An Analogue of Paley-Wiener Theorem on Rank 1 Semisimple Lie Groups I

Takeshi KAWAZOE

Keio University
(Communicated by T. Saito)

In the previous paper [9], we have stated some results on Paley-Wiener type theorems on semisimple Lie groups without proof. In this paper we shall give detailed proofs of those theorems.

§ 1. Notation and preliminaries.

Let G be a real reductive Lie group with compact center. We assume that G is in class \mathscr{H} (cf. V. S. Varadarajan [10]). Let K be a maximal compact subgroup of G. Fix a Cartan involution θ on G induced by K. Let P be a parabolic subgroup of G, and P=MAN be the associated Langlands decomposition of P. Then M is a reductive group and is in class \mathscr{H} , A is a vector group, which we call the split component of P, and N is the unipotent radical of P. Moreover if P is cuspidal, i.e., $\operatorname{rank}(M) = \operatorname{rank}(K_M)$ $(K_M = K \cap M)$, then there exists a compact Cartan subgroup T of M and H = TA is a Cartan subgroup of G. Now we denote Lie algebras by small German letters and for any real vector space V, we denote by V_c the complex vector space of V and by V^* the dual space of V. Then $\mathfrak{p} = \mathfrak{m} + \mathfrak{a} + \mathfrak{n}$ is the parabolic subalgebra of g corresponding to P. In this case, $A = \exp \mathfrak{a}$, $N = \exp \mathfrak{n}$ and P is the normalizer of \mathfrak{p} in G. Let \mathscr{F} be the dual space of \mathfrak{a} , i.e., $\mathscr{F} = \mathfrak{a}^*$.

Let $\tau = (\tau_1, \tau_2)$ be a unitary double representation of K on a finite dimensional Hilbert space V. Here we assume that V satisfies the conditions in Harish-Chandra [6] § 8. Then we define the V-valued Schwartz space $\mathscr{C}(G, V)$ and the subspace of τ -spherical functions $\mathscr{C}(G, \tau)$ as usual. Moreover we denote by $\mathscr{C}(G, \tau)$ the space of τ -spherical cusp forms on G. Next let τ_M be a representation of K_M on V which is the restriction of τ to K_M . Then we can also define $\mathscr{C}(M, V)$, $\mathscr{C}(M, \tau_M)$ and $\mathscr{C}(M, \tau_M)$ respectively.

Received May 18, 1979.

Let $\mathcal{C}(G)$ be the set of equivalence classes of irreducible unitary representations of G and $\mathcal{C}^2(G)$ be the subset of $\mathcal{C}(G)$ which consists of equivalence classes of square-integrable representations of G, i.e., the discrete series of G. For other Lie groups we shall define $\mathcal{C}(G)$ and $\mathcal{C}^2(G)$ in the same way.

Now we fix a parabolic subgroup P=MAN of G and put $L={}^{\circ}\mathscr{C}(M,\tau_{\scriptscriptstyle M})$. Then dim $L<\infty$. Let $\mathscr{H}_{\scriptscriptstyle \omega}(\omega\in\mathscr{E}^2(M))$ be the smallest closed subspace of L^2 -space on M containing all matrix coefficients of ω . Then it is well-known that L is an orthogonal sum of $L(\omega)$ ($\omega\in\mathscr{E}^2(M)$), where $L(\omega)=L\cap(\mathscr{H}_{\scriptscriptstyle \omega}\otimes V)$. Thus, L can be decomposed as

$$(1.1) L = \bigoplus_{1 \leq j \leq m} \bigoplus_{s \in W - W(\omega_j)} L(s\omega_j) ,$$

where W = W(A) is the Weyl group of (G, A) and $W(\omega_j) = \{s \in W; s\omega_j = \omega_j\}$ for $\omega_j \in \mathcal{C}^2(M)$ $(1 \le j \le m)$. Here we denote an orthonormal basis of $L(\omega_j)$ as follows;

$$(1.2) \{\phi_i^j; 1 \leq i \leq n_j\}, \text{where} n_j = \dim L(\omega_j) (1 \leq j \leq m).$$

From now on, we shall define a Fourier transform on $\mathscr{C}(G,\tau)$. First of all we shall regard \mathscr{F} as an Euclidean space and define the Schwartz space $\mathscr{C}(\mathscr{F})$ on it as usual. Next for $f \in \mathscr{C}(G,\tau)$ and $\phi_i^i \in \mathscr{C}(M,\tau_M)$ we put

(1.3)
$$\hat{f}(\phi_i^j, \nu) = (c^2 \gamma)^{-1} (f, E(P; \phi_i^j; \nu; .)) \quad (\nu \in \mathcal{F})$$

(for notation see Harish-Chandra [6], § 2 and § 11). Then from the results in [5] we obtain that $\hat{f}(\phi_i^i, \nu)$ belongs to $\mathscr{C}(\mathscr{F})$ for fixed $\phi_i^i (1 \le i \le n_j, 1 \le j \le m)$. Then we define a Fourier transform $\mathscr{C}_A : \mathscr{C}(G, \tau) \to \mathscr{C}(\mathscr{F})^n (n = \sum_{1 \le j \le m} n_j)$ as follows;

(1.4)
$$\mathscr{C}_{A}(f) = (\mathscr{C}_{1}(f), \mathscr{C}_{2}(f), \cdots, \mathscr{C}_{m}(f))$$
 for $f \in \mathscr{C}(G, \tau)$,

where $\mathscr{C}_{j}(f) = (\hat{f}(\phi_{1}^{j}, \nu), \hat{f}(\phi_{2}^{j}, \nu), \cdots, \hat{f}(\phi_{n_{j}}^{j}, \nu))(1 \leq j \leq m)$. For simplicity put $e_{k} = \phi_{i}^{j}$, where $k = \sum_{1 \leq p \leq j-1} n_{p} + i(1 \leq k \leq n)$.

Let V be an arbitrary element in $\mathscr{C}(\mathscr{F})^n$. Then V can be written as; $V=(V_1,\ V_2,\ \cdots,\ V_m)$ where V_j is an element in $\mathscr{C}(\mathscr{F})^{n_j}$ for $1\leq j\leq m$. Let $\mathscr{C}(\mathscr{F})^n$ be the closed subspace of $\mathscr{C}(\mathscr{F})^n$ consisting of all $V=(V_1,\ V_2,\ \cdots,\ V_m)$ which satisfy the following relations;

$$(1.5) \ V_j(s^{-1}\nu)^t = {}^{\circ}\overline{C_{P|P}(s;\,s^{-1}\nu)} \ V_j(\nu)^t \quad \text{for all } s \in W(\omega_j) \ \text{and} \ \nu \in \mathscr{F}(1 \leq j \leq m)$$

(for the notation, see T. Kawazoe [9]). Moreover let $\mathcal{H}(\mathscr{F})_*^*$ be the subspace of $\mathscr{C}(\mathscr{F})_*^*$ consisting of V whose each component extends to

a holomorphic function on \mathcal{F}_c which is an exponential type and satisfies the following conditions:

if there exists a relation.

$$\sum_{1 \leq j \leq m} \sum_{1 \leq i \leq n_j} \sum_{1 \leq t \leq T_i^j} \sum_{1 \leq r \leq M_i^j} A(j, i, t, r) \frac{d^r}{d\nu^r} |_{\nu = \nu_i^j(t)} E(P; \phi_i^j; \nu; x) = 0 ,$$

(1.6) where $A(j, i, t, r) \in C$ and $\nu_i^j(t) \in \mathscr{F}_e$ for all $1 \le i \le n_j$, $1 \le j \le m$, then

$$\sum_{1 \leq j \leq m} \sum_{1 \leq i \leq n_j} \sum_{1 \leq t \leq T_i^j} \sum_{1 \leq r \leq M_i^j} A(j,\,i,\,t,\,r) \frac{d^r}{d\nu^r}_{|\nu=\nu_i^j(t)} \alpha_i^j\!(\nu) \!=\! 0 \ ,$$

where $V_j(\nu) = (\alpha_1^j(\nu), \alpha_2^j(\nu), \dots, \alpha_{n_i}^j(\nu))$ for $1 \leq j \leq m$.

§ 2. Main results.

Let P_1, P_2, \dots, P_r be a complete set of cuspidal parabolic subgroups of G, no two of which are associate and $P_i = M_i A_i N_i$ be the corresponding Langlands decomposition of $P_i(1 \le i \le r)$. Now we denote by $\mathscr{C}_i(G, \tau) = \mathscr{C}_{A_i}(G, \tau)(1 \le i \le r)$ the closed subspace of $\mathscr{C}(G, \tau)$ which consists of all f satisfying $f^{(Q)} \sim 0$ for every parabolic subgroup Q = MAN of G such that A is not conjugate to A_i under K. When we apply the preceding argument to P_i , we shall use the notation such that \mathscr{C}_{A_i} , \mathscr{F}_i and $n^{(i)}$ instead of \mathscr{C}_A , \mathscr{F} and n for P respectively.

THEOREM 1. If P_i is not G, then the mapping \mathscr{C}_{A_i} is a homeomorphism of $\mathscr{C}_i(G, \tau)$ onto $\mathscr{C}(\mathscr{F}_i)_*^{n(i)}$.

THEOREM 2. Assume that the real rank of G is equal to one. Then an element V in $\mathscr{C}(\mathscr{F})^n_*$ belongs to $\mathscr{H}(\mathscr{F})^n_*$ if and only if there exists a function f in $C^\infty_c(G,\tau)$ such that $\mathscr{C}_A(f)=V$, where P=MAN is the minimal parabolic subgroup of G.

REMARK 1. From the proof of Theorem 1 (see § 3) we can easily prove that

$$\mathscr{C}_{A_{\ell}}(f) = 0$$

for all f in $\mathscr{C}_{A_j}(G, \tau)(i \neq j, 1 \leq i, j \leq r)$. Therefore using the decomposition of $\mathscr{C}(G, \tau)$ (see T. Kawazoe [9] (4.5)), we can regard \mathscr{C}_{A_i} as the mapping of $\mathscr{C}(G, \tau)$ onto $\mathscr{C}(\mathscr{F}_i)^{n(i)}_*$. We shall denote this extension by the same notation.

REMARK 2. Noting the proof of the surjection of Theorem 1 (see § 3 (iii)), we can easily obtain the inverse mapping of $\mathcal{C}_{A_k}(1 \le k \le r)$ as follows,

$$\mathscr{C}_{A_{k}}^{-1}(\mathscr{C}_{A_{k}}(f)) = \sum_{j=1}^{m} |W(\omega_{j})|^{-1} \sum_{i=1}^{n_{j}} \int_{\mathscr{F}} \mu(\omega_{j}, \nu) E(P: \phi_{i}^{j}: \nu: x) \widehat{f}(\phi_{i}^{j}, \nu) d\nu$$

for $f \in \mathscr{C}(G, \tau)$.

§ 3. Proof of Theorem 1.

Assume that P_i is not equal to G. For simplicity we put $P=P_i$ and moreover for the other notations we shall omit the suffix; i.

(i) First of all we shall show that $\mathscr{C}_A(f)$ belongs to $\mathscr{C}(\mathscr{F})^n_*$ for all $f \in \mathscr{C}(G, \tau)$. Now let f be an arbitrary element in $\mathscr{C}(G, \tau)$ and we shall write $\mathscr{C}_A(f)$ as follows;

$$\mathscr{E}_{A}(f) = (\mathscr{E}_{1}(f), \mathscr{E}_{2}(f), \cdots, \mathscr{E}_{m}(f)),$$

see notation for (1.4). Then from the definition of \mathscr{C}_A and \mathscr{C}_j , it is quite obvious that $\mathscr{C}_j(f)$ belongs to $\mathscr{C}(\mathscr{F})^{n_j}$ for $1 \le j \le m$ and moreover $\mathscr{C}_A(f)$ belongs to $\mathscr{C}(\mathscr{F})^n$. Therefore in order to prove that $\mathscr{C}_A(f) \in \mathscr{C}(\mathscr{F})^n$, it is enough to prove that $\mathscr{C}_j(f)$ satisfies the following relation;

$$(3.2) \ \mathscr{C}_{j}(f)(s^{-1}\nu)^{t} = {}^{\circ}\overline{C_{P|P}(s;s^{-1}\nu)} \,\mathscr{C}_{j}(f)(\nu)^{t} \text{ for } s \in W(\omega_{j}) \text{ and } \nu \in \mathscr{F}(1 \leq j \leq m)$$
(for the notation, see (4.2) in [9]).

Here we note that the Eisenstein integral satisfies the relation as follows;

(3.3)
$$E(P: \phi: s^{-1}\nu: x) = E(P: {}^{\circ}C_{P|P}(s; s^{-1}\nu)\phi: \nu: x)$$

for $\phi \in L$, $\nu \in \mathscr{F}$ and $s \in W$ (cf. Harish-Chandra [6] Lemma 17.2) and moreover ${}^{\circ}C_{P|P}(s;s^{-1}\nu)\phi$ belongs to $L(\omega_j)$ for $\phi \in L(\omega_j)$ and $s \in W(\omega_j)$ ($1 \le j \le m$). Therefore, using these facts and the definition of the Fourier transform (1.3), we can easily prove that $\mathscr{C}_j(f)$ satisfies (3.2) for $1 \le j \le m$. Thus, we obtain the desired results.

(ii) Next we shall prove that the mapping $\mathscr{C}_A:\mathscr{C}_A(G,\tau)\to\mathscr{C}(\mathscr{F})^n_*$ is injective. Now let f be an element in $\mathscr{C}_A(G,\tau)$ such that $\mathscr{C}_A(f)=0$. Then from the definition of $\mathscr{C}_A(f)$, we have,

(3.4)
$$(\hat{f}(e_1, \nu), \hat{f}(e_2, \nu), \dots, \hat{f}(e_n, \nu)) = 0$$

i.e.,
$$(f, E(P: e_i: \nu:.)) = 0$$
 for all $1 \le i \le n$ and $\nu \in \mathscr{F}$.

Since $e_i(1 \le i \le n)$ is an orthogonal basis of $\bigoplus_{1 \le j \le m} L(\omega_j)$, the above relation is valid for all $\psi \in \bigoplus_{1 \le j \le m} L(\omega_j)$. But, here we note that $\{{}^{\circ}C_{P|P}(s; s^{-1}\nu)\phi_i^j; 1 \le i \le n_j\}$ is an orthogonal basis of $L(s\omega_j)(s \in W)$ and

$$(3.5) \quad (f, E(P: {}^{\circ}C_{P|P}(s; s^{-1}\nu)\phi_{i}^{j}: \nu:.)) = (f, E(P: \phi_{i}^{j}: s^{-1}\nu:.)) = 0 \quad (\nu \in \mathscr{F})$$

by (3.3) and (3.4). Therefore from (1.1) in §1 we can obtain

$$(3.6) (f, E(P: \psi: \nu:.)) = 0 for all \psi \in L and \nu \in \mathscr{F}.$$

Then $f^{(P)} \sim 0$ (cf. Harish-Chandra [4] § 20). Then from the fact that f belongs to $\mathscr{C}_A(G, \tau)$, we can easily obtain that $f^{(P')} \sim 0$ for every parabolic subgroup P' = M'A'N' of G such that A' is not conjugate to A. Therefore we have, $f^{(Q)} \sim 0$ for all parabolic subgroups of G. Thus, f must be 0, i.e., the mapping \mathscr{C}_A is injective (cf. Harish-Chandra [4] Lemma 20.1).

(iii) Now we shall prove that the mapping $\mathscr{C}_A:\mathscr{C}_A(G,\tau)\to\mathscr{C}(\mathscr{F})^n_*$ is surjective. Let V be an arbitrary element in $\mathscr{C}(\mathscr{F})^n_*$. Then V can be written as follows;

$$(3.7) V = (V_1, V_2, \cdots, V_m)$$

where V_j belongs to $\mathscr{C}(\mathscr{F})^{n_j}$, which denotes $(\alpha_1^j(\nu), \alpha_2^j(\nu), \cdots, \alpha_{n_j}^j(\nu))$ and moreover satisfies the relation (3.2) in (i) with respect to $V_j(1 \leq j \leq m)$. From now on we shall construct a function f in $\mathscr{C}_A(G, \tau)$ such that $\mathscr{C}_A(f) = V$.

First of all we shall define a function f as follows;

(3.8)
$$f(x) = \sum_{j=1}^{m} |W(\omega_j)|^{-1} \sum_{i=1}^{n_j} \widehat{\alpha}_i^j(\phi_i^j, x) \qquad (x \in G)$$

(for the notation, see T. Kawazoe [9] (3.2)). Then it is obvious that f belongs to $\mathscr{C}_A(G,\tau)$ (see Harish-Chandra [6] Lemma 26.1). We shall calculate the entry of $\mathscr{C}_A(f)$ which corresponds to ϕ_q^p , i.e., $\hat{f}(\phi_q^p,\nu)$ for $1 \le q \le n_p$, $1 \le p \le m$. Here we shall use the same notations and calculations in Harish-Chandra [6] §§ 26 and 27.

$$egin{aligned} \widehat{f}(\phi_q^p,\,
u) &= (c^2\gamma)^{-1}(f,\,E(P:\,\phi_q^p:\,
u:.)) \ &= (c^2\gamma)^{-1} igg(\sum_{j=1}^m |W(\omega_j)|^{-1} \sum_{i=1}^{n_j} \widehat{lpha}_i^j(\phi_i^j,.),\,\,E(P:\,\phi_q^p:\,
u:.)igg) \ &= (c^2\gamma)^{-1} \sum_{j=1}^m |W(\omega_j)|^{-1} \sum_{i=1}^{n_j} (\widehat{lpha}_i^j(\phi_i^j,.))_
u^{(P)},\,\phi_q^p) \ &= \sum_{j=1}^m |W(\omega_j)|^{-1} \sum_{i=1}^{n_j} \sum_{s\in W} lpha_i^j(s^{-1}
u) ({}^\circ C_{P|P}(s;\,s^{-1}
u) \phi_i^j,\,\phi_q^p) \ . \end{aligned}$$

Here we recall that ${}^{\circ}C_{P|P}(s;s^{-1}\nu)$ is an unitary operator which maps $L(\omega)$ onto $L(s\omega)$, and moreover $L(\omega)$ is orthogonal to $L(s\omega)$ for $s \in W-W(\omega_j)$. Therefore from the decomposition of L (see (1.1) in § 1), we can obtain,

$$egin{aligned} \widehat{f}(\phi_q^p,\,
u) = & |W(\omega_P)|^{-1} \sum_{i=1}^{n_p} \sum_{s \in W(\omega_p)} \, lpha_i^p(s^{-1}
u) ({}^{\circ}C_{P|P}(s;\,s^{-1}
u) \phi_i^p,\,\phi_q^p) \ = & lpha_q^p(
u) \;, \end{aligned}$$

here we used the relation (3.2). This proves that $\mathcal{C}_A(f) = V$, i.e., the mapping \mathcal{C}_A is surjective.

Therefore from (i), (ii) and (iii) we can prove that the mapping \mathscr{C}_{A} : $\mathscr{C}_{A}(G,\tau) \to \mathscr{C}(\mathscr{F})^{*}_{*}$ is bijective. However from the results of Harish-Chandra [5] we can easily obtain that \mathscr{C}_{A} is homeomorphism of $\mathscr{C}_{A}(G,\tau)$ onto $\mathscr{C}(\mathscr{F})^{*}_{*}$. This completes the proof of Theorem 1, and moreover Remark 1 in [9].

§4. Proof of Theorem 2.

Let notation be as above and assume that the real rank of G is one.

- (i) First of all we shall prove the necessary condition. Let f be in $C_c^{\infty}(G, \tau)$ and put $V = \mathcal{C}_A(f)$. Then we can prove that V belongs to $\mathscr{C}(\mathscr{F})^n_*$ in the same way in (i) of § 3. Moreover using the fact that $f_v^{(P)}$ is in $C_c^{\infty}(M, \tau_M) \otimes \mathscr{C}(\mathscr{F})$, we can easily obtain that each component of V can be extended to a holomorphic function on \mathscr{F}_c which is an exponential type and satisfies the condition (1.6) in § 1. Thus, we obtain that $\mathscr{C}_A(f)$ belongs to $\mathscr{H}(\mathscr{F})^n_*$.
- (ii) Next we shall prove the sufficient condition. Let V be an arbitrary element in $\mathcal{H}(\mathcal{F})^*$, and assume that V has the form of (3.7). First of all we shall define the function f by (3.8), i.e.,

(4.1)
$$f(x) = \sum_{i=1}^{m} |W(\omega_i)|^{-1} \sum_{i=1}^{n_j} \int_{\mathscr{F}} \mu(\omega_j, \nu) E(P; \phi_i^j; \nu; x) \alpha_i^j(\nu) d\nu ,$$

see (3.2) in [9]. It is obvious that f belongs to $\mathcal{C}_{A}(G, \tau)$.

Now we shall prove that there exists a compactly supported function F(x) which satisfies $\mathcal{E}_A(F) = V$.

At first we shall change the line of the integral in (4.1) as figure 1,

where $\delta > 0$ is a sufficiently small real number. This change is valid from the facts that $\alpha_i^i(\nu)$ is an analytic function on \mathscr{F}_c and $\mu(\omega_i, \nu)$ is

also analytic on the domain;

$$\{\nu \in \mathscr{F}_c; |\mathrm{Im}(\nu)| < \delta\},\,$$

for a sufficiently small $\delta > 0$ (cf. Harish-Chandra [6] Theorem 25.1). Next we shall use the following expansion of the Eisenstein integral.

(4.3)
$$e^{\rho(\log(a))} E(P; \phi; \nu; a) = \sum_{s \in W} \Phi(s\nu; a) C_{P|P}(s; \nu) \phi(1)$$

for $a \in A^+$ and $\nu \in \Gamma'(c) \subset \mathscr{F}_c$, where $A^+ = \exp \alpha^+(\alpha^+)$ is the positive Weyl chamber of α) and

(4.4)
$$\Phi(\nu:a) = \sum_{\lambda \in L} \Gamma_{\lambda}((-1)^{1/2}\nu - \rho)e^{((-1)^{1/2}\nu - \lambda(\log(a)))}$$

(for notation see G. Warner [11] p. 289).

Then using the above expansion we have

$$\begin{split} (4.5) \quad f(a) &= e^{-\rho (\log(a))} \sum_{j=1}^m |W(\omega_j)|^{-1} \sum_{i=1}^{n_j} \int_{\Gamma} \mu(\omega_j, \, \nu) \sum_{s \in W} \varPhi(s\nu : \, a) C_{P|P}(s; \, \nu) \phi_i^j(1) \alpha_i^j(\nu) d\nu \\ &= e^{-\rho (\log(a))} \sum_{j=1}^m |W(\omega_j)|^{-1} \sum_{i=1}^{n_j} c^2 \\ &\qquad \times \left\{ \int_{\Gamma} \varPhi(\nu : \, a) C_{P|P}(1; \, \nu)^{*-1} \phi_i^j(1) \alpha_i^j(\nu) d\nu \right. \\ &\qquad \qquad + \int_{s\Gamma} \varPhi(\nu : \, a) C_{P|P}(\underline{s}; \, \underline{s}^{-1} \nu)^{*-1} \phi_i^j(1) \alpha_i^j(\underline{s}^{-1} \nu) d\nu \right\} \; , \end{split}$$

where \underline{s} is the non-trivial element in W and we used the following relation;

(cf. Harish-Chandra [6] Lemma 17.1).

Now we note that $C_{P|P}(s; s^{-1}\nu)^{*-1}(s \in W)$ and $\Phi(\nu; a)$ have no poles on the line $s \varUpsilon$ and moreover has only finite poles on D, where D is the upper domain of the line $s \varUpsilon$ (see O. Campoli [2] and G. Warner [11] Chap. 9.1). Therefore using these facts, we can give these poles suffixes as follows. Let $\nu_i^j(t)(1 \le t \le k_i^j)$ be the poles on D of $\Phi(\nu; a)C_{P|P}(1; \nu)^{*-1}\phi_i^j(1)$ and let $\nu_i^j(t)(k_i^j+1 \le t \le T_i^j)$ be the poles on D of $\Phi(\nu; a)C_{P|P}(\underline{s}; \underline{s}^{-1}\nu)^{*-1}\phi_i^j(1)$. Moreover let $m_i^j(t)$ be the order at $\nu_i^j(t)$ for $1 \le t \le T_i^j$.

Next we note that $C_{P|P}(s;\nu)$ and $\Phi(\nu;a)$ satisfy the following inequalities. Suppose that $\nu+(-1)^{1/2}\eta(\nu,\eta\in\mathscr{F})$ is sufficiently distant from the poles of the following functions. Then for any integer M, there exist constants c_M for which

$$(4.7) \qquad ||C_{P|P}(s;s^{-1}(
u+(-1)^{1/2}\eta))^{*-1}|| < c_{\scriptscriptstyle M}(1+|
u+(-1)^{1/2}\eta|)^{\scriptscriptstyle M} \quad ext{for } s \in W$$
 ,

$$(4.8) \qquad ||\Phi'(\nu+(-1)^{1/2}\eta;a)|| < c_{M}(1+|\nu+(-1)^{1/2}\eta|)^{M}$$

where $\Phi(\nu; a) = \Phi'(\nu; a)e^{(-1)^{1/2}\nu(\log(a))}$ (for these inequalities see O. Campoli [2]). Then since $\alpha_i^i(\nu)(1 \le i \le n_i, 1 \le j \le m)$ is an exponential type, we can change the integral line; $s Y \to \mathscr{F} + (-1)^{1/2} \eta$, where $s \in W$ as follows;

$$\begin{split} (4.9) \qquad f(a) = & e^{-\rho(\log(a))} \sum_{j=1}^{m} |W(\omega_{j})|^{-1} \sum_{i=1}^{n_{j}} c^{2} \\ & \times \left\{ \sum_{s \in W} \int_{\mathscr{S}} \varPhi(\nu + (-1)^{1/2} \eta; \, a) C_{P|P}(s; \, s^{-1}(\nu + (-1)^{1/2} \eta))^{s-1} \\ & \times \phi_{i}^{j}(1) \alpha_{i}^{j}(s^{-1}(\nu + (-1)^{1/2} \eta)) d\nu \right\} \\ & + \sum_{t=1}^{k_{i}^{j}} \operatorname{Res}_{\nu = \nu_{i}^{j}(t)} \varPhi(\nu; \, a) C_{P|P}(1; \, \nu)^{s-1} \phi_{i}^{j}(1) \alpha_{i}^{j}(\nu) \\ & + \sum_{t=k_{i}^{j}+1}^{T_{i}^{j}} \operatorname{Res}_{\nu = \nu_{i}^{j}(t)} \varPhi(\nu; \, a) C_{P|P}(\underline{s}; \, \underline{s}^{-1} \nu)^{s-1} \phi_{i}^{j}(1) \alpha_{i}^{j}(\underline{s}^{-1} \nu) \end{split} ,$$

where $\eta \in \mathscr{F}^+$ is sufficiently large and satisfies $|\eta| > |\operatorname{Im}(\nu_i^j(t))|$ for $1 \le t \le T_i^j$, $1 \le i \le n_j$, $1 \le j \le m$. Let $I_f(a)$ be the integral part of (4.9) and $R_f(a)$ be the residue part of (4.9). Then we can easily prove that for a sufficiently large $a \in A$, $I_f(a)$ must be 0 by the same method in the classical Paley-Wiener theorem on an Euclidean space. (Note that $\alpha_i^j(\nu)$ is an exponential type and (4.7), (4.8).) Thus, for a sufficiently large $a \in A^+$ we have

(4.10)
$$f(a) = R_f(a)$$
.

Now put $s_i^j(t) = \begin{cases} 1 & (1 \le t \le k_i^j) \\ \underline{s}^{-1} & (k_i^j + 1 \le t \le T_i^j) \end{cases}$ and let E_1, E_2, \cdots, E_7 be a maximal linearly independent subset of

$$(4.11) \quad \left\{ \frac{d^r}{d\nu^r} |_{\nu = \nu_i^j(t)} E(P; \phi_i^j; s_i^j(t)\nu; x); \ 0 \le r \le m_i^j(t) - 1, \ 1 \le t \le T_i^j , \\ 1 \le i \le n_j \text{ and } 1 \le j \le m \right\}.$$

Therefore we may assume that $E_p(1 \le p \le \gamma)$ can be written as,

(4.12)
$$E_{p}(x) = \frac{d^{r(p)}}{d\nu^{r(p)}} |_{\mathcal{V} = \mathcal{V}_{i(p)}^{j(p)}(t(p))} E(P: \phi_{i(p)}^{j(p)}: s_{i(p)}^{j(p)}(t(p)\nu): x)$$

for some $1 \leq j(p) \leq m$, $1 \leq i(p) \leq n_{j(p)}$, $1 \leq t(p) \leq T_{i(p)}^{j(p)}$ and $0 \leq r(p) \leq m_{i(p)}^{j(p)} - 1(1 \leq p \leq \gamma)$. For simplicity put $s_{i(p)}^{j(p)}(t(p)) = s(p)$ and $\nu_{i(p)}^{j(p)}(t(p)) = \nu(p)(1 \leq p \leq \gamma)$.

Then there exist $A(j, i, t, r; p) \in C$ for which

(4.13)
$$\frac{d^r}{dv^r}|_{v=v_i^j(t)}E(P:\phi_i^j:s_i^j(t)v:x) = \sum_{1 \le p \le r}A(j, i, t, r:p)E_p(x)$$

for all $1 \le j \le m$, $1 \le i \le n_j$, $1 \le t \le T_i^j$ and $0 \le r \le m_i^j(t) - 1$. However, since V belongs to $\mathcal{H}(\mathcal{F})_*^n$, each component of V has to satisfy the conditions as follows;

$$(4.14) \quad \frac{d^r}{d\nu^r}|_{\nu=\nu_i^j(t)} \alpha_i^j(s_i^j(t)\nu) = \sum_{1 \leq p \leq r} A(j, i, t, r; p) \frac{d^{r(p)}}{d\nu^{r(p)}}|_{\nu=\nu(p)} \alpha_{i(p)}^{j(p)}(s(p)\nu)$$

for all $1 \le j \le m$, $1 \le i \le n_j$, $1 \le t \le T_i^j$ and $0 \le r \le m_i^j(t) - 1$.

Here we note that $E_p(1 \le p \le \gamma)$ is a real analytic function on G for all $\nu \in \mathscr{F}_c$. Therefore we can choose compactly supported functions $h_q \in C_c^{\infty}(G, \tau)(1 \le q \le \gamma)$ which satisfy

$$(4.15) (h_q, E_p) = \delta_{qp} \text{for all } 1 \leq p, q \leq \gamma.$$

Now we put

$$(4.16) \quad \underline{G}(x) = f(x) - \sum_{1 \leq p \leq r} \frac{d^{r(p)}}{d\nu^{r(p)}} |_{\nu = \nu(p)} \alpha_{i(p)}^{j(p)}(s(p)\nu) h_{p}(x) \quad (x \in G).$$

Then we have for all $1 \le j \le m$, $1 \le i \le n_j$, $1 \le t \le T_i^j$ and $0 \le r \le m_i^j(t) - 1$,

$$\begin{array}{ll} (4.17) & \frac{d^r}{d\nu^r}|_{\nu=\nu_i^j(t)} \underline{\widehat{G}}(\phi_i^j,\,s_i^j(t)\nu) = \frac{d^r}{d\nu^r}|_{\nu=\nu_i^j(t)} \widehat{f}(\phi_i^j,\,s_i^j(t)\nu) \\ & - \sum\limits_{1 \leq p \leq r} \frac{d^{r(p)}}{d\nu^{r(p)}}|_{\nu=\nu(p)} \,\alpha_{i(p)}^{j(p)}(s(p)\nu) \,\frac{d^r}{d\nu^r}|_{\nu=\nu_i^j(t)} \widehat{h}_p(\phi_i^j,\,s_i^j(t)\nu) \ . \end{array}$$

By the way, using the relation (4.12) and (4.15), we have

$$(4.18) \qquad \frac{d^{r}}{d\nu^{r}}|_{\nu=\nu_{i}^{j}(t)}\hat{h}_{p}(\phi_{i}^{j},\,s_{i}^{j}(t)\nu) = \left(h_{p},\,\frac{d^{r}}{d\nu^{r}}|_{\nu=\nu_{i}^{j}(t)}E(P:\phi_{i}^{j}:s_{i}^{j}(t)\nu:.)\right) \\ = (h_{p},\,\sum_{1\leq q\leq \gamma}A(j,\,i,\,t,\,r:\,p)E_{q}) \\ = A(j,\,i,\,t,\,r:\,p)$$

for $1 \le p \le \gamma$. Therefore from the relation (4.14) and the fact that $\hat{f}(\phi_i^j, \nu) = \alpha_i^j(\nu)$ (see §3 (iii)),

$$(4.19) \qquad \frac{d^r}{d\nu^r}|_{\nu=\nu_i^j(t)} \underline{\widehat{G}}(\phi_i^j, s_i^j(t)\nu) = 0 \quad \text{for all } j, i, t \text{ and } r,$$

i.e., $\hat{\underline{G}}(\phi_i^j, s_i^j(t)\nu)$ has zero of $m_i^j(t)$ -th order at $s_i^j(t)\nu$ for all $1 \le j \le m$,

 $1 \le i \le n_j$, $1 \le t \le T_i^j$. Now for an arbitrary function g in $\mathscr{C}(G, \tau)$, we put $g' = \mathscr{C}_A^{-1}(\mathscr{C}_A(g))$ and $g^\circ = g - g'$. Then from Theorem 1 it is obvious that g' belongs to $\mathscr{C}_A(G, \tau)$ and g° to $\mathscr{C}(G, \tau)$. Here we apply the preceding argument to G instead of f. Thus, we obtain

(4.20)
$$G'(a) = I_{G'}(a) + R_{G'}(a)$$
 for $a \in A^+$.

But, here we note that $\hat{\underline{G}} = \hat{\underline{G}}'$ and (4.19). Then we can easily prove that

$$R_{\underline{a}'}(a)\!=\!0 \quad ext{for} \quad a\in A^+$$
 ,

and moreover for a sufficiently large $a \in A^+$ we have $\underline{G}'(a) = 0$ (see (4.10)). Therefore using the Cartan decomposition; $G = K \cdot CL(A^+) \cdot K$ and the fact that \underline{G}' is a τ -spherical function on G, we can prove that \underline{G}' has a compact support, i.e.,

$$(4.22) f(x) - \sum_{1 \le p \le \tau} C(p) h'_p(x) \in C_o^{\infty}(G, \tau)$$

(note $\hat{f}=\hat{f}'$), where $C(p)=d^{r(p)}/d\nu^{r(p)}|_{\nu=\nu(p)}\alpha^{j(p)}_{i(p)}(s(p)\nu)(1\leq p\leq \gamma)$. Now we put $F(x)=f(x)+\sum_{1\leq p\leq 7}C(p)h^{\circ}_{p}(x)(x\in G)$. Then it is obvious that

$$\mathscr{C}_{A}(F) = \mathscr{C}_{A}(f) = V,$$

and moreover $F \in C_c^{\infty}(G, \tau)$. Here we used (4.22) and

$$\begin{aligned} F(x) = & f(x) + \sum_{1 \leq p \leq \gamma} C(p) h_p(x) - \sum_{1 \leq p \leq \gamma} C(p) h'_p(x) \\ = & \{ f(x) - \sum_{1 \leq p \leq \gamma} C(p) h'_p(x) \} + \sum_{1 \leq p \leq \gamma} C(p) h_p(x) \quad (x \in G) \ . \end{aligned}$$

Thus F is the desired function on G. This completes the proof of Theorem 2.

REMARK 3. Using Theorem 2 and its proof, we obtained Paley-Wiener type theorem on $\mathcal{C}(G)$ and some relation between an imbedding of the discrete series for G and singularities of $\Phi(\nu: a)C_{P|P}(1; \nu)^{*-1}\phi_i^i(1)$ We shall describe these results in a next article.

References

- [1] J. ARTHUR, Harmonic analysis of tempered distributions on semisimple Lie groups of real rank 1, Thesis, Yale Univ., 1970.
- [2] O. CAMPOLI, The complex Fourier transform for rank-1 semisimple Lie groups, Thesis, Rutgers Univ., 1977.
- [3] R. GANGOLLI, On the Plancherel formula and Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math., 93 (2) (1971), 150-165.
- [4] HARISH-CHANDRA, Harmonic analysis on real reductive groups I. J. Functional Analysis,

19 (1975), 104-204.

- [5] HARISH-CHANDRA, Harmonic analysis on real reductive groups II, Invent Math., 36 (1976), 1-55.
- [6] Harish-Chandra, Harmonic analysis on real reductive groups III, Ann. of Math., 104 (1976), 117-201.
- [7] S. Helgason, An analogue of Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann., 165 (1965), 297-308.
- [8] S. Helgason, A duality for symmetric spaces with applications to group representations II, Advances in Math., 22 (1976), 187-219.
- [9] T. KAWAZOE, Some characterization of the Schwartz space and an analogue of Paley-Wiener type theorem on rank 1 semisimple Lie groups, Proc. Japan Acad., 55 (1979), 205-208.
- [10] V. S. VARADARAJAN, Harmonic analysis on real reductive groups, Lecture Notes in Math., 576, Springer-Verlag, 1977.
- [11] G. WARNER, Harmonic Analysis on Semisimple Lie Groups II, Springer-Verlag, 1972.

Present Address:
DEPARTMENT OF MATHEMATICS
KEIO UNIVERITY
HIYOSHI-CHO, KOHOKU-KU,
YOKOHAMA 223