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Introduction

Let $k$ be a field, $S$ an affine semigroup, i.e., a finitely generated
additive submonoid of $N^{n}$ , and $k[S]$ the semigroup ring of $S$ over $k$ .
Then $S$ is called normal if the ring $k[S]$ is integrally closed. (This con-
dition does not depend on the field $k$ . See Proposition 1, [10].) In
[10] Hochster proved that $k[S]$ is a Macaulay ring if $S$ is a normal
semigroup and deduced from this fact that, if $G$ is a torus over $k$ and
if $G$ acts on a finite-dimensional vector space $V$ over $k$ rationally, then
the ring $A^{G}$ of invariants under the induced action of $G$ on the sym-
metric algebra $A$ of $V$ is a Macaulay ring. (His proof of the above
fact on semigroup rings depends on a certain result concerning the shell-
ability of real polytopes.) Further in [18] Stanley studied the Hilbert
functions of the algebra $k[S]$ and gave a criterion of $k[S]$ to be a
Gorenstein ring in case $S$ is a normal semigroup. It seems to be inter-
esting to ask when the ring $k[S]$ is Macaulay (resp. Gorenstein) in case
$S$ is not necessarily normal.

The main purpose of our paper is to give a purely ring-theoretic
proof of the Hochster’s result on normal semigroups and, applying our
way of proof further to arbitrary affine semigroups $S$ , to find a criterion
of the ring $k[S]$ to be Macaulay (resp. Gorenstein) in terms of $S$ . Note
that this was achieved by the authors and Suzuki [5] in case $S$ is a
simplicial monoid.

For this purpose we will develope a certain theory of graded rings
and modules. Let $H$ be a finitely generated free abelian group. By
definition, an H-graded ring is a commutative Noetherian ring $R$

together with a family $\{R_{h}\}_{heH}$ of subgroups such that $R=\oplus_{heH}R_{h}$ and
$R_{h}R_{g}\subset R_{h+g}$ for all $h,$ $g\in H$. Similarly an H-graded R-module is an
R-module $M$ for which there is given a family $\{M_{h}\}_{heH}$ of subgroups so
that $M=\oplus_{h\in H}M_{h}$ and $R_{h}M_{g}\subset M_{h+g}$ for all $h,$ $g\in H$. A homomorphism
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$f:M\rightarrow N$ of H-graded R-modules is an R-linear map such that $f(M_{h})\subset l$

for all $h\in H$. We denote by $M_{H}(R)$ the category consisting of all th
H-graded R-modules and their homomorphisms. Of course our typic
examples of graded rings are semigroup rings $k[S]$ . In fact, if $v$

denote by $T$ the image of $s\in S$ in $k[S]$ , then $k[S]$ is naturall
an H-graded ring for $H=Z^{\iota}-k[S]_{h}=kT^{h}$ if $h\in S$ and $k[S]_{h}=(0)$

$h\not\in S$ .
In [4] the authors investigated Z-graded rings and, even though tf

main subject of the present paper is to study semigroup rings, it is $*$

the same time one of our purposes to generalize the results of [4] $[$

H-graded rings with $H$ an arbitrary finitely generated free abelian grou]
In Chapter 1 the local conditions of H-graded rings are studied.

is proved in Section 1 that every simple H-graded ring is an (abelian
group ring over a field. In Section 2 it is showed that various $pr|$

perties of H-graded rings–being Macaulay rings, Gorenstein rings, $($

regular rings–are determined by their graded local data only. 1
Section 3 the structure of minimal injective resolutions of $ H- grad\epsilon$

R-modules in $M_{H}(R)$ is determined. We construct in Section 4 a comple
associated with a given H-graded R-module, which we call the Cousi
complex. We will classify the H-graded R-modules by the behavior $($

their Cousin complexes.
In Chapter 2 we assume that $R$ is an H-graded ring defined over

field. We give in Section 1 a duality of Noetherian H-graded R-module
and Artinian H-graded R-modules. We will define the canonical modul
of $R$ in Section 2 and give a condition of $R$ to be a Gorenstein ring $i$

terms of the canonical module.
Thus some of the results of [4] are generalized in these two chapters
In Chapter 3 $R$ is assumed to be an affine semigroup ring over

field. Section 1 is devoted to give some properties of $R$ which we sha
need later. In Section 2 we will compute the local cohomology modulc
of $R$ and give an explicit description of the canonical module. Fro]

them we deduce the Hochster’s result on normal semigroup rings. Thes
prepare to establish a criterion of the ring $R$ to be Macaulay $(resI$

Gorenstein) for more general semigroup rings $R$ , which we will find $i$

Section 3. We will give in Section 2, as an application of the abov
results, a necessary and sufficient condition of the Rees algebra $\oplus_{\geq 0}($

to be a Gorenstein ring, where $\mathfrak{a}$ is $the*$ ideal $(X_{1}, X_{2}, \cdots, X_{n})^{d}(d>0)0$

the polynomial ring $k[X_{1}, X_{f}, \cdots, X,.]$ over a filed $k$ .
Throughout this paper we denote by $H$ a finitely generated fre

abelian group and by $R=\oplus_{heH}R_{h}$ a Noetherian H-graded ring.
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CHAPTER I. LOCAL CONDITIONS OF H-GRADED RINGS AND MODULES.

Let $R=\oplus_{heH}R_{h}$ be a Noetherian H-graded ring with $H$ a finitely
generated free abelian group.

\S 1. The structure of simple H-graded rings.*

We begin with the definition of simple H-graded rings.

DEFINITION 1.1.1. We say that $R$ is a simple H-graded ring if every
non-zero homogeneous element of $R$ is a unit. (This is equivalent to
the condition that $R$ has no proper H-graded ideals except (0) $.$ )

For example, let $k$ be a field and $G$ a subgroup of $H$. We denote
by $k[G]$ the group ring of $G$ over $k$ and by $T^{g}$ the image of geG in
$k[G]$ . Then $k[G]$ can be regarded as an H-graded ring whose grading is
given by

$k[G]_{h}=\left\{\begin{array}{l}kT^{h}(heG)\\(h\not\in G)\end{array}\right.$

Note that $k[G]$ is a regular $UFD$ . (In fact, let $e_{1},$ $e_{2},$ $\cdots,$ $e_{n}$ be a free
basis of $G$ and put $T_{i}=T^{e_{i}}$ for $1\leqq i\leqq n$ . Then $T_{1},$ $T_{2},$

$\cdots,$
$T_{n}$ are alge-

braically independent over the field $k$ and $k[G]=k[T_{1},$ $T_{l},$
$\cdots,$

$T_{n},$ $T_{1}^{-1}$ ,
$T_{2}^{-1},$

$\cdots,$
$T^{-1}$] $.$ ) Obviously $k[G]$ is a simple H-graded ring. The aim of

this section is to show that the converse of this fact is also true, i.e.,
if $R$ is a simple H-graded ring, then it is isomorphic to a group ring
$k[G]$ for some field $k$ and some subgroup $G$ of $H$.

From now on, we put $k=R_{0}$ and $G=$ {$h\in H/R_{h}$ contains a unit of $R$}.
(Thus $G=\{heH/R_{h}\neq(0)\}$ if $R$ is a simple H-graded ring.) Of course $G$

is a subgroup of $H$. First we note

LEMMA 1.1.2. Let geG and $u$ a unit of $R$ contained in $R_{g}$ . Then
$u^{-1}\in R_{-g}$ and $R_{g}=ku$ .

COROLLARY 1.1.3. Suppose that $R$ is a simple H-graded ring. Then
$k$ is a field and $[R_{g}:k]=1$ for all $geG$ .

In order to state the main theorem we need some definitions. Let
$M$ be an H-graded R-module and $heH$. We denote by $M(h)$ the
H-graded R-module which coincides with $M$ as the underlying R-module
and whose grading is given by $M(h)_{g}=M_{h+g}(geH)$ . An H-graded
R-module $F$ is called free if it is isomorphic to a direct sum of H-graded

*In this section we do not need the Noetherian assumption on $R$ .
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R-modules of the form $R(h)(h\in H)$ . (This is equivalent to the conditio
that $F$ has an R-free basis consisting of homogeneous elements.)

The next theorem is the main result of this section.

THEOREM 1.1.4. The following conditions are equivalent.
(1) $R$ is a simple H-graded ring.
(2) $k$ is a field and $R\cong k[G]$ as H-graded k-algebras.
(3) Every H-graded R-module is free.
PROOF. (1) $\Rightarrow(2)$ Certainly $k$ is a field. Now let $U(R)$ denote th

group of all the units of $R$ . Then there exists a homomorphism $f:G-$

$U(R)$ of groups such that $f(g)\in Rff$ for all $ge$ G. (In fact, let $e_{1},$ $e_{2},$ $\cdots,$ $e$

be a free basis of the free abelian group $G$ and $T_{i}$ a unit of $R$ containe
in $R_{e_{i}}$ . If we define $f(e_{i})=T_{i}$ for every $1\leqq i\leqq n$ , then $f$ has the require
property. See 1.1.2.) By virtue of the universal property of the grou.
ring $k[G]$ , the map $f$ can be extended to a homomorphism $\overline{f}:k[G]\rightarrow Ro$

k-algebras. Obviously $\overline{f}$ is a desired isomorphism, as $[R_{g}:k]=1$ for al
$g\in G$ (cf. 1.1.3).

(2) $\Rightarrow(1)$ This is trivial.
(1) $\Rightarrow(3)$ Let $\{h_{i}\}_{ieI}$ be a system of representatives of $H$ mod $Gan($

$M$ an H-graded R-module. We put $M_{i}=\oplus_{geG}M_{g+h_{i}}$ and regard it as}

G-graded R-module. (Of course we put $[M_{i}]_{g}=M_{g+h_{i}}$ for all $g\in G$ . Not
that $R$ can be regarded as a G-graded ring, since $R_{h}=(0)$ if $h\not\in G.$ ) Then
since $M=\oplus_{ieI}M_{i}$ as R-modules, in order to show that $M$ has an R-fre
basis consisting of homogeneous elements, we may assume $H=G$ withou
loss of generality. In this situation it is easy to prove that every
k-basis of $M_{0}$ is an R-free basis of $M$.

(3) $\Rightarrow(1)$ Let $\mathfrak{a}$ be an H-graded ideal of $R(\mathfrak{a}\neq R)$ . Then, as $R/\mathfrak{a}$ is $|$

non-zero free R-module, we have (0): $R/\mathfrak{a}=(O)$ . Thus $\mathfrak{a}=(0)$ , and henc $($

$R$ is a simple H-graded ring. This completes the proof.
We will close this section with some definitions and a certai]

remark, which we shall need later. As above, we put $k=R_{0}$ and $G=$

{$h\in H/R_{h}$ contains a unit of $R$}.

DEFINITION 1.1.5. Let $\mathfrak{m}$ be an H-graded ideal of $R(m\neq R)$ . $W($

say that $\mathfrak{m}$ is H-maximal if $R/\mathfrak{m}$ is a simple H-graded ring.
Of course every H-maximal ideal is a prime ideal of $R$ , as $ever\urcorner$

simple H-graded ring is an integral domain (cf. 1.1.4). Note tha
H-maximal ideals are not necessarily maximal ideals of $R$ .

DEFINITION 1.1.6. We say that $R$ is H-local if it has a uniqu $($

H-maximal ideal.
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Now let $R_{G}=\oplus_{geG}R_{g}$ and consider it an H-graded ring whose grad-
ing is given by

$[R_{G}]_{h}=\left\{\begin{array}{l}R_{h}(heG)\\(h\not\in G)\end{array}\right.$

Note that $R_{G}$ is a simple H-graded ring if $k$ is a field. (In fact, let
$g\in G$ and $u$ a unit of $R$ contained in $R_{g}$ . Then, by 1.1.2, we have
$R.=ku$ . Hence every non-zero element $x$ of $R_{g}$ has the form $cu(0\neq c\in k)$

and so it is a unit of $R$ . Of course $x^{-1}=c^{-1}u^{-1}\in R_{-g}$ and hence $x^{-1}$ is
contained in $R_{G}$ . Thus every non-zero homogeneous element of $R_{G}$ is a
unit of $R_{G}.$ ) Moreover we have

PROPOSITION 1.1.7. Suppose that $k$ is a field and put $\mathfrak{m}=\oplus_{h\not\in G}R_{h}$ .
Then $(R, \mathfrak{m})$ is an H-local ring and $R/\mathfrak{m}\cong R_{G}$ as H-graded k-algebras.

PROOF. First we will prove that $\mathfrak{m}$ is actually an ideal of $R$ . Let
$xeR_{h}$ and $y\in R_{g}$ where $h,$ $g\in H$. If $xy\not\in \mathfrak{m}$ , then we have $h+g\in G$ .
Therefore $xy$ is a unit of $R$ , as is mentioned above. Hence $y$ is a unit
of $R$ and so $g\in G$ . Thus xye $\mathfrak{m}$ if $g\not\in G$ and we have the assertion. Of
course $\mathfrak{m}$ is a unique H-maximal ideal of $R$ , because every homogeneous
element of $R$ not contained in $\mathfrak{m}$ is a unit of $R$ . It is clear that $R/\mathfrak{m}$

is isomorphic to $R_{G}$ as H-graded k-algebras.

\S 2. A relation between $\mu_{i}(\mathfrak{p}, M)$ and $\mu_{i}(\mathfrak{p}*, M)$ .
Let $\mathfrak{p}$ be a prime ideal of $R$ . We denote by $S$ the set of all the

homogeneous elements of $R$ not contained in $\mathfrak{p}$ . Then $S^{-1}R$ (resp. $S^{-1}M$

for an H-graded R-module $M$ ) is again an H-graded ring (resp. an
H-graded $S^{-1}R$-module) (cf. n’9, Sect. 2, Chap. 2, [2]). $S^{-1}R$ (resp.
$S^{-1}M)$ is called the homogeneous localization of $R$ (resp. $M$ ) at $\mathfrak{p}$ and
will be denoted by $R_{(\mathfrak{p})}$ (resp. $M_{(\mathfrak{p})}$ ). Let $\mathfrak{p}*denote$ the largest H-graded
ideal of $R$ contained in $\mathfrak{p}$ . Then $(R_{(\mathfrak{p})}, \mathfrak{p}^{*}R_{(\mathfrak{p})})$ is an H-local ring and $\mathfrak{p}*$

is a prime ideal of $R$ . Notice that $M_{(\mathfrak{p})}\neq(0)$ if and only if $M_{\mathfrak{p}}\neq(0)$ ,
where $M_{\mathfrak{p}}$ denotes the usual localization of $M$ at $\mathfrak{p}$ .

Let $V_{H}(M)$ be the set of H-graded prime ideals $\mathfrak{p}$ of $R$ such that
$M_{(\mathfrak{p})}\neq(0)$ . Recall that $Ass_{R}M\subset V_{H}(M)$ (cf. $n^{o}1$ , Sect. 1, Chap. 4, [2]).

PROPOSITION 1.2.1. Let $M$ be an H-graded R-module and $\mathfrak{p}\in V_{H}(M)$ .
Let $n=\dim M_{\mathfrak{p}}$ . Then there exists a chain $\mathfrak{p}=\mathfrak{p}_{0}\supseteqq \mathfrak{p}_{1}\supseteqq\cdots\supseteqq \mathfrak{p}_{n}$ in $V_{H}(M)$ .

This is proved by induction on $n$ .
PROPOSITION 1.2.2. Let $M$ be an H-graded R-module and $\mathfrak{p}$ a prime
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ideal of R. If $M,\neq(0)$ , then $\mathfrak{p}*\in V_{H}(M)$ and dim $M,=\dim M,.+\dim R_{\mathfrak{p}}/\mathfrak{p}^{*}R_{1}$

PROOF. Since $M,=[M_{(’*)}]_{R_{(’)}}.$ , we have $M_{(’\cdot)}\neq(0)$ . Now consider th
second assertion. After homogeneous localization at $\mathfrak{p}$ we may assum
that $(R, \mathfrak{p}^{*})$ is an H-local ring. We put $d=\dim R,/\mathfrak{p}^{*}R_{\mathfrak{p}},$ $n=\dim M,$ $an($

$n^{*}=\dim M_{r}$ . Obviously $n\geqq n^{*}+d$ and we will show that $n\leqq n^{*}+d$ by
induction on $n^{*}$ .

Case (1). $R$ is an integral domain and $M=R$ . If $n^{*}=0,$ $\mathfrak{p}*=(0)an($

of course $n=d$ . Suppose that $n^{*}>0$ and assume that the assertion hold
for $\mathfrak{p}$ with dim $R_{\mathfrak{p}}.<n^{*}$ . Let $a$ be a non-zero homogeneous element of 1
contained in $\mathfrak{p}*$ . As dim $R_{\mathfrak{p}}/aR_{\mathfrak{p}}=n-1$ , there exists a chain $\mathfrak{p}=\mathfrak{p}_{0}\supseteqq \mathfrak{p}_{1}\supseteqq\cdots\overline{\equiv}$

$\mathfrak{p}_{n-1}=q$ of prime ideals of $R$ with $q\ni a$ . Since $q$ is a minimal $prim|$

divisor of a, $qeAss_{R}R/aRandhenceisH$-graded. $As\dim R_{\mathfrak{p}}/qR_{\mathfrak{p}}=n-1<\eta$

and as $\dim R_{\mathfrak{p}^{*}}/qR_{r^{*}}<n^{*}$ , we have by the assumption on $n^{*}$ tha
dim $R_{\mathfrak{p}*}/qR_{\mathfrak{p}^{5}}=\dim R_{\mathfrak{p}}/\mathfrak{q}R_{\mathfrak{p}}-\dim R_{\mathfrak{p}}/\mathfrak{p}^{*}R_{\mathfrak{p}}$ . Thus $n^{*}>(n-1)-d$ . Hence $W^{(}$

have the assertion.
Case (2). General case. If $n^{*}=0$ , every prime ideal $\mathfrak{q}$ of $R$ witl

$M_{q}\neq(0)$ contains $\mathfrak{p}*sinceAss_{R}M=\{\mathfrak{p}^{*}\}$ . Suppose that $n^{*}>0$ and assum $($

that the assertion holds for $\mathfrak{p}$ with dim $M_{\mathfrak{p}*}<n^{*}$ . As $n=\dim M$, there $i(|$

a chain $\mathfrak{p}=\mathfrak{p}_{0}\supseteqq \mathfrak{p}_{1}\supseteqq\cdots\supseteqq \mathfrak{p}$, of prime ideals of $R$ such that $M_{\mathfrak{p}_{*}}\neq(0)$ . I:
we put $\mathfrak{q}=\mathfrak{p}_{d},$ $\dim M_{R}=n-d$ and $\dim R_{\mathfrak{p}}/\mathfrak{q}R,=d$ . If $q\subset \mathfrak{p}^{*},$ $n-d\leqq n^{*}an($

the result follows. Suppose that $\mathfrak{q}\not\subset \mathfrak{p}*$ . Then $q$ is not graded as $(R$

$\mathfrak{p}^{*})$ is an H-local ring. Of course $\mathfrak{q}^{*}\in V_{H}(M)$ and $\mathfrak{q}^{*}\subset \mathfrak{p}*$ . We pul
$e=\dim R_{q}/q^{*}R_{q}$ (Note that $e>0$ since $q$ is not H-graded.) and $f=$

dim $R,./\mathfrak{q}^{*}R_{*}$ . Applying Case (1) to $R/q^{*}$ , we see $(^{*})$ dim $ R_{\mathfrak{p}}/q^{*}R,=f+\iota$

and we have $f\geqq e>0$ since dim $R_{\mathfrak{p}}/q^{*}R_{\mathfrak{p}}\geqq d+e$ . Thus dim $M_{r}.<n^{*}$ . For
if dim $M_{r}.=n^{*},$ $q^{*}=\mathfrak{p}*and$ therefore dim $R,/\mathfrak{q}^{*}R_{\mathfrak{p}}=d$ . By $(^{*})$ this implie$
that $f=0$–this is a contradiction. Now we have by the assumption on
$n^{*}$ that $n-d=\dim M_{0}.+e$ . As $f+\dim M_{r^{*}}\leqq n^{*}$ we see that

$n-d\leqq(n^{*}-f)+e$

$=n^{*}+(e-f)$

$\leqq n^{*}$ .
Thus we have verified the assertion.

Let $A$ be an arbitrary Noetherian ring and $M$ an A-module. $Fol$

every prime ideal $\mathfrak{p}$ of $A$ and for every integer $i\geqq 0$ , we put

$\mu_{i}(\mathfrak{p}, M)=\dim_{k(\mathfrak{p})}Ext_{A_{p}}^{i}(k(\mathfrak{p}), M_{\mathfrak{p}})$

(Here $k(\mathfrak{p})$ denotes the field $A,/\mathfrak{p}A_{\mathfrak{p}}.$ ) and call it the i-th Bass number of
$M$ at $\mathfrak{p}$ . Bass [1] showed that, if $ 0\rightarrow M\rightarrow E^{0}\rightarrow\cdots\rightarrow E^{:}\rightarrow\cdots$ is a minimal
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injective resolution of $M,$ $\mu_{i}(\mathfrak{p}, M)$ is equal to the number of the injec-
tive envelopes $E_{A}(A/\mathfrak{p})$ of $A/\mathfrak{p}$ which appear in $E^{i}$ as direct summands.

Let $M,$ $N$ be H-graded R-modules and $h\in H$. We denote by
$\underline{Hom}_{R}(M, N)_{h}$ the abelian group of all the homomorphisms from $M$ into
$N(h)$ . We put $\underline{Hom}_{R}(M, N)=\oplus_{heH}\underline{Hom}_{R}(M, N)_{h}$ and consider it as an
H-graded R-module with $\{\underline{Hom}_{R}(M, N)_{h}\}_{heH}$ as its grading. The derived
functor of $\underline{Hom}_{R}(\cdot,\cdot)$ will be denoted by $\underline{Ext}_{R}^{l}(\cdot, \cdot)$ . Since $R$ is Noeth-
erian, $\underline{Ext}_{R}^{i}(M, N)=Ext_{R}^{i}(M, N)$ as the underlying R-module if $M$ is
finitely generated as an R-module.

THEOREM 1.2.3. Let $M$ be an H-graded R-module and $\mathfrak{p}$ a prime
ideal ofR. Let $d=\dim R_{\mathfrak{p}}/\mathfrak{p}^{*}R_{\mathfrak{p}}$ . Then $0\leqq d\leqq rank$ H. Moreover $\mu_{t}(\mathfrak{p},M)=0$

for $0\leqq i<d$ , and $\mu_{i}(\mathfrak{p}, M)=\mu_{i-d}(\mathfrak{p}^{*}, M)$ for $d\leqq i$ .
PROOF. After homogeneous localization at $\mathfrak{p}$ we may assume that

$(R, \mathfrak{p}^{*})$ is an H-local ring. Since $R/\mathfrak{p}*is$ a simple H-graded ring, we
have by 1.1.4 that $d\leqq rankG$ (Here $G=G(R/\mathfrak{p}^{*}).$ ). Thus we have the
first assertion. For the second, let $\{f_{1}, f_{2}, \cdots, f_{d}\}$ be an $R_{\mathfrak{p}}/\mathfrak{p}^{*}R_{\mathfrak{p}}$-regular
sequence such that $\mathfrak{p}R_{\mathfrak{p}}=\mathfrak{p}^{*}R_{\mathfrak{p}}+(f_{1}, f_{2}, \cdots, f_{d})$ . (Recall that $R/\mathfrak{p}*$ is a
regular ring. See 1.1.4.) We put $q.=\mathfrak{p}^{*}R_{\mathfrak{p}}+(f_{1}, f_{2}, \cdots, f.)$ for $0\leqq s\leqq d$ .
Then we have an exact sequence

$(E.)0\rightarrow R_{\mathfrak{p}}/q_{\iota}\rightarrow R_{\mathfrak{p}}/q_{\epsilon}f\cdot+1\rightarrow R_{\mathfrak{p}}/q_{\epsilon+1}\rightarrow 0$

of $R_{\mathfrak{p}}$-modules for $0\leqq s<d$ . Applying $Ext_{R_{\mathfrak{p}}}^{i}(\cdot, M_{\mathfrak{p}})$ to $(E_{\epsilon})$ we have a long

exact sequence

$ 0\rightarrow Hom_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{q}_{\epsilon+1}, M_{\mathfrak{p}})\rightarrow Hom_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/q_{s}, M_{\mathfrak{p}})\rightarrow Hom_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/q_{*}, M_{\mathfrak{p}})f+1\rightarrow\cdots$

$\rightarrow Ext_{R\mathfrak{p}}^{1}(R_{\mathfrak{p}}/\mathfrak{q}_{+1}, M_{\mathfrak{p}})\rightarrow\cdots$

of $R_{\mathfrak{p}}$-modules. Since $Ext_{R}^{\ell}(R/\mathfrak{p}^{*}, M)$ is the underlying module of
$\underline{Ext}_{R}^{t}(R/\mathfrak{p}^{*}, M)$ and since $R/\mathfrak{p}*$ is a simple H-graded ring, we have by
1.1.4 that $Ext_{R}^{i}(R/\mathfrak{p}^{*}, M)$ is a free $R/\mathfrak{p}*$ -module. As $q_{0}=\mathfrak{p}^{*}R_{\mathfrak{p}}$ we have an
exact sequence

$0\rightarrow Ext_{R_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}/\mathfrak{q}_{0}, M_{\mathfrak{p}})\rightarrow^{f_{1}}Ext_{R_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}/\mathfrak{q}_{0}, M_{\mathfrak{p}})-Ext_{R_{\mathfrak{p}}}^{+1}(R_{\mathfrak{p}}/q_{1}, M_{\mathfrak{p}})\rightarrow 0$

fore very integer $i\geqq 0$ and $Hom_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/q_{1}, M_{\mathfrak{p}})=(0)$ . (Recall that $f_{1}$ is $R_{\mathfrak{p}}/\mathfrak{q}_{0^{-}}$

regular.) Of course $Ext_{R\mathfrak{p}}^{i+1}(R_{\mathfrak{p}}/q_{1}, M_{\mathfrak{p}})\cong Ext_{R_{\mathfrak{h}}}^{i}(R,/\mathfrak{q}_{0}, M_{\mathfrak{p}})/f_{1}Ext_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/q_{0}, M_{\mathfrak{p}})$ is
again a free $R_{\mathfrak{p}}/q_{1}$-module as $q_{1}=q_{0}+f_{1}R_{\mathfrak{p}}$ .

Now it follows by induction on $s$ that $Ext_{R}^{i+d}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, M_{\mathfrak{p}})\cong$

$Ext_{R_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}/\mathfrak{p}^{*}R_{\mathfrak{p}}, M_{\mathfrak{p}})/(f_{1}, f_{2}, \cdots, f_{d})Ext_{R\mathfrak{p}}^{i}(R_{\mathfrak{p}}/\mathfrak{p}^{*}R_{\mathfrak{p}}, M_{\mathfrak{p}})$ for every $i\geqq 0$ and
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$Ext_{R_{\mathfrak{p}}}^{i}(R,/\mathfrak{p}R,, M,)=(O)$ for $0\leqq i<d$ . Thus we have
$\mu_{i+d}(\mathfrak{p}, M)=\dim_{k(’)}Ext_{R_{\phi}}^{i+d}(k(\mathfrak{p}), M,)$

$=rank_{R,/R}*Ext_{R_{\mathfrak{p}}}^{i}(R,/\mathfrak{p}^{*}R_{\mathfrak{p}}, M_{\mathfrak{p}})$

$=rank_{R/\mathfrak{p}*}Ext_{R}^{i}(R/\mathfrak{p}^{*}, M)$

$=\dim_{k(\mathfrak{p}\cdot)}Ext_{R\mathfrak{p}^{n}}^{i}(k(\mathfrak{p}^{*}), M_{\mathfrak{p}}.)$

$=\mu_{i}(\mathfrak{p}^{*}, M)$

for every $i\geqq 0$ and $\mu_{i}(\mathfrak{p}, M)=0$ for $0\leqq i<d$ .
Let $(A, \mathfrak{m}, k)$ be a Noetherian local ring and $M$ a Macaulay A-modul $($

of $\dim_{A}M=n$ . We put $r_{A}(M)=\dim_{k}Ext_{A}(k, M)(=\mu_{n}(\mathfrak{m}, M))$ , and call $i$

the type of $M$. Various properties of the invariant $r_{A}(M)$ are $discusse\langle$

by [91. $M$ is called a Gorenstein A-module if dim $A=n$ and $M$ has in
iective dimension equal to $n$ . The concept of Gorenstein modules $wa|$

given by Sharp [16] in which we will find useful characterizations $0$ :
Gorenstein modules. If $A$ is not necessarily a local ring, Gorenstei]
modules are defined by their local data.

COROLLARY 1.2.4. Let $M$ be a finitely generated H-graded $R- modul_{(}$

and $\mathfrak{p}$ a prime ideal of $R$ such that $M_{\mathfrak{p}}\neq(0)$ . Let $d=\dim R_{\mathfrak{p}}/\mathfrak{p}^{*}R_{\mathfrak{p}}$ . $The7$

depth $M_{\mathfrak{p}}=depthM_{\mathfrak{p}}.+d$ . Moreover $M_{\mathfrak{p}}$ is a Macaulay (resp. Gorenstein
$R_{\mathfrak{p}^{-}}module$ if and only if $M_{\mathfrak{p}*}$ is a Macaulay (resp. Gorenstein) $R_{\mathfrak{p}*}$-module
In this case $r_{R_{\mathfrak{p}}}(M_{\mathfrak{p}})=r_{R_{\mathfrak{p}}},(M_{\mathfrak{p}*})$ .

This follows immediately from 1.2.3 (cf. [1] and (3.11), [16]).

PROPOSITION 1.2.5. Let $\mathfrak{p}$ be a prime ideal of R. Then the follow.
ing conditions are equivalent.

(1) $R$, is a regular local ring.
(2) $R_{\mathfrak{p}}$ , is a regular local ring.

PROOF. We have only to show (2) $\Rightarrow(1)$ . After homogeneous local-
ization at $\mathfrak{p}$ we may assume that $(R, \mathfrak{p}^{*})$ is an H-local ring. Note that
$R$ is an integral domain, since $R_{*}$ is an integral domain and since the
functor $R_{\mathfrak{p}}.\emptyset_{R}$ . is faithfully flat on the category $M_{H}(R)$ . We put
$d=\dim R,$. and prove by induction on $d$ . If $d=0,$ $R$ is a simple H-graded
ring and is certainly a regular ring (cf. 1.1.4). Now suppose that $d>0$
and assume that the assertion holds for $d-1$ . Let $a$ be a homogeneous
element of $\mathfrak{p}*not$ contained in $\mathfrak{p}^{*2}$. Then dim $R_{\mathfrak{p}}/aR,=d-1$ and $R_{\mathfrak{p}^{s}}/aR_{\mathfrak{p}*}$

is a regular local ring. As $(\mathfrak{p}/aR)^{*}=\mathfrak{p}^{*}/aR$ in $R/aR$ , we have by the
assumption on $d$ that $R_{\mathfrak{p}}/aR_{\mathfrak{p}}$ is a regular local ring. This shows that
$R$, is a regular local ring, since $a$ is $R$,-regular.
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\S 3. Minimal injective resolutions.

Let $M$ be an H-graded R-module. We donote by $\underline{E}_{R}(M)$ the injective
envelope of $M$ in $M_{H}(R)$ . First we note

LEMMA 1.3.1. Let $E$ be an H-graded R-module. Then the following
conditions are equivalent.

(1) $E$ is an injective object of $M_{H}(R)$ .
(2) $\underline{Ext}_{R}^{1}(R/\mathfrak{a}, E)=(0)$ for every H-graded ideal $\mathfrak{a}$ of $R$ .
(3) $\underline{Ext}_{R}^{i}(\cdot, E)=(0)$ for every integer $i>0$ .
The proof is similar to that of non-graded case and so we omit it

(cf. Theorem 3.2, [3]). Of course (2) is equivalent to the following
condition: Let $\mathfrak{a}$ be an H-graded ideal of $R$ and $h\in H$. Then every
homomorphism from $\mathfrak{a}(h)$ into $E$ can be extended over $R(h)$ .

COROLLARY 1.3.2. Suppose that $R$ is a simple H-graded ring. Then
every H-graded R-module is an injective object of $M_{H}(R)$ .

THEOREM 1.3.3. (1) $Ass_{R}\underline{E}_{R}(M)=Ass_{R}Mfo’$ . every H-graded R-module
$M$.

(2) Let $E$ be an H-graded R-module. Then $E$ is an indecomposable
injective object of $M_{H}(R)$ if and only if $E\cong[\underline{E}_{R}(R/\mathfrak{p})](h)$ for some
H-graded prime ideal $\mathfrak{p}$ of $R$ and for some $h\in H.$ In this case $Ass_{R}E=$

$\{\mathfrak{p}\}$ and $\mathfrak{p}$ is uniquely determined for $E$.
(3) Every injective object $E$ of $M_{H}(R)$ can be decomposed into a

direct sum of indecomposable injective objects of $M_{H}(R)$ . This decom-
position is uniquely determined by $E$ up to isomorphisms.

The proof is similar to that of non-graded case (cf. [14]).

THEOREM 1.3.4. Let $M$ be an H-graded R-module and let

$ 0\rightarrow M\rightarrow\underline{E}_{R}^{0}(M)\rightarrow\cdots\rightarrow\underline{E}_{R}^{l}(M)\rightarrow^{d_{i}}\underline{E}_{R}^{i+1}(M)\rightarrow\cdots$

denote a minimal injective resolution of $M$ in $M_{H}(R)$ . Then, for every
H-graded prime ideal $\mathfrak{p}$ of $R$ and for every integer $i\geqq 0,$ $\mu_{t}(\mathfrak{p}, M)$ is
equal to the number of the H-graded R-modules of the form $[\underline{E}_{R}(R/\mathfrak{p})](h)$

$(h\in H)$ which appear in $\underline{E}_{R}^{l}(M)$ as direct summands.

PROOF. Since $\underline{E}_{R}^{i}(M)=\underline{E}_{R}(B^{i})$ where $B^{i}=Kerd^{i}$ , it suffices to prove
in case $i=0$ . Moreover, after homogeneous localization at $\mathfrak{p}$ , we may
assume that $(R, \mathfrak{p})$ is an H-local ring. Now let us express $\underline{E}_{R}(M)=$

$\oplus_{\eta\in V_{H}(R),h\in H}m(\mathfrak{q}, h)[\underline{E}_{R}(R/\mathfrak{q})](h)$ where $m(\mathfrak{q}, h)$ denotes the multiplicity of
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$\llcorner E_{R}(R/q)](h)$ . Then, recalling that $\underline{Hom}_{R}(R/\mathfrak{a}, \underline{E}_{R}(N))=\underline{E}_{R/\alpha}(\underline{Hom}_{R}(R/\mathfrak{a},$
$N_{d}^{\backslash }$

for every H-graded ideal $\mathfrak{a}$ of $R$ and for every H-graded R-module $i$

(cf. [1]), we have by 1.3.2
$\underline{Hom}_{R}(R/\mathfrak{p}, M)=\underline{Hom}_{R}(R/\mathfrak{p},\underline{E}_{R}(M))$

$=\bigoplus_{q\in V_{H}(R),h\in H}m(q, h)\underline{Hom}_{R}(R/\mathfrak{p}, [\underline{E}_{R}(R/q)](h))$

$=\bigoplus_{\eta\in V_{H}(R),heH}m(q, h)\underline{Hom}_{R}(R/\mathfrak{p}, [R/\mathfrak{q}](h))$

$=\bigoplus_{heH}m(\mathfrak{p}, h)[R/\mathfrak{p}](h)$ .
Thus we have verified the assertion that $\mu_{0}(\mathfrak{p}, M)=\sum_{heH}m(\mathfrak{p}, h)$ .

COROLLARY 1.3.5. Let $\mathfrak{m}$ be a maximal ideal of $R$ and assume tho
$\mathfrak{m}$ is an H-graded ideal. Then $\underline{E}_{R}(R/\mathfrak{m})$ is the iniective envelope of $ R/\iota$

as the underlying R-module.

For an H-graded R-module $M$, let $\underline{id}_{R}M$ (resp. $id_{R}M$ ) denote the ir
jective dimension of $M$ in $M_{H}(R)$ (resp. as the underlying R-module).

THEOREM 1.3.6. Let $n=rank$ H. Then $id_{R}M\leqq\underline{id}_{R}M+n$ for ever
H-graded R-module $M$.

PROOF. It suffices to prove in case $M$ is an injective object $0$

$M_{H}(R)$ . Let $\mathfrak{p}$ be a prime ideal of $R$ such that $M,\neq(0)$ . We pu
$d=\dim M_{\mathfrak{p}}-d{\rm Im} M,.$ . If $\mathfrak{p}$ is H-graded, then $\mu_{i}(\mathfrak{p}, M)=0$ for every $i>$

since $\underline{Ext}_{R}^{i}(R/\mathfrak{p}, M)=(O)$ . Now suppose that $\mathfrak{p}$ is not H-graded. Then
since $\mu_{i+d}(\mathfrak{p}, M)=\mu_{i}(\mathfrak{p}^{*}, M)$ by 1.2.3, we have $\mu_{t+a}(\mathfrak{p}, M)=0$ for $ever_{t}$

.
$i>0$ by virtue of the result in case $\mathfrak{p}$ is an H-graded ideal. Thu
$\mu(\mathfrak{p}, M)=0$ for every $i>n$ and for every prime ideal $\mathfrak{p}$ of $R$ , sinc
$d=d(\mathfrak{p})\leqq n$ for every $\mathfrak{p}$ (cf. 1.2.3).

\S 4. Cousin complexes and local cohomology module $s$ .
The Cousin complexes were given by Hartshorne [7] in terms $0$

algebraic geometry, and in this section we will reconstruct them in
terms of algebra–namely of H-graded R-modules. The method is du
to Sharp [15] and so, though he considered no sort of grading, we may
refer the detail to [15].

We put $U_{H}^{i}(M)=\{\mathfrak{p}\in V_{H}(M)/d\ddagger mM_{\mathfrak{p}}\geqq i\}$ for every H-graded R-modul
$M$ and for every integer $i\geqq 0$ .

LEMMA 1.4.1. Let $U$ and $U^{\prime}$ be subsets of $V_{H}(R)$ such that $U^{\prime}\subset I$

and suppose that every element of $U/U^{\prime}$ is minimal in U. Let $Mb$

an H-graded R-module and assume that $V_{H}(M)\subset U$. Then
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$\varphi:Mx\rightarrow$$\bigoplus_{e\mathfrak{p}U,->\{x/1\}lU^{\prime}}M_{(\mathfrak{p})}$

is a well-defined homomorphism of H-graded R-modules and $V_{H}(Coker\varphi)$

$\subset U^{\prime}$ .
Construction of $\underline{C}_{R}(M)$ . Let $M$ be an H-graded R-module. We put

$M^{-2}=(0),$ $M^{-1}=M$, and $d^{-2}=0$ . Let $i\geqq 0$ be an integer and assume that
there is a complex

$M^{-2}\rightarrow M^{-1}d^{-2}\rightarrow^{d^{-1}}M^{0}\rightarrow\cdots\rightarrow M^{i-2}\rightarrow M^{i-1}d^{i-2}$

of H-graded R-modules such that $V_{H}(Cokerd^{:-2})\subset U_{H}^{i}(M)$ . Of course
this assumption is satisfied for $i=0$ . We put $M^{i}=\oplus_{\mathfrak{p}eU_{H}^{i}(H)/U_{H}^{i+1_{(H)}}}[Coker$

$d^{i\rightarrow}]_{(\mathfrak{p})}$ and we define $ d^{i-1}=\varphi\circ\epsilon$ where $\epsilon:M^{i-1}\rightarrow Cokerd^{i-2}$ is the canonical
epimorphism and $\varphi$ : Coker $d^{:-2}\rightarrow M^{i}$ denotes the homomorphism induced
by 1.4.1. Then $d^{i-2}\circ d^{:-1}=0$ , and $V_{H}(Cokerd^{:-1})\subset U_{H}^{i+1}(M)$ by 1.4.1. Thus
inductively we obtain a complex $\underline{C}_{R}(M)$

$ 0\rightarrow M=M^{-1}\rightarrow M^{0}d^{-1}\rightarrow$ . . $\rightarrow M^{i}\rightarrow^{d^{i}}M^{i+1}\rightarrow\cdots$

of H-graded R-modules which we call the Cousin complex of $M$.
By virtue of 1.2.4 the proof of the following theorem is the same

as that of non-graded case (cf. [16]).

THEOREM 1.4.2. Let $M$ be a non-zero finitely generated H-graded
R-module. Then $M$ is a Macaulay (resp. Gorenstein) R-module if and

$\zeta only$ if $\underline{C}_{R}(M)$ is exact (resp. $\underline{C}_{R}(M)$ provides a minimal iniective reso-
lution of $M$ in $M_{H}(R))$ .

Suppose that $(R, \mathfrak{m})$ is an H-local ring. For every integer $i\geqq 0$ and
for every H-graded R-module $M$ we put

$\underline{H}_{\mathfrak{m}}^{i}(M)=\lim_{t}\underline{Ext}_{R}^{i}(R/\mathfrak{m}^{t}, M)\rightarrow$

and call it the i-th local cohomology module of $M$ (cf. [6]). $\underline{H}_{\alpha}^{0}(\cdot)$ is a
left exact functor and $\{\underline{H}_{\mathfrak{n}}^{i},(\cdot)\}_{i\geq 0}$ are its derived functors.

THEOREM 1.4.3. Suppose that $(R, \mathfrak{m})$ is an H-local ring. Let $M$ be
a Macaulay H-graded R-module with dim $M_{r}=n$ . Then

(1) Ext$\# R(N, M)\cong\underline{Hom}_{R}(N, \underline{H}_{\alpha}^{n}(M))$ for every finitely generated
H-graded R-module $N$ such that $V_{H}(N)\subset\{\mathfrak{m}\}$ .

(2) $M^{n}\cong Hn(M)$ .
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(3) $M$ is a Gorenstein R-module if and only if $\underline{H}_{\varpi}(M)$ is an it
iective obiect of $M_{H}(R)$ .

The proof of 1.4.3 is similar to that of Z-graded case and we om
it (cf. Theorem 1.3.4, [4]).

CHAPTER II. THE CANONICAL MODULES OF H-GRADED RINGS
DEFINED OVER A FIELD.

Let $k$ be a field.

DEFINITION. A Noetherian H-graded ring $R$ is said to be define
over $k$ if $R_{0}=k$ and if $k\cong R/\mathfrak{m}$ , where $\mathfrak{m}$ denotes the unique H-maxim}
ideal of $R$ (cf. 1.1.7). $R$ is a finitely generated k-algebra in th
case. In fact, if we express $\mathfrak{m}=(x_{1}, x_{2}, \cdots, x)$ with $x_{i}homogeneou|$

then we have that $R=k[x_{1}, x_{2}, \cdots, x_{n}]$ . Suppose that $H=Z^{n}$ an
assume that $R_{h}=(0)$ for all $h\in Z/N’$ . Then a Noetherian $ H- grad\epsilon$

ring $R$ is defined over $k$ if $R_{0}=k$ . A homomorphism of $ H- grad\epsilon$

ringsdefined over $k$ is, by definition, a k-algebra map which preserve
degrees.

In this chapter we assume that $R$ is a Noetherian H-graded rin
defined over $k$ .

\S 1. A duality of Noetherian H-graded R-modules and Artinia
H-graded R-modules.

We denote $k=R/\mathfrak{m}$ by $\underline{k}$ if we regard it as an H-graded $R$-modult
Note that $k=R_{0}$ is an H-graded subring of $R$ . Let $M$ be an H-grade
R-module. We define $M^{*}=\underline{Hom}_{k}(M,\underline{k})$ and call it the graded k-dual $c$

M. $M^{*}$ is actually an H-graded R-module with $\{Hom_{k}(M_{-h}, k)\}_{heH}$ as it
grading. $M=M^{**}$ if and only if $[M_{h}:k]$ is finite for all $h\in E$

$[\cdot]^{*}:$ $M_{H}(R)\rightarrow M_{H}(R)$ is a contravariant exact functor.

THEOREM 2.1.1. $R^{*}=\underline{E}_{R}(\underline{k})$ .
PROOF. $R^{*}$ is an indecomposable object of $M_{H}(R)$ , since $R=R^{*1}$

Moreover $R^{*}$ contains $\underline{k}=\underline{k}^{*}$ as an H-graded R-submodule. Thus it suf
fies to show that $R^{*}$ is an injective object of $M_{H}(R)$ . Let $\mathfrak{a}$ be a
H-graded ideal of $R$ and $heH$. For every homomorphism $f:\mathfrak{a}(h)\rightarrow R^{1}$

we can find $g:R=R^{**}\rightarrow[R(h)]^{*}$ so that $i^{*}\circ g=f^{*}$ where $i:\mathfrak{a}(h)\rightarrow R(p_{/}$

denotes the inclusion map. Therefore $g^{*}\circ i=f$ and hence, by 1.3.1, $w$

have the assertion.

COROLLARY 2.1.2. $R^{*}$ is the iniective envelope of $\underline{k}$ as the $unde7$
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lying R-module.

PROOF. See 1.3.5.

COROLLARY 2.1.3. Let $M$ be an H-graded R-module. Then the fol-
lowing conditions are equivalent.

(1) $M$ is an Artinian R-module.
(2) There is an exact sequence $0\rightarrow M\rightarrow\oplus_{i=1}^{r}R^{*}(h_{i})$ of H-graded

R-modules.

The proof is similar to that of non-graded case (cf. [14] and 2.1.2).

Let $N_{H}(R)$ (resp. $A_{H}(R)$ ) denote the full subcategory of $M_{H}(R)$ con-
sisting of all the Noetherian (resp. Artinian) H-graded R-modules. By
virtue of 2.1.3 we have

THEOREM 2.1.4. $[\cdot]^{*}:$ $N_{H}(R)\rightarrow A_{H}(R)$ establishes an equivalence of
categories.

\S 2. The canonical modules.

Let $n=\dim R_{\iota \mathfrak{n}}$ .
DEFINITION. $K_{R}=(\underline{H}_{\alpha}^{n}(R))^{*}$ .

We call $K_{R}$ the canonical module of $R$ . As $\underline{H}_{\iota \mathfrak{n}}^{n}(R)$ is an Artinian
R-module, $K_{R}$ is a finitely generated H-graded R-module (cf. 2.1.4).

THEOREM 2.2.2. The following conditions are equivalent.
(1) $R$ is a Macaulay ring.
(2) $\underline{Ext}_{R}^{i}(M, K_{R})\cong(\underline{H}_{\iota \mathfrak{n}}^{n-i}(M))^{*}fo\gamma$ every finitely generated H-graded

R-module $M$ and for every integer $i$ .
The proof is similar to the Z-graded case (cf. 2.1.6, [4]).

COROLLARY 2.2.3. Suppose that $R$ is a Macaulay ring. Then $K_{R}$

is a Gorenstein R-module with $r_{R_{\mathfrak{n}}}((K_{R})_{\mathfrak{n}t})=1$ . In particular $R$ is a
Gorenstein ring if and only if $K_{R}=R(h)$ for some $h\in H$.

PROOF. $\underline{Ext}_{R}^{i}(R/\mathfrak{m}, K_{R})\cong(\underline{H}_{\mathfrak{n}}^{n-i}(R/\mathfrak{m}))^{*}$ for all $i$ . Hence $\mu_{l}(\mathfrak{m}, K_{R})=\delta_{in}$

for every $i\geqq 0$ . This proves the first assertion (cf. (3.11) Theorem, [16]

and 1.2.4). Suppose that $R$ is a Gorenstein ring. Then $\underline{H}_{m}^{n}(R)=R^{*}(-h)$

for some $heH$ by 1.4.3, since $R^{*}=\underline{E}_{R}(\underline{k})$ by 2.1.1. Therefore $K_{R}=$

$(R^{*}(-h))^{*}=R(h)$ .
PROPOSITION 2.2.4. Let $P$ be a Macaulay H-graded ring defined

over $k$ and let $f:P\rightarrow R$ denote a finite homomorphism of H-graded rings
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defined over $k$ . Let $ d=\dim$ $P.-d{\rm Im} R_{u}$ , where $n$ denotes the H-maxim $($

ideal of P. Then $K_{R}=\underline{Ex}t_{P}^{d}(R, K_{P})$ .
PROOF. Since $f$ is finite, $\underline{H}_{\mathfrak{n}}^{\dot{f}}(R)=\underline{H}_{r}^{\dot{f}},(R)$ for all $j$ . Thus by 2.2.2 $v$

have $K_{R}=(\underline{H}_{m}^{l}(R))^{*}=(\underline{H}_{\mathfrak{n}}^{n}(R))^{*}=\underline{Ext}_{P}^{d}(R, K_{P})$ .
COROLLARY 2.2.5. Suppose that $R$ is a Macaulay ring and let

be a homogeneous non-zero divisor of R. Then $a$ is regular on $K_{R}a^{\prime}n$

$K_{R/aR}\cong[K_{R}/aK_{R}](\deg a)$ .
The proof is the same as that of Z-graded case (cf. 2.2.10, [4]).

COROLLARY 2.2.6. Suppose that $R=k[X_{1}, X_{t}, \cdots, X_{n}]$ is a $ polynomi\langle$

ring and assume that each $X$ is a homogeneous element of R. The
$K_{R}=R(-e)$ where $e=\sum_{i=1}$ deg $X_{i}$ .

PROOF. Let $K_{R}=R(h)(h\in H)$ (cf. 2.2.3). Then, as $K_{R/(X_{1},X_{2},\ldots,X_{\hslash})}:$
’

$[K_{R}/(X_{1}, X_{2}, \cdots, X,,)K_{R}](e)$ by 2.2.5, we have $k\cong k(e+h)$ . (Note th\v{c}
$k=R/(X_{1}, X_{2}, \cdots, X_{n}).)$ Thus $h=-e$ .

REMARK 2.2.7. Suppose that $H=Z$“. For every $h=(h_{1}, h_{2}, \cdots, h_{\hslash})\in_{\lrcorner}$

we put $|h|=\sum^{\alpha}=h$ . Let $M$ be an H-graded R-module. We defir
$R_{d}=\oplus_{|h|=d}R_{h}$ (resp. $M_{\delta}=\oplus_{|h|=d}M_{h}$) for every integer $d$ . Then clearl
$\{R_{d}\}_{deZ}$ (resp. $\{M_{d}\}_{deZ}$) is a Z-grading of $R$ (resp. $M$) and we denote thi
Z-graded ring $R$ (resp. this Z-graded R-module $M$) by $R^{8}$ (resp. $M^{\prime}$

Notice that, in case $R^{\iota}$ is defined over $k,$ $[K_{R}]^{\$}$ coincides with $ K_{R}\iota$ (ci
Chap. 2, [4]).

CHAPTER III. AFFINE SEMIGROUP RINGS.

\S 1. Some general properties of semigroup rings.

In this chapter, we put $H=Z$“ and we use $H$ and $Z$“ interchangt
ably. Let $R$ be a Noetherian H-graded ring. We call $R$ a semigrou
ring over a field $k$ if $R_{0}=k,$ $R$ is an integral domain and if $[R_{h}:k]\leqq$

for every $h\in H$. In this case, if we put $S=\{h\in H;R_{h}\neq 0\},$ $S$ is close
under addition. That is, $S$ is an additive subsemigroup of $H$.

PROPOSITION 3.1.1. If $R$ is a semigroup ring over $k,$ $R$ is ist
morphic to an H-graded subring of $k[H]=k[X_{1}, X_{1}^{-1}, \cdots, X_{n}, X^{-1}]$ a
H-graded rings.

PROOF. Let $Q$ be the localization of $R$ by all non-zero homogeneou
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elements of $R$ . Then $Q$ is an H-simple ring and by 1.1.1, $Q\cong k[L]$ where
$L$ is the additive subgroup of $H$ generated by $S$ . So, $Q$ is isomorphic
to a H-graded subalgebra of $k[H]$ as H-graded algebras and so is $R$ .

NOTATION. In this situation, we write $R=k[S]$ . By 3.1.1, we can
consider $R$ as the subring of $k[H]$ generated by {X’; $s\in S$ }. (As usual,
we write $X^{*}=Xi^{1}\cdots X_{n^{n}}^{*}$ for $s=(s_{1}, \cdots, s).)$ We always write $L$ the
additive subgroup of $H$ generated by $S$.

DEFINITION 3.1.2. (1) Let $A$ be a subset of L. $A$ is an S-ideal
if $A+S=\{a+s;a\in A, s\in S\}\subset A$ . $A$ is a prime S-ideal if $A\not\leqq S,$ $A$ is an
S-ideal and if $S/A$ is closed under addition. (By $S/A$ we mean the set
of elements of $S$ which are not in $A$ . We define $S-A=\{s-a;s\in S$ ,
$a\in A\}.)$ $A$ is an inverse S-ideal if $A-S\subset A$ . It is clear that $A$ is an
inverse S-ideal if and only if $-A=\{-a;a\in A\}$ is an S-ideal.

(2) Let $A$ be an S-ideal or an inverse S-ideal. We write $k[A]$ the
k-vector space spanned by the set { $X^{a}$ ; a $eA$}. If $A$ is an S-ideal, $k[A]$

is naturally an R-submodule of $Q=k[L]$ . If $A$ is an inverse S-ideal,
we define the R-module structure of $k[A]$ by

$X^{s}$ . $X^{a}=\left\{\begin{array}{ll}X^{+a} & (s+a\in A)\\0 & (s+a\not\in A)\end{array}\right.$

for $s\in S$ and $aeA$ . Then it is easy to see that $(k[A])^{*}=k[-A]$ if $A$ is
an S-ideal or an inverse S-ideal (cf. Chap. 2, \S 1 for the definition of
$($ $)^{*}$). Note that if $A,$ $B$ are S-ideals (resp. inverse S-ideals) with $A\subset B$,
then $k[A]$ is a submodule (resp. quotient module) of $k[B]$ and $k[B/A]$ is
a quotient module (resp. a submodule) of $k[B]$ .

PROPOSITION 3.1.3. (1) If $P$ is a prime S-ideal, $\mathfrak{p}=k[P]$ is an
H-graded prime ideal of R. (We consider the empty set as a prime
S-ideal and we put $k[\emptyset]=(0).)$ Conversely, every H-graded prime ideal
of $R$ is of the form $k[P]$ for some prime S-ideal $P$.

(2) If $\mathfrak{p}=k[P],$ $R_{(\mathfrak{p})}=k[U_{P}]$ and $\underline{E}_{R}(R/\mathfrak{p})\cong k[-U_{P}]$ , where $U_{P}$ is an
S-ideal defined by $U_{P}=S-(S/P)=\{s-s^{\prime};seS, s^{\prime}\in S/P\}$ .

PROOF. (1) If $P$ is a prime S-ideal, $R/k[P]\cong k[S/P]$ is an integral
domain. Conversely, if $\mathfrak{p}$ is an H-graded prime ideal of $R,$ $R/\mathfrak{p}=k[S’]$

for some additive subsemigroup $S^{\prime}$ of $S$. If we put $P=S/S^{\prime},$ $P$ is a
prime S-ideal and $\mathfrak{p}=k[P]$ .

(2) By the definition of $R_{(\mathfrak{p})},$ $R_{(\mathfrak{p})}=k[U_{P}]$ is easy to see. As $ k[-U_{P}]\cong$

$(R_{(’)})^{*},$ $k[-U_{P}]$ is an H-injective $R_{(\mathfrak{p})}$ -module (see the proof of 2.1.1) and
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hence an H-injective R-module. Furthermore, we have $-U_{P}\cap S=S/$

by the lemma below. So $R/\mathfrak{p}$ is an H-graded submodule of $k[-U_{P}]$ . $A$.

$k[-U_{P}]$ is clearly indecomposable since $k[U_{P}]$ is a fractional ideal of 1
we have $\underline{E}_{R}(R/\mathfrak{p})\cong k[-U_{P}]$ .

LEMMA 3.1.4. $-U_{P}\cap S=S/P$.
PROOF. If $a\in-U_{P}\cap S$ and if $a\in P,$ $a+b\in S/Pfor$ some $beS$ . Sine

$P$ is an S-ideal, $a+b\in P$. Contradiction] This shows $-U_{P}\cap S\subset S/P$ an
the converse implication is clear.

The following example plays an es sential role in next section.

EXAMPLE 3.1.5. Let $L$ be a subgroup of $H=Z$“ and $S=L\cap N$ . Fo
a subset $I$ of $\{1, 2, \cdots, n\}$ , we put

$Z^{(I)}=$ { $(x_{1},$
$\cdots,$ $x)\in H;x_{j}=0$ for $j\not\in I$ }

and
$P_{I}=$ { $(x_{1},$

$\cdots,$ $x)\in S|x_{i}>0$ for some $i\in I$ }.

Then $\{P_{I}|I\subset\{1, \cdots, n\}\}$ is the set of all prime S-ideals (if $ I=\phi$ , we pt
$P_{\phi}=(O))$ . Hence, there are at most 2“ prime S-ideals. (It may happe
that $P_{I}=P_{J}$ for some $I\neq J.$ ) In particular, if $L=H$ and $R=k[X_{1},$ $\cdots,$

$X$

there are exactly 2“ H-graded prime ideals of $R$ . If $\mathfrak{p}=k[P_{I}]=(X_{i})_{ie}$

we sometimes write $k[X^{-1}, X_{j}, X_{\dot{f}}^{-1}|i\in I, j\not\in I]$ for $\underline{E}_{R}(R/\mathfrak{p})$ .
PROOF. If $\tilde{R}=k[X_{1}, \cdots, X_{l}]$ , an H-graded prime of $\tilde{R}$ is obviousl

of the form $\mathfrak{p}_{I}$ for some $I\subset\{1, \cdots, n\}$ , since H-homogeneous elements $($

$R$ are monomials. As $R$ is direct summand of $\tilde{R}$ as an R-module, $w$

have $\mathfrak{a}\cdot\tilde{R}\cap R=\mathfrak{a}$ for every ideal $\mathfrak{a}$ of $R$ . Let $\mathfrak{p}$ be an H-graded prim
ideal of $R$. Then $\mathfrak{p}\cdot\tilde{R}_{(’)}$ is an H-graded prime ideal of $\tilde{R}_{(’)}$ and not equa
to $\tilde{R}_{(\mathfrak{p})}$ itself. If $\mathfrak{p}$ is a H-graded prime ideal of $\tilde{R}_{(\mathfrak{p})}$ which contain
$\mathfrak{p}\cdot\tilde{R}_{(\mathfrak{p})},$ $\mathfrak{p}=\mathfrak{p}\cap\sim R$ . So every H-graded prime ideal of $R$ is the contractio
of some H-graded prime ideal of $\tilde{R}$ , which concludes the proof.

NOTATION 3.1.6. If $R_{1}$ and $R_{2}$ are H-graded rings and if $M_{1}$ (resp
$M_{2})$ is an H-graded $R_{1}-$ (resp. $R_{2}-$) module, we define

$R_{1}\# R_{2}=\bigoplus_{heH}[(R_{1})_{h}\bigotimes_{k}(R_{2})_{h}]$ and $M_{1}\# M_{2}=\bigoplus_{heH}[(M_{1})_{h}\bigotimes_{k}(M_{2})_{h}]$ .
$M_{1}\# M_{2}$ is an H-graded $R_{1}\# R_{2}$-module by putting $(M_{1}\# M_{2})_{h}=(M_{1})_{h}\otimes_{k}(M_{2})$ ,
The functors $M_{1}\#.$ and $\#M_{2}$ are clearly exact functors from the categor
of H-graded $R_{2}-$ (resp. $R_{1}-$) modules to the category of H-graded $R_{1}\# R$

modules.
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If $R_{i}=k[S_{i}]$ for some semigroup $S_{l}\subset H(i=1,2)$ , then $R_{1}\# R_{2}=k[S_{1}\cap S_{2}]$ .
If $R=k[S]$ and if $A_{i}(i=1,2)$ is an S-ideal (resp. an inverse S-ideal),
then $k[A_{1}]\# k[A_{2}]=k[A_{1}\cap A_{2}]$ is an H-graded R-module and $A_{1}\cap A_{2}$ is an
S-ideal (resp. an inverse S-ideal).

REMARK 3.1.7. In the same situation as in 3.1.6, we shall always
consider $R_{1}\emptyset R$ (resp. $M_{1}\otimes_{k}M_{2}$) as an H-graded ring (resp. H-graded
$R_{1}\otimes_{k}R_{2}- module)$ by the grading $(R_{1}\otimes_{k}R_{2})_{h}=\oplus_{h_{1}+h_{2}=h}[(R_{1})_{h_{1}}\emptyset_{k}(R_{2})_{h_{2}}]$ (resp.
$(M_{I}\otimes_{k}M_{2})_{h}=\oplus_{h_{1}+h_{2}=h}[(M_{1})_{h_{1}}\otimes_{k}(M_{\epsilon})_{h_{2}}])$ . For example, $k[X_{1}, \cdots, X_{n}]=$

$k[X_{1}]\otimes_{k}\cdots\otimes_{k}k[X_{n}]$ as H-graded rings, if we put deg $X_{1}=(1,0, \cdots, 0),$ $\cdots$ ,
deg $X_{n}=(0, \cdots, 0,1)$ .

\S 2. Local cohomology groups of normal affine semigroup rings.

In this section, let $S$ be a subsemigroup of $N^{n}$ such that $R=k[S]$
is normal. (In such a case, we say that $S$ is a normal affine semigroup.)
Note that $R$ is an H-graded ring defined over $k$ in the sense of Chapter
2. Then we know that $S$ is isomorphic to a semigroup of the form
$L\cap N^{n}$ where $L$ is a subgroup of $Z$“ (cf. [10], \S 2). So we may work
in the situation of 3.1.5. But let us repeat the definitions.

NOTATION 3.2.1. Let $L$ be a subgroup of $H=Z^{n}$ and let $S=L\cap N^{n}$ .
We assume that $S$ generates the group $L$ . We put $R=k[S]$ and $\tilde{R}=$

$k[N^{n}]=k[X_{1}, \cdots, X.]$ . Then $R$ is a normal ring and dimR $=rankL$ . As
usual, we put $\mathfrak{m}=R\cap(X_{1}, \cdots, X_{n})\tilde{R}$ . $\mathfrak{m}$ is the unique H-maximal ideal
of $R$ and $R/\mathfrak{m}=\underline{k}$ .

DEFINITION 3.2.2. We define the complex $\tilde{C}_{i}(i=1,2, \cdots, n)$ by $\tilde{C}_{i}^{0}=$

$k[X_{i}, X_{i}^{-1}],\tilde{C}_{i}^{1}=k[X_{i}, X_{l}^{-1}]/k[X_{i}],\tilde{C}_{i}^{p}=0$ for $p\neq 0,1$ and $d$ : $C’\rightarrow\tilde{C}_{i}^{1}$ being
the canonical surjection (the H-graded module structure of $k[X_{i}]$ or
$k[X_{i}, X_{i}^{-1}]$ is the same as in 3.1.7). We sometimes write $X_{i}^{-1}\cdot k[X_{i}^{-1}]$

for $k[X_{i}, X^{-1}]/k[X_{i}]$ . We define
$\tilde{C}=\tilde{C};\otimes_{k}\tilde{C}_{2}\otimes_{k}\cdots\otimes_{k}\tilde{C};$ , the tensor product of complexes of H-graded

modules. Thus the p-th component of $\tilde{C}$ . is given by $\tilde{C}^{p}=\oplus_{\iota(I)=p}\tilde{C}_{I}$ ,
where $I$ is a subset of $\{1, 2, \cdots, n\}$ and $\tilde{C}_{I}=\{\otimes_{je_{I}}k[X_{j}, X_{j}^{-1}]\}\otimes_{k}$

$\{\otimes_{l\in I}X_{i}^{-1}k[X_{i}^{-1}]\}$ . In particular, $\tilde{C}^{0}=k[H]$ and $\tilde{C}^{n}=X_{1}^{-1}\cdots X_{\iota}^{-1}\cdot k[X_{1}^{-1},$ $\cdots$ ,
$X_{r\iota}^{-1}]$ .

PROPOSITION 3.2.3. (1) The complex $\tilde{C}$ is a resolution of $\tilde{R}$ by
H-graded $\tilde{R}$-modules.

(2) The complex $\tilde{C}$ . is the Cousin complex of $\tilde{R}$ as an H-graded
R-module.

(3) The complex $\tilde{C}$ is the minimal iniective resolution of $\tilde{R}$ in
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the category of H-graded $\tilde{R}$-modules.

PROOF. (1) As $H^{0}(\tilde{C}i)=k[X_{i}]$ and $H^{q}(\tilde{C}_{i}\cdot)=0$ for $q\neq 0,$ $H^{0}(\tilde{C})--$

$\otimes_{i=}^{n}1k[X_{i}]=\tilde{R}$ and $H^{q}(\tilde{C}i)=0$ for $q\neq 0$ by K\"unneth formula ([13], $ChaI$

V, (10.1)).
(2) To prove this, we compare degree $q$ parts of $\tilde{C}$ and $\underline{C}_{R}(\tilde{R}$

For $q=0$ , both sides are $k[H]$ . So we may proceed by induction on $\zeta$

If $\mathfrak{p}$ is a H-graded prime ideal of height $q$ in $\tilde{R},$ $(\tilde{C}_{(\mathfrak{p})}^{q})$ is the cokernel $0$

the map $(\tilde{C}^{q-2})_{(\mathfrak{p})}\rightarrow(\tilde{C}^{q-1})_{(\mathfrak{p})}$ since $(\tilde{C}^{r})_{(\mathfrak{p})}=0$ for $r>q$ . As Cousin complex $i$

compatible with localization, we have the desired result by inductio
hypothesis.

(3) This is a direct consequence of (2) and 1.4.2.

DEFINITION 3.2.4. If $M$ is a H-graded $\tilde{R}$-module, we put $M_{L}=\oplus_{heL}M_{J}$

It is clear that $(\tilde{R})_{L}=R,$ $M_{L}$ is an R-module and that the functor $(.)_{L}i$

an exact functor from the category of H-graded $\tilde{R}$-modules to th
category of H-graded R-modules.

DEFINITION 3.2.5. We put $C^{\cdot}=(\tilde{C})_{L}$ . By 3.2.3 and the exactnes
of $(.)_{L},$ $C^{\cdot}$ is a resolution of $R$ by H-graded R-modules. We writ
$C_{I}=(\tilde{C}_{I})_{L}$ (cf. 3.2.2). We have $C^{p}=\oplus_{2(I)=p}C_{I}$ . We want to compute th
local cohomology groups of $R$ using the resolution $C^{\cdot}$ of $R$ . For thi
purpose, we recall some facts concerning local cohomology groups.

PROPOSITION 3.2.6. (1) For every $q,$ $\underline{H}_{\varpi}^{q}(R)$ is an Artinian R-module
(2) If $R=\overline{R}/\mathfrak{a}$ for some Gorenstein H-graded ring $\overline{R}$ and H-grade

ideal $a$ of $\overline{R}$ , then there is an isomorphism of H-graded R-modules
$(\underline{H}_{m}^{q}(R))^{*}\cong Ext_{\frac{d}{R}}^{-q}(R,\overline{R})(h)$

for some $h\in H(d=\dim\overline{R})$ .
(3) If $\mathfrak{p}$ is an H-graded prime ideal of $R$ and if $R_{(’)}$ is

Macaulay ring, $[(\underline{H}_{m}^{q}(R))^{*}]_{(\mathfrak{p})}=0$ for $q<\dim R$ .
PROOF. (1) is well known. (2) follows from 2.2.2 and 2.2.3. (3) $i$

an easy consequence of (2).

LEMMA 3.2.7. Let $M$ be an H-graded R-module.
(1) If $M$ satisfies the condition;

$(*)$ For every element $x\in M,$ $x\neq 0,$ $Ann_{R}(x)$ is an m-primar
ideal, then $\underline{H}_{m}^{0}(M)=M$ and $\underline{H}_{\varpi}^{q}(M)=0$ for $q\neq 0$ .

(2) If $M$ is a direct sum of modules which satisfy the condition
$(^{**})$ There exists a homogeneous element $fe\mathfrak{m}$ such that th
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multiplication map $f_{M}$ of $f$ on $M$ is bijective,
$1$

then $\underline{H}_{m}^{q}(M)=0$ for $ever\cdot y$ integer $q$ .
PROOF. See [4], 2.2.1 and 2.2.2.
Now, let us compute the local cohomology groups of $R$ .
LEMMA 3.2.8. For a subset I of $\{1, 2, \cdots, n\}$ , we put $I^{\prime}=\{1,2, \cdots, n\}/\backslash I$.
(1) If $Z^{(I^{\prime})}\cap L\cap N‘‘=\{0\}$ , then $C_{I}$ satisfies the condition $(^{*})$ of

3.2.7.
(We have defined $Z^{(I)}$ in 3.1.5.)

(2) If $Z^{(I^{\prime})}\cap L\cap N^{n}\supseteqq\{0\}$ , then $C_{I}$ satisfies the condition $(^{**})$ of
3.2.7.

PROOF. (1) Let us take $X^{c}eC_{I},$ $c=(c_{1}, \cdots, c_{n})$ and $X^{a}\in \mathfrak{m}$ ,
$a=(a_{1}, \cdots, a_{n})$ . Then by the assumption of (1), $a_{i}>0$ for some $ieI$. So
there is an integer $m$ such that $ma_{t}+c_{i}>0$ . By the definition of $C_{I}$ ,
$(X^{a})^{m}.X^{c}=0$ . This shows that $C_{I}$ satisfies the condition $(^{*})$ .

(2) Let us take $a=(a_{1}, \cdots, a_{n})eZ^{(I^{\prime})}\cap L\cap N^{n},$ $a\neq 0$ . Then $X^{a}e\mathfrak{m}$

and $a_{i}=0$ for every $ieI$. This shows that the multiplication map of $X^{a}$

on $C_{I}$ is bijection.

COROLLARY 3.2.9. $\underline{H}_{m}^{q}(R)\cong H^{q}(\underline{H}_{m}^{0}(C))\cong H^{q}(\prime C),$ where $C^{\cdot}$ is the sub-
complex of $C$ which is the direct sum of all $C_{I}’ s$ that satisfy the con-
dition $Z^{(I^{\prime})}\cap L\cap N‘‘=\{0\}$ .

PROOF. This is an immediate consequence of 3.2.5, 3.2.8, and 3.2.7.

LEMMA 3.2.10. If $h=(h_{1}, \cdots, h_{n})\in L$ and if $h_{i}\geqq 0$ for some $i,$ $1\leqq i\leqq n$ ,
then $(\underline{H}_{\mathfrak{n}}^{q}(R))_{h}=0$ for every $q\geqq 0$ .

PROOF. Assume that $(\underline{H}_{\mathfrak{n}}^{q}(R))_{h}\neq 0$ for some $q$ . For simplicity, let
us assume $h_{1},$

$\cdots,$
$h_{t}$ are non-negative and $h_{t+1},$ $\cdots,$

$h$ are negative.
Then by the definition of the complex $C,$ $(\underline{H}_{\varpi}^{q}(R))_{h^{\prime}}\neq 0$ for every
$h^{\prime}=(h_{1}^{\prime}, \cdots, h_{n}^{\prime})$ , such that $h_{1}^{\prime},$

$\cdots,$
$h_{t}^{\prime}$ are non-negative and $h_{t+1}^{\prime},$

$\cdots,$
$h^{\prime}$

are negative. This contradicts the fact that $\underline{H}_{\mathfrak{m}}^{q}(R)$ is an Artinian
R-module.

The following theorem was proved by M. Hochster and R. Stanley.
But we need to put a proof for this theorem to prove Theorem 3.3.3.

THEOREM 3.2.11. We put $S_{+}=$ { $(s_{1},$
$\cdots,$ $s_{n})eS|s_{i}>0$ for every $i,$ $1\leqq i\leqq n$ }

and we assume that $ S_{+}\neq\phi$ . Also, we put $L..=-S_{\vdash}-=\{-a|aeS_{+}\}$ . Then

$\underline{H}_{\mathfrak{n}}^{q},(R)=\left\{\begin{array}{l}k[L_{-}](q=\dim R)\\0\end{array}\right.$
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COROLLARY 3.2.12. (1) (M. Hochster, [10]) $R=k[S]$ is a $\Psi acaula\mathfrak{g}$

ring.
(2) (R. Stanley, [18]) $K_{R}\cong k[S_{+}]$ .
PROOF. 3.2.12 is a direct consequence of 3.2.11 (cf. Chapter 2, \S S

for the definition of $K_{R}$). We shall prove 3.2.11. Let $h,$ $h^{\prime}\in L_{-}$ . Ther
by 3.2.9 and the definition of $C^{\cdot},$ $[(\underline{H}_{m}^{q}(R))_{h}:k]=[(\underline{H}_{m}^{q}(R))_{h^{\prime}}:k]$ for every 1
and the multiplication of $X^{S}(seS)$ induces a bijection from $(\underline{H}_{m}^{q}(R))_{h}tc$

$(\underline{H}_{t\mathfrak{n}}^{q}(R))_{h+\epsilon}$ if $h+s\in L_{-}$ . So $\underline{H}_{m}^{q}(R)$ must be a direct sum of some $copie\xi$

of $k[L_{-}]$ . But as $(k[L_{-}])^{*}=k[S_{+}]$ is a torsion-free R-module and as $R_{(\mathfrak{p}}$

is a Macaulay ring at least for $\mathfrak{p}=(0),$ $\underline{H}_{m}^{q}(R)=0$ for $q<\dim R$ by 3.2.6
(3). As for $q=d=\dim R$ , we know that $(\underline{H}_{m}^{d}(R))^{*}=K_{R}$ is an R-module
of rank 1. So $\underline{H}_{\mathfrak{m}}^{d}(R)=k[L_{-}]$ .

EXAMPLE 3.2.13. We put $R_{0}=k[T_{1}, \cdots, T_{n}]$ and $\mathfrak{a}=(T_{1}, \cdots, T.)^{d}$ . We
want to determine the cases when the Rees algebra $\oplus_{i\geqq 0}\mathfrak{a}^{:}$ is a Goren.
stein ring. It is easy to see that this Rees algebra is isomorphic tc
the semigroup ring $R=k[S]$ , where $S=L\cap N^{m+2}$ and

$L=\{(a_{1}, \cdots, a_{m}, b, c)eZ^{m+2}|c=\sum_{i=1}^{m}a_{i}-db\}$ .

Then the generators of the S-ideal $S_{+}$ are
{(1, $\cdots,$

$1,$ $dp$, m-dp) $|p\geqq 1,$ $m-1\geqq dp$}
and

$\{(a_{1}, \cdots, a_{m}, b_{0}d, 1)|\sum_{i=1}^{m}a_{i}=b_{0}d+1\}$ ,

where $b_{0}$ is the smallest integer satisfying $b_{0}\geqq 1$ and $b_{0}d+1\geqq m$ . So, $S_{+}$

requires $\left(\begin{array}{l}b_{0}d\\-m1\end{array}\right)+[(m-1)/d]^{\prime}$ generators (where $[(m-1)/d]^{\prime}$ is the largest
integer which is smaller than $(m-1)/d)$ . In particular, $R=k[S]$ is $\epsilon$

Gorenstein ring if and only if $m=1$ or $d=m-1$ .
DEFINITION 3.2.14. Let $L$ be a subgroup of $Z^{n}$ . We put

$\Delta_{L}=\{I\subset\overline{n}|L\cap Z^{(I)}\cap N‘‘ =\{0\}\}$ (we put $\overline{n}=\{1,2,$
$\cdots,$ $n\}$).

It is clear by definition that if $I\in\Delta_{L}$ and if $J\subset I$, then $J\in\Delta_{L}$ . Thus $\Delta_{l}$

is a simplicial complex and we have

dim $|\Delta_{L}|+rankL+1=n$ . (See [17], Chapter 3, \S 1.)

EXAMPLE 3.2.15. (i) If rank $L=n$ , then $\Delta_{L}=\{\phi\}$ .
(ii) If $L=\{(a, \cdots, a)|aeZ\},$ $\Delta_{L}=2^{-}/\{\overline{n}\}$ . Thus $|\Delta_{L}|$ is homotopic to
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the $(n-2)$-dimensional sphere.
(iii) If $L$ is as in 3.2.13, then $I\in\Delta_{L}$ is eithera subset of $\{1, \cdots, m\}$

or a subset of $\{m+1, m+2\}$ . Thus $|\Delta_{L}|$ is homotopic to two points.

PROPOSITION 3.2.16. If $h\in L_{-},$ $(\underline{H}_{m}^{q}(R))_{h}=\tilde{H}_{n-q-1}(\Delta_{L};k)$ . (If $\Delta_{L}=\{\phi\}$ ,
$\tilde{H}_{q}(\phi;k)=0$ for $q\geqq 0$ and $\tilde{H}_{-1}(\phi;k)=k.)$

PROOF. Recall that $\underline{H}_{m}^{q}(R)=H^{q}(\prime C^{\cdot})$ where $\prime c\cdot=\underline{H}_{t\mathfrak{n}}^{0}(C^{\cdot})$ . In 3.2.9, we
have seen that $(C^{\cdot})_{h}$ has the basis $\{I\subset\overline{n}|Z^{(I^{\prime})}\cap L\cap N^{n}=\{0\}\}=\{I\subset\overline{n}|I^{\prime}e\Delta_{L}\}$ .
It is easy to verify that the complex $(C^{\cdot})_{h}$ is isomorphic to the chain
complex associated to the simplicial complex $\Delta_{L}$ .

COROLLARY 3.2.17.
$\tilde{H}_{q}(\Delta_{L};k)\cong\left\{\begin{array}{l}kq=n-1L\\0\end{array}\right.$

PROOF. This is clear from 3.2.16 and 3.2.11, since dim $R=rankL$ .
\S 3. General affine semigroup rings.

In this section let $S$ be a finitely generated subsemigroup of $N^{n}$

and let $L$ be the subgroup of $Z^{n}$ generated by $S$ . We define $\overline{S}$ the
”normalization” of $S$ . That is,

$\overline{S}=$ {$x\in L|nx\in S$ for some positive integer $n$}.

Then it is known that $\overline{S}$ is a normal semigroup and that $k[\overline{S}]$ is the
normalization of $k[S]$ (cf. [10], \S 1). As in \S 2, we assume that $\overline{S}=L\cap N^{n}$ .
We need further notations.

NOTATION 3.3.1. $R=k[S]$ and $\mathfrak{m}=k[S/\{0\}]$ (in the notation of 3.1.2.
$F_{i}=\{(s_{1}, \cdots, s_{n})eS|s_{i}=0\}$ , $\overline{F}_{i}=\{(s_{1}, \cdots, s_{n})e\overline{S}|s_{i}=0\}$ $(1\leqq i\leqq n)$ .

$L_{i}$ (resp. $\overline{L}_{i}$ ) is the group generated by $F_{i}$ (resp. $\overline{F}_{i}$). Note that
$L_{i}$ is a subgroup of finite index of $\overline{L}_{i}$ . We assume that $L_{l}\neq L_{j}$ for $i\neq j$

(cf. 3.3.2).
$S_{i}=S+L_{i}=S-F_{i}$ , $C_{i}=L/S_{i}(1\leqq i\leqq n)$

$S^{\prime}=\bigcap_{i=1}S_{i}$ , $C=\bigcap_{i=1}C_{i}$ .
LEMMA 3.3.2. (1) For every $i,$ $1\leqq i\leqq n$ , rank $L_{l}=rankL-1$ .
(2) We may assume that $\overline{L}_{i}\neq\overline{L}_{j}$ if $i\neq j$ .
PROOF. (1) If we put $\overline{P}_{i}=\overline{S}/\overline{F}_{i},\overline{P}_{i}$ is a prime S-ideal and, by

3.1.5, there is no prime S-ideal between $\overline{P}_{i}$ and $\phi$ . So $ht(k[\overline{P}_{i}])=1$ and
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rank $L_{i}=rank\overline{L}_{i}=\dim(\overline{R}/k[\overline{P}_{i}])=\dim\overline{R}-1=rankL-1$ .
(2) If $\overline{L}_{i}=\overline{L}_{j}$ for some $i\neq j$ , we may construct a semigroup iso.

morphic to $S$ in $Z-1$ by deleting bases $e,$ $e_{j}$ and adding a new $bas$

which is a linear combination of $e_{i}$ and $e_{j}$ .
The main theorem of this chapter is the following

THEOREM 3.3.3. (1) $R=k[S]$ is a Macaulay ring if and only $ii$

$S=S^{\prime}$ .
(2) $\underline{H}_{m}^{d}(R)=k[C]$ as H-graded R-modules $(d=\dim R=rankL)$ .
(3) $R$ is a Gorenstein ring if and only if there exists an elemeni

$ceL$ such that $c+S=-C$ .
We prove this theorem in several steps. First, we construct $\iota r$

complex.

DEFINITION 3.3.4. For every $i,$ $1\leqq i\leqq n$ , we define the complex $D$

as follows.
$D_{i}^{0}=k[L],$ $D_{l}^{1}=k[L]/k[S_{i}]=k[C_{i}]$ and $d:D_{i}^{0}\rightarrow D_{i}^{1}$ is the canonical surjec.

tion map. We define the complex $D$ by

$D=D_{1}\# D_{2}\#\cdots\# D$,

the Segre product of the complexes of H-graded R-modules (cf. 3.1.6).
Thus

$D^{p}=\bigoplus_{l(I)=p}\{\# k[C_{i}]\}=\bigoplus_{\$ ieItI)=p}D_{I}$ , where $D_{I}=k[\bigcap_{eI}C_{i}]$ .
The complex $D^{\cdot}$ is a resolution of $k[S’]$ in the category of H-graded
R-modules (cf. the proof of 3.2.3). If $\overline{S}=S$ , the complex $ D^{\cdot}coincide\xi$

with the complex $C^{\cdot}$ of 3.2.5.

LEMMA 3.3.5. For every $i,$ $1\leqq i\leqq n$ , there is an integer $N_{t}$ such that
the i-th coefficient of any element in $C_{i}$ is smaller than $N_{i}$ . (If
$(x_{1}, \cdots, x_{i}, \cdots, x)\in C_{\ell}$ , then $x_{i}<N_{i}.$ )

PROOF. Take an element $s=(s_{1}, \cdots, s)\in S,$ $s\not\in L_{i}$ . Then the grour
$L^{\prime}$ generated by $s$ and $L$ has the same rank as $L$ by 3.3.2. If we $tak\epsilon$

the elements $a_{1}=0,$ $a_{2},$ $\cdots,$ $a_{t}$ from $S(t=[L:L’])$ such that $L=\bigcup_{g=1}^{t}(a_{j}+L’)$

and if we write $a_{j}=(a_{j_{1}}, \cdots, a_{jt})$ , it is clear that we can take $ N_{i}=\max$

$(a_{1i}, \cdots, a_{ti})$ .
LEMMA 3.3.6. Let us take Icn and put $I’=n/I$ as usual. Then
(1) If $I^{\prime}\in\Delta_{L}$ (cf. 3.2.14 for the definition of $\Delta_{L}$), $D_{I}$ satisfies the

condition $(^{*})$ of 3.2.7.
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(2) If $I^{\prime}\not\in\Delta_{L},$ $D_{I}$ satisfies the condition $(^{**})$ of 3.2.7.

PROOF. The proof is similar to that of 3.2.8 if we use 3.3.5.

COROLLARY 3.3.7. $\underline{H}_{\mathfrak{n}}^{q}(k[S’])=H^{q}(\prime D^{\cdot})where\prime D$ is the subcomplex of
$D$ which is the direct sum of all $D_{I}’ s$ such that $I^{\prime}\in\Delta_{L}$ .

LEMMA 3.3.8. $(\underline{H}_{m}^{q}(k[S^{\prime}]))_{h}=0$ for every $q\geqq 0$ if $h\not\in C$ .
PROOF. As $S^{\prime}\subset\overline{S},$ $k[S^{\prime}]$ is a finitely generated R-module. So,

$\underline{H}_{\mathfrak{n}\iota}^{q}(k[S^{\prime}])$ is an Artinian R-module. Then the proof is similar to that
of 3.2.10.

(Conclusion of the proof of 3.3.3.) We have seen that $(\underline{H}_{\mathfrak{m}}^{q}(k[S^{\prime}]))_{h}=0$

unless $h\in C$. If $h\in C$ , it is easy to see that $(H^{q}(\prime D))_{h}\cong\tilde{H}_{n-q-1}(\Delta_{L};k)$ (cf.
3.2.16). Then, by 3.2.17, we have

$\underline{H}_{m}^{q}(k[S^{\prime}])=\left\{\begin{array}{ll}k[C] & (q=\dim R)\\0 & (otherwise).\end{array}\right.$

This proves that $k[S^{\prime}]$ is a Macaulay ring and that $\underline{H}_{\mathfrak{m}}^{d}(k[S^{\prime}])=k[C]$

$(d=\dim R)$ . Next, we put $M=k$] $S^{\prime}$]$/k[S]$ . Then we know that $Ass_{R}(M)$

consists of H-graded prime ideals of R. ([2], Chap. 4, \S 3, Proposition 1.)

But by 3.3.2, H-graded prime ideal of height 1 of $R$ is of the form
$\mathfrak{p}_{i}=k[S/F_{i}]$ for some $i,$ $1\leqq i\leqq n$ . But it is clear that $R_{(\mathfrak{p}_{i})}=(k[S^{\prime}])_{(\mathfrak{p}_{i})}=k[S_{i}]$ .
So $M_{(\mathfrak{p}_{i})}=0$ for every $i$ . Thus dim $M\leqq d-2$ . If we write the long exact
sequence of local cohomolgy groups associated to the short exact
sequence

$0\rightarrow R\rightarrow k[S^{\prime}]\rightarrow M\rightarrow 0$

noting that $\underline{H}_{m}^{q}(M)=0$ for $q\geqq d-1$ , we can see that $R$ is a Macaulay
ring if and only if $M=0$ and that $\underline{H}_{\mathfrak{n}}^{d}(R)=k[C]$ . Thus we have proved
(1) and (2). As for (3), we can prove that $k[-C]$ is a Macaulay
R-module by the same process as the proof of 3.3.3. So (3) results
from 2.2.3.

Before closing this paper, let us calculate some examples. It will
be of some interest to compare the proof of 3.3.9 with that in [11].

EXAMPLE 3.3.9. ([11], Example 2.2.) Let $a,$ $b,$ $t$ be indeterminates
and let $R=k$[ $a^{2},$ $a^{3},$ $b$ , ab, $a^{4}t,$ $a^{2}bt,$ $b^{2}t$] $\subset k[a, b, t]$ . If we consider the sub-
semigroup $S$ of $N^{4}$ generated by $(2, 0,0,2),$ $(3,0,0,3),$ $(0,1,0,2),$ $(1,1,0,3)$ ,
$(4, 0,1,0),$ $(2,1,1,0)$ , and $(0,2,1,0),$ $k[S]$ is isomorphic to $R$ and $\overline{S}=L\cap N^{4}$ ,
where

$L=\{(a, b, t, u)\in Z^{4}|a+2b=4t+u\}$ .
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Note that $\overline{S}$ is generated by $(1, 0,0,1),$ $(0,1,0,2),$ $(4,0,1,0),$ $(2,1,1,0)$
and $(0,2,1,0)$ and that $S=\{(a, b, t, u)e\overline{S}|u\neq 1\}$ . Let us determine $L_{i}$

$S_{i}$ , and $C_{i}(i=1, \cdots, 4)$ for this $S$ . We can see easily,
$L_{1}$ is generated by $(0,1,0,2)$ and $(0,2,1,0)$

$L_{2}$ is generated by $(1, 0,0,1)$ and $(0,0,1, -4)$

$L_{3}$ is generated by $(1, 0,0,1)$ and $(0,1,0,2)$

$L_{4}$ is generated by $(2, 1, 1, 0)$ and $(0,2,1,0)$

$S_{1}=\{(a, b, t, u)eL|a\geqq 0\}$ $C_{1}=\{(a, b, t, u)eL|a<0\}$

$S_{2}=\{(a, b, t, u)eL|b\geqq 0\}$ $C_{2}=\{(a, b, t, u)\in L|b<0\}$

$S_{3}=\{(a, b, t, u)eL|t\geqq 0\}$ $C_{3}=\{(a, b, t, u)\in L|t<0\}$

$S_{4}=\{a, b, t, u)eL|u\geqq 0, u\neq 1\}$ $C_{4}=$ { $(a,$ $b,$ $t,$ $u)eL|u<0$ or $u=1$}.
As $S=\{(a, b, t, u)\in\overline{S}|u\neq 1\}$ , we have $S=\bigcap_{i=1}^{4}S_{l}$ and $C=(-1, -1, -1,1)-S$

Thus, by 3.3.3, $R=k[S]$ is a Gorenstein ring.

EXAMPLE 3.3.10. Let $R=k[a^{4}, a^{3}b, ab^{3}, b^{4}]\subset k[a, b]$ and $ R=R,[a^{4}t, b^{4}t]\subset$

$R_{0}[t]$ . Then we can prove that $R$ is a Macaulay ring by the same
process as in 3.3.9. In this case, the generators of $K_{R}$ are $a^{8}bt,$ $a^{2}b^{2}t$ and
$ab^{3}t$ . (In this case, $R_{0}$ is not a Macaulay ring. But $R_{0}$ is a Buchsbaum
ring and $(a^{4}, b^{4})$ is a parameter system for $R_{0}$ . In general, if $R_{0}$ is a
2-dimensional local Buchsbaum domain and if $(x, y)$ is a parameter system
for $R_{0}$ , it is proved in [19] that $R_{0}[xt, yt]$ is a Macaulay ring.
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