Tokyo J. MATH.
Vor. 1, No. 2, 1978

Construction of Number Fields with Prescribed
I-class Groups

Osamu YAHAGI

Waseda University

Let G be a finite abelian l-group, where ! is a prime number, and
L be an arbitrary number field. The purpose of this paper is to show
that for each prime number ! which does not divide the class number
of k, there exist infinitely many algebraic extensions of k& whose l-class
groups are isomorphic to G (cf. Theorem and its Corollary). F. Gerth
III [1] solved this problem under the conditions that G is any finite
elementary abelian I-group and k is the field @ of rational numbers. We

extend his result to the general case where the group G is any finite
abelian l-group.

§1. Preliminaries.

Throughout this paper, ! will denote a fixed prime number and &k
will denote a number field whose class number is prime to ! (by a number
field we shall always mean a finite extension of the field @ of rational
numbers). For an arbitrary number field L, let S, and E, denote the
I-class group of L (i.e., the Sylow Il-subgroup of the ideal class group
of L) and the group of units in L, respectively. For a Galois extension
M/L of finite degree, G(M/L) denotes its Galois group and [P, M/L]
denotes the Frobenius symbol for a prime ideal ¢ of M in M/L.
Especially, if M/L is an abelian extension, (a, M/L) denotes the Artin
symbol for an ideal a of L in M/L. For a finite abelian group G and
a natural number n, we shall denote by |G| its order and put G*=
{g"; g€ G}. Let Z/I*Z be the cyclic group of order I* and , a primitive
n-th root of unity. Furthermore, we use the following notations:
h=h,: the class number of k;
£: the ring of integers of k:

(O/M)*: the multiplicative group of the residue class ring O/, where
M is an integral ideal of Fk;
k(n) =k{En+s, I"Ve, ;1<i<7r}), where I’ is the order of the group of I-
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power-th roots of unity in %, and {e; 1<¢<7} is a system of fundament-
al units in k. For example, k(n)=k({nws) if k=Q or an imaginary
quadratic field. Let F be a cyclic extension of %k of degree I*, and let
7 be a generator of the cyclic group G(F/k). We put Si7={c""";c€8;},
Si’={ce Sz ¢c"=c} and S ={ceS;; ¢ contains an ideal a of F such that
a’=a}.

LEMMA 1. Notation being as above, let K be the mazimal abelian
l-extension of k contained in the genmus field of FJk.
Then: (1) The Artin map gives an 1somorphism:

S; /Sy ~, G(K/F) .

2 S =18- /St-7| = II e(p) ___
(2) 1SS =18:/8% 7 B B N ]

where ﬁ e(p) is the product of the ramification indices of all the finite
and the infinite prime divisors im k with respect to F/k, and Nz, is
the norm map from F to k.

For the proof, see Yokoi [4], pp. 85 and 37.

LEMMA 2. Notations being as in Lemma 1, define the map p: S —
S3/SF* 8o that the following diagram is commutative.
inclusion
S MR, S,
N U

AN l canonical surjection
S3/SLt e

Then the following conditions are equivalent:
(1) o 18 surjective.
(2) o is injective.
(83) S;=8%.
In these cases, we have S;=SY =S;/SL =G(K/F).

PROOF. From the exact sequence 1-S¢ —»S;LSF—>S;S;;’—>1, where
the first map is the natural inclusion, the second map f is defined by fle)=
¢'~" for ¢ € Sy and the third map is the canonical surjection, we see that
Sy and S;/SL have the same order; hence the equivalence of (1) and
(2) is clear. It is obvious that (8) implies (1). Now suppose that ¢ is
surjective; then S;=S{SL =88 "'= ... =884 On the other
hand, I divides (1 — z)'". Hence S;=8¥S%, i.e., S;=8.
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LEMMA 3. Let m be an integer =1 and p a prime ideal of k. Then
the following three conditions are equivalent:

(1) There exists a unique cyclic extension of k of degree l™ in the
Strahl class field modulo p.

(2) [(O/p)/(E,+p/p)| is divisible by I™.

(8) The prime ideal p is prime to | and splits completely in the
Galois extension k(m)/k.

ProOF. Let k(p) be the Strahl class field modulo p. Set

I,={a; a is an ideal of ¥ and (a, p)=1},

P,={(a); (a) is a principal ideal generated by ack and ((a), b)=1},

S,={(a); (a) is a principal ideal generated by a €k and a=1(mod* p)},
where mod* p means the multiplicative congruence. By class field theory,
I,/S, is isomorphic to G(k(p)/k). On the other hand, it contains the sub-
group P,/S, of index h which is prime to ! by our assumption. Hence
the Galois group of the maximal abelian [-extension of k contained in
k(p) over %, is isomorphic to the Sylow l-subgroup of P,/S,. For a class
a mod p € (O/p)*, put f(a modp)=(a)e P,/S,, where (a) is the principal
ideal generated by a. Then the map f: (O/p)*— P,/S, is a well defined,
surjective homomorphism and

Ker (f)={a mod p € (O/p)*; a =¢(mod p) for some ¢ E,} .

Therefore we have the equivalence of (1) and (2).

(2)=(3): Let k, be the completion of k¥ with respect to p. If we
assume (2), we have {;» € k,, since Np=1(mod [™) (where Np is the absolute
norm of the prime ideal p). And the equation z'"=e(mod p) is solvable
in © for all ec E,, since the group (O/p)* is a cyclic group. Therefore
the equation x'™=¢ is solvable in %k, for all ec E,, since (I, p)=1; this
implies (3).

(8)=(2): Conversely suppose (3). Then Np=1(mod [™*’), since {;m+s €
k, and (I, p)=1; and all ¢c E, are I™th power residues modulo p, since
the equation x'"=e¢ is solvable in the ring of p-adic integers in k,.
Therefore we have (2).

REMARK. There exist infinitely many prime ideals of ¥ which satisfy
the above condition. In fact, there exist infinitely many rational primes
which split completely in k(m).

COROLLARY. For a fixred integer n=1, there exist infinitely many
cyclic extensions of k of degree 1™ whose class numbers are not divisible
by 1.
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ProoF. By the above remark, we have infinitely many cyclic ex-
tensions of k& of degree [* in which one and only one prime ideal ramifies.
Then their class numbers are not divisible by !, since the class number
of k is prime to ! (see Iwasawa [3]).

§2. Construction.

Let e,€, -+, -+, €,,;, be natural numbers such that 1=<e <
6= -cc S¢S v ey let Py, Py o0, Py o0, by, be distinet prime ideals
of & such that |(O/p)*/(E.+p./p,)| is divisible by [ for each i. Note
that in the case #=@, this condition is equivalent to the one that p,=1
(mod 2 -1*), where p, is a prime number such that (p,)=p,.

Put e¢,,,=mn and let k,, i=1, 2, ---, t+1, be the unique cyclic extension
of & of degree I° in the Strahl class field modulo p,. Let K=][it' %, be
the composite of the fields k;, ¢=1,2, ---,t+1. G(K/k) is the direct
product of the cyclic groups G(k,/k), 1=1,2, ---,t+1. In the follow-
ing, we restrict ourselves to the case t=1. (When t=0, Corollary of
Lemma 3 says that the l-class group of each intermediate field of K/k
is trivial.)

Let o, be a fixed generator of G(k,/k) and let H be the subgroup of
G(K/k) generated by {o,-0i},"; 1<i=t}. Then the factor group G(K/k)/H
is a cyclic group of order I*, and {0{,;;0<j<Il"—1} is a full set of re-
presentatives for the cosets modulo H in G(K/k). Hence the subfield F
of K corresponding to H is a cyclic extension of k£ of degree I*. On the
other hand, the inertia group of p, for K/k is {0,> and o,=07}7 *(mod H).
Therefore ramification theory shows that the ramified primes of F/k are
p;, 1=1,2, ---, t+1, with ramification index [*. Moreover K is an un-
ramified abelian extension of F, since HN<{o,>={1} holds for all i=
1,2, ---,t+1. Therefore it follows from Lemma 1 that K coincides with
the maximal abelian l-extension of %k contained in the genus field of FV/k,
since the degree of K over F is []:i. 1.

In the following, F' always denotes the subfield of K which cor-
responds to H. We call this field F the field associated with the set of
primes {p, p,, * -+, P.;,}. For the field F', we give a condition for S, to
be equal to S§,. Let K,=Fk,-F, 1<1<t, be the composite of the field
k., and the field F. Then we have K=]IJ:., K, (the composite of K,
1=1,2, ---, t), and G(K/F') is the direct product of the ecyclic groups
G(Ki/F)9 1=1,2, ---, t.

LEMMA 4. For each prime ideal p, such that e,<n, the following
conditions are equivalent:
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(1) There exists only one prime ideal of F above p,.

(2) ((IIewP* K/F) generates G(K,/F), where( ,K,/F) is the
Artin symbol in K,/F and the product is taken over all the prime ideals
B of F above p,.

ProorF. Let Z (resp. T) be the decomposition group (resp. the
inertia group) of p, for the abelian extension K,/k. G(K,/k) is the direct
product of G(K,/F) and G(K,k,), since e;<n. Let o (resp. p) be a
generator of G(K,/F) (resp. G(K,/k;). Then T is a cyclic group, since
(1, p)=1. The ramification index of p, in F'/k (resp. k,k) is 1° (resp. 1*).
So, after replacing ¢ and p if necessary, we may assume that T is
generated by o-0"" ", Now suppose (1); then Z- G(K,/F)=G(K,/k), so
we have p=o0°-2z for some integer ¢ and some z€Z. From the fact
that T={(o-p0"" > Z it follows that

gttt =g . oI" T " e Z

which implies that o€ Z, since n>¢,. Hence we have Z=G(K,/k), i.e.,
there exists only one prime ideal of K, above p,. This implies that
(P, K,/F) generates G(K,/F), since K,/F is an unramified abelian I-
extension.

To prove (2)=(1), let PB;, L<j=!° be the prime ideals of F' above
p,; then P, =P’ holds for some o, e G(K,/k), L<j<l. Hence (B;, K,/F)=
P, K,/F), 1<j=<!’, and therefore we have ((Ils,, B)", K./F)=(Bt, K.,/F)",
from which it is clear that (2) implies that I°=1.

REMARK. The condition (1) is equivalent to the one that there exists
only one prime ideal of F, above p,, where F, is the subfield of F' of
degree I over k.

Through the isomorphism S./Si"=GK/F)=]Ili., GK,/F'), we may
assume that the image of ¢ is contained in [Ji., G(K./F') (see Lemma 2).
It is well known that S§, is generated by I, cl (P)*, 1=i<t-+1, where
the produect is taken over all the prime ideals B of F above p; and cl (P)
denotes the ideal class of the prime ideal 3. The factor group
I, (K, /F)/(T1i-, G(K,/F))" can be regarded as a vector space over the
finite field with ! elements; hence the classes of (I, ¢l (P, 1=i<t+1,
determine a matrix M whose (3, 5)-th element is ((TTg, B Ki/F')
mod G(K;/F)}, 1=sist+1, 1<j<t (cf. Gerth [1]).

Therefore: rank M=t=p(S$,)=S;/Ss =S, =85 =SF.(=1li-, GZ(K,/F) (see
Lemma 2)).
We are now ready to prove the following
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THEOREM. Let G be a finite abelian l-group with exponent 1™, m=0. |
Then, for all m, n=m, n=1, there exist infinitely many cyclic extensions
of k of degree 1" whose l-class groups are isomorphic to the group G.

Proor. If m=0, the statement is equivalent to Corollary of Lemma
3; hence we may assume that m=1. By the structure theorem for
finite abelian groups, we may assume that G is the direct sum of the
cyclic groups Z/1*Z, 1=1,2, ---,t; 1<e¢,<e€,< --- <e,=m. To prove the
theorem, it is sufficient, by the above arguments, to find infinitely many
sets of ¢t+1 prime ideals {p, p., -+ -, p,.,} of k such that rank M=¢t. In
fact, in this case, S,=T]i., G(K,/F)=G, where F is, as before, a cyclic
extension of k& associated with {p, p,, -+, b,.,}. We will consider two
cases separately. In the following conditions on p,, 7, denotes an integer
of © such that p=(w,) and C, denotes the cyclic group (/p,)*/(E,+p./p,).

i) Case n>m. The conditions on {p, p,, ---, b,,,} are

(1) |C,,,| is divisible by I*,

(2) |C, is divisible by [ (1<¢=<t) and

(3) The class of each 7;,, 1<i¢<¢, in the cyclic group C,., is not
contained in C}_,. '

REMARK. The condition (3) is equivalent to saying that each p,,
1=1=<t, is not decomposed in the unique cyclic extension (%,,,), of k of
degree I, contained in the Strahl class field modulo p,,,: in fact (cf. the
proof of Lemma 3),

the condition (3)=((x,), (Ker)o/k) #Le=(p, (Fos1)o/k) #1.

By putting e,,,=n, let F" be a cyclic extension of k of degree I associ-
ated with the above set of prime ideals, and let F, be, as before, subfield
of F' of degree ! over k. Then we easily see that F,=(k,.,),, since F), is
contained in [Jifi %,;, and since only J,,, ramifies in F,/k. On the other
hand, if we identify G(X;/F') with G(k;/k), 7=1,2, ---,t, we have, by
the translation theorem, ((IIs,, B)*, K;/F)=(p;, k;/k)*'""°* for every i+#j.
Therefore, for each prime ideal p, such that e, <=, an (i, j)-th element
of the matrix M is trivial (cf. [1]) whenever j#i. Also Lemma 4 shows
that for such a prime ideal p,, an (3, 7)-th element is trivial if and only
if p; is decomposed in F,. Therefore, by the above remark, we see that
rank M=t. Existence of such a set of prime ideals can be seen as
follows. Let p be a prime ideal of k which satisfies the condition (1)
and put p,,,=p. Then we have k(e)Nk..,=k, since p,,, is unramified in
k(e;) by the definition of k(e,). Hence the Galois group G(k,. k(e,)/k) is
the direct product of the subgroups G(k,..k(e)/k(e,)) and Gk, k(e,)/k...);
the former subgroup is a cyclic one of order [*. Therefore the
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Tschebotarev density theorem shows that there exist infinitely many
prime ideals 9P, of k,,,k(e;) for which

B, k.. k(e k] =Gk, k(e)/k(e)) -

It is easy to see that p,=P Nk satisfies both conditions (2) and (3), since
p, splits completely in k() and since [P, kiyik(e)/Kli,,, =Wy Kiri/k)
generates the Galois group G(k,..,/k). Hence we can obtain distinet prime
ideals p,, 1<i<t+1, of ¥ which satisfy the above conditions (1)-(3).
Infiniteness is also deduced from the density theorem.

ii) Case mn=m. Put e¢,,=n, and let d be the largest integer <
such that e,<n (if ¢,=e,=:+-=¢,=n, put d=1). Take any prime ideal
p, of k such that |C,| is divisible by [°; and then take distinct prime
ideals Pii1, Parer *°°y Piys of & which satisfy the following conditions. The
conditions on p,,, are

(1) |Cuyl is divisible by I*,

(2) The class of 7, in C, is not contained in Cj.

Assume that we can choose prime ideals by, Puyy, ***s Pars (3=1). The
conditions on p,.;,, are

(8) |Cuyinl is divisible by 17,

(4) . The class of 7, ;;, in Cyy; is not contained in Cg,j,

(5) The class of 7, ;,, in C,,, is contained in CJ}, for all 7=
o1, -.---,5—1.

If d=2, we choose d—1 distinet prime ideals p, b, -+, P, of k& which
satisfy the following conditions:

(6) |C,| is divisible by I#(1=i=<d-—1).

(7) The class of each ;,, 1=i<d—1, in C,,, is not contained in Ci...

(8) The class of each 7, 1<i<d—1, in C,y; is contained in C9%;
for all 7=2,8, ---, t—d+1.

Existence of such a set of prime ideals p, p,, -+, P.s, can be seen as
follows. By the same arguments as in the case n>m, existence of p;,
is easily verified. We note here that the condition (2) is equivalent to

(2) The Artin symbol (p,,,, ks/k) generates G(k,/k).

Assume now that we can choose prime ideals Py, Pars ***y Pays (J=1). By
the density theorem, there exist infinitely many prime ideals PB;.,
of k(n) - (ITizo ksr)) (the composite of the field k(n) and the fields Ky,
1=0,1, ---, J) for which

([Bursew i) - (T o) [ [y =6 () - (1] ) [ (1T us)

Then Py ;.1=Pus i1 Nk satisfies the conditions (3)-(5), since the conditions
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(4) and (5) are equivalent respectively to

(4) The Artin symbol (py, ;. ki:;/k) generates G(kq, ;/k), and

(5) The Artin symbol (P, jii, kori/k) is equal to 1 for all i=
Oi 1’ ° % j—‘l.
Therefore existence of p,, Psyy, +++, P, is proved. Now suppose that
d=2. Again the density theorem shows that there exist infinitely many
prime ideals P, of k(e,) - (II%t4,, k;) (the composite for the field k(e;) and
the fields k;, d+1=<j<¢+1) for which

[ a3, 1) e [y = 6 kol I ) e 3, )

We also see that p,=PB,Nk satisfies the conditions (6)-(8). Hence we can
obtain t+1 distinct prime ideals p;,, 1<i<t+1, of k.

Let F' be a cyclic extension of k¥ of degree I* as in the case #n>m
associated with the set of prime ideals {p, b,, ---, Per:}.  For this field F,
we shall show that rank M=t. As before, if we identify G(K;/F) with
G(k;/k), 1=j=<t¢, then we have ((Ilsi,, B)*, Ki/F)=(p,, k;/k)""~* for every
t#J. Therefore, by the conditions (2)’, (4)’, and (5)', theorem is easily
verified for the case of d=1. For the case d=2, we shall show that
each p;,, 1=<1<d—1, is not decomposed in F,. As the ramified primes in
F,/k are P;.., Patsy =+, Vi1, Fo is contained in IItus, ;. Therefore, if p,
splits in F/k for some i=1,2, --., d—1, then F, is contained in the de-
composition field for p, in J]iti;, k;. On the other hand, by the condi-
~tions (7) and (8), the decomposition field for p, is thi. k;; but this
implies that p,,, is unramified in F,/k. Hence we have a contradiction.
Now it is easy to see, as in the case d=1, that the rank of the matrix
M is equal to t. As there exist infinitely many fields such as F, the
proof of the theorem is completed.

REMARK. If we restrict ourselves to the case k=@, our theorem _is
also deduced by using the results of A. Frohlich [5]. However it is still
necessary to specify the prime numbers as in our paper, which is kindly
pointed out by Mr. K. Iimura while I was preparing this paper.

COROLLARY. Let G be the same as in Theorem. Then there exist
mfinitely many non-Galois extensions of the field Q of rational numbers
whose l-class groups are isomorphic to the group G.

PROOF. As before, let £ be a number field, other than @, whose
class number is prime to I; e.g., k=Q(1”2). From the proof of Theorem,
it is easy to see that the primes p, p, ---, P... can be choosen so that
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the following additional conditions are satisfied; there exists some
1<i<t+1 such that the prime number p, lying below p,, splits com-
pletely in k, and that each p;, j+#1i, 1=j=<t+1, is not lying above p,.
Now let F be the field associated with such primes p,, 1=7=<t+1. Then
it is clear that F/Q is a non-Galois extension; and by Theorem we have
S;=G. Since there exist infinitely many sets of t+1 prime ideals
{P, b2y =+, Piry} With the property above, we get immediately the asser-
tion of Corollary.

SUPPLEMENTARY NOTE. While preparing this paper, K. Iimura in-
formed me that for each odd prime number [, there exist infinitely many
dihedral extensions K of @ of degree 2.1™, with the following property:
For all subfields L of K of degree I™, S, are isomorphic to the group
G; here [™(m=1) denotes the exponent of G.
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