—4,)<1, which contradicts the hypothesis.

Furthermore, under the assumption £(S)=2, if p,=2¢—4, then
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if p,=2q—38, then

If ¢=4, we have
Dy22q—4=q+q—4=¢q .

On the other hand, £(S)=2, ¢=8 imply that 4 has only normal crossings
and so p,=q=3.

In particular, p,=q=3 yields ¢=3 or 4. Thus, we complete the
proof of Theorem I.

§4. As a generalization of the Kodaira vanishing theorem, we have

LEMMA 2 (Y. Norimatsu). Let V be a complete mon-singular alge-
braic variety and D a divisor with simple normal crossings. For any
ample divisor A on V, we have

(i) H2(V, 2'(log D)X 7(A))=0 for p+q>n=dimV,

(i) H?(V, 2(log D)R 7(—A)=0 for p+q<n=dimV.

Proor. Using an exact sequence by Deli_gne [2], we could derive
this from the Kodaira vanishing theorem on V as well as on each com-
ponent of D. Q.E.D.

We get the following formula: For a surface S=P*—Jd; with
E(S)=2,

13,,,(S)=—clm2—%m+l

l

=—-((g—2)" = 2(v; —2)")m’ + -%(3((1 —2)—3¥;—2)m+1

m(g—2)(m(q—2)+3)— AP ELME=D) Ly

Here ¢,=c,((2'log D)")=¢,(6(log D)) and ¢,=c,(05), S being the standard
completion of S with smooth boundary D. Actually, by the Riemann
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Roch theorem, we have

S — _ i—2 1
(m(K(S)+ D))= (m(q 2)+1;(m(q 2)+2) __Z(m(u . )+ )

Since (m—1)(K(S)+ D) is ample if S is not a product of curves, we have
H'(m(K(S)+ D))= H*(m(K(S)+ D))=0

by Lemma 2. Hence, in tllis case, we get the formula. When 4 is of
I1,,, we have to compute P,(S) by the product formula, that is,

P.(S)=P,(P'—a points)-P,(P'—b points)
=(mla—2)+1)(m(b—2)+1)
_ (m@+b—4)+1)(m(a+b—4)+2) (m(a—2))(m(a—2)—1)
2 2
_(m®—2)(m(®b—-2)—-1)
2

Thus, we have

Py($)="0M=0) 1 = O By 11

2 2
_ (d+1)(d+2) n,+1

where d=_m(q—2), n,=my,—2). _ _
If K(S)+D is ample, then m(K(S)+ D)+ déu*H is ample too for any
m=1 and 6=0. Recalling that

|m(K(S)+ D)+ op*H|=|(m(q—2)+0)H— 3, m(v;—2)E||
corresponds to |[(m(q—2)+0)H |z.., We get the following

THEOREM 4. If £(S)=2, we have

dim |(m(g—2)+8) H yom=-LEFD). (st Dy

where d=m(q—2)+0 and n;=m{y;—2).

PrOOF. It suffices to show that H'(m(K(S)+D)+6H)=0. For m=1,
this is obvious. Assume that K(S)+D is ample. Then, since
(m—1)(K(S)+ D)+ 0H is ample for m=2, H(m(K(S)+D)+6H) vanishes
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by Lemma 2. If S is a product of two curves, the same formula as
above is derived by a simple computation.

§5. We shall prove the following

THEOREM 5. When £(S)=0, the linear system |K(S)+D| is simply
generated.

Here we use the following terminology. Let D be a divisor on V.
|D| is simply generated if for any m the natural homomorphism

®"H"(V, (D)) — HYV, &(mD))

is surjective.

Subspace LcCHYV, (D)) defines a linear system and L,’sC
H(V, ~(mD)) define linear systems 4,,c|mD|. If @™L,— L, is surjective,
then we say that /4, is simply generated by 4,.

PROOF OF THEOREM 5. If S is a product of two curves, the asser-
tion is easily _checked. Hence, we assume that K(S)+D is ample. Put
A,.=H(m(K(S)+ D)) and the assertion that

A, XRA —— A, (the linearization of the product)

is surjective is denoted by S,. We show the S, by the induction on gq.
If ¢=3, then S=P* and D~3H. Hence A,=HP? ~(mH)) and so S,
is obvious. Assume ¢=4 and take a component 4, of 4 such that
S'=P*—4,U---Ud,_, is still of hyperbolic type, i.e., £(S)=2. And
" denote by S’ and D, the standard completion of S’ and its smooth
boundary. Furthermore, we may assume that K(S')+ D! is ample. Set
L=the proper image of 4, in S. First, we prove the vanishing property.

PROPOSITION 6.
H'(mKQS)+aD+(m—a)D')=0
Jor m=1, ®=0 and m=«a, where D' is defined to be by D=D'+ L.

ProoF. Case 1: a=2. First, we note that K(S)+D’ is pseudo-
ample. In fact, let 4,N{p, -, D, }={p, --+, p.}. If there exists 7 e[l, €]
such that v,=4, then S itself is the standard completion of S’ with
smooth boundary D’. Hence, K(S)+D’ is ample. If e=1 and
y=-.-=y,=3, then we have a proper birational morphism »:S—S
which is a completion of S<S’. \|S has no logarithmic ramification
divisor. Hence K(S)+D'=\*(K(S")+ D)), which is pseudo-ample. Finally,
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if F;:O' then S is regarded as a standard coinpletion of S’. Hence
K(S)+D'_ is ample. T_IEerefore, (m—1DK(S)+(a@a—1)D+(m—a)D' =
(a—1)K(S)+ D)+ (m—a)(K(S)+D’) is ample. By Lemma 2, we obtain

Hl(mK(§)+aD+(m;a)D')=o .

Case 2: a=0 or 1. We have to show that both H'(m(K(S)+D’))
and H'(mK(S)+D+(m—1)D') vanish. Note that D and D’ are reduced
and connected curves and that by induction hypothesis Bs|(m—1)(K(S)+ D")|
is void and |(m—1)(K(S)+D’)| has an irreducible member. Hence, both
|D’ + (m—1)(K(S)+D’)| and |D+(m—1)(K(S)+D’)| have reduced connected
members, say F. By Serre duality we have HYK(S)+F)=HY{(— F),
which vanishes from the fact that S is a regular surface.

We use the following

LEMMA 8. Let X and Y be divisors on a complete algebratic variety
V and Z an effective divisor on V. We assume that i) H(X—Z)=0,
ii) HY(X|Z)QHXY)—->H(X+Y)|Z) ts surjective, iil) the matural map
H(X—-Z)QH Y)->HX+Y—Z) 18 surjective. Then

H(X)QH(Y)— H(X+Y)
18 surjective, too.

PrOOF. . This follows from the diagram below:

0— H(X—~ D)QH(Y) — HXQHY)— H(X|D)QH(Y)— 0

l l 1

0—> H(X+Y)—2Z2) — HY(X+Y) — H((X+Y)\|2)

; :

N.B. ii) is replaced by the following ii). and ii),

i)y HYY)— HYY|Z) is surjective,

i)y, HYAX|Z)YQHYY|Z)— HY(X+ Y)|Z) is surjective.

Put X=(m—1)KKS)+aD+(m—1—a)D’, Y=K(S)+D and Z=L. Then
X—Z=(m—-1)KWS)+(@—1)D+(m—a)D’. Hence, by Proposition 6, i) is
verified. Next, we can verify ii), by making use of the exact sequence:

H°(Y)——>H°(Y|Z)—>Hl(Y—Z)=H’(K(§)+D')=O .
Since Z=P"' and deg(Y|Z)=(K(S)+ D, L)>0and deg(X|Z)=((m—1)K(S)+
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aD+(m—1—a)D’, L)=0, we check ii),. Thus ii) is satisfied.
Next, put A, ,_.=H'mK®S)+aD+(m—a)D') and let S, . denote
the assertion that

Aa—l,m—-a®A1,0 - Aa,ﬁ:—a

is surjective, where a=>1.
In view of Lemma 3, we obtain the implication

S(x,m—a = Sa+1,m—a—-—1 .

S,... is the desired assertion.
We have to prove S,.,._,, in other words, the surjectivity of

Ayni A, — Ay

Setting X=K(S)+ D, Z=L and Y=(m—1)(K(S)+D’), we use the lemma.
Actually, H(X— Z)=HYK(S)+D")=H'(—D')=0 and H(X—Z)=A,,. By
HmEK®S)+mD")=HmK(S)+mD"), K(S)+ D’ is simply generated. Thus
the condition iii) of Lemma 3 is checked. Therefore, by Lemma 3 we
establish the surjectivity. Q.E.D.

Theorem II follows from Theorem 5 immediately.

§6. For our surface S, S is measure-hyperbolic, if and only if S is
of hyperbolic type, that is, £(S)=2. Next we shall discuss when S is
hyperbolic. In order to state the result we introduce the type 7., of
4 as follows;

T\

’
H2,2

Note that I7,, is obtained from I7,,,,., by removing the line connecting
2 multiple points. IT;, represents 4 consisting of four lines in general
position. "

THEOREM 6. Let I' be a curve on S with £(S)=2 such that £(I")=
~ Then it 18 one of the following limes dotted in the followzng ﬁgwres,
where a+b=5.
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! Iry,

Proor. It suffices to prove for 4 of type I7;,. The S is isomorphic
to Spec Clx, y, 27!, ¥y, (w+y+1)"*]. As I' lies over C*xC*, I" turns out
to be a factor of C*xC*, namely, I'xC* ~4 C*xC* by a corrolary to
Theorem 4 [5]. Hence, there are new variables u, v such that r=au**,
y=>buv’ where ad—B7==+1 and a, b+0 and such that I" is defined by
u=1. 8§ is defined by

au v +bdburv’=-1
on C*xC*. Recalling that 'S, we have

av?P+bvi#1 whenever v#0 or oo.

Thus,
av? +bvi=1+cv*

for some ¢#0 and e Z. Then we have the following three cases.

Cace 1: B=0 and 6£0. Then a=1, from adé—pLy==+1 it follows
that a==+1. Hence, u—1=x*'—1. This implies that I" is defined by
r=1.

Case 2: 0=0 and B8+#0. Then b=1 and by the same argument as
above we conclude that I" is defined by y=1.

Case 3: B=0,a+b=0,6=0, and ¢=—1. Then B=d=+1 from
ad—BY=+1. In view of the inverse transformation u*'=(x/a)’(y/b)7*,
we get y=—2x from uw=1.

Accordingly, I' is defined by =1 or y=1 or = —y. Q.E.D.

It is very probable that S is hyperbolic if and only if £(S)=2 and
the type of 4 is not I’ ,.
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