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In the previous paper [9], we have stated some results on Paley-
Wiener type theorems on semisimple Lie groups without proof. In this
paper we shall give detailed proofs of those theorems.

§1. Notation and preliminaries.

Let G be a real reductive Lie group with compact center. We as-
sume that G is in class 57 (cf. V.S. Varadarajan [10]). Let K be a
maximal compact subgroup of G. Fix a Cartan involution 8 on G in-
duced by K. Let P be a parabolic subgroup of G, and P=MAN be the
associated Langlands decomposition of P. Then M is a reductive group
and is in class 527, A is a vector group, which we call the split com-
ponent of P, and N is the unipotent radical of P. Moreover if P is
cuspidal, i.e., rank(M)=rank(K,) (Ky=K NM), then there exists a com-
pact Cartan subgroup 7' of M and H=TA is a Cartan subgroup of G.
Now we denote Lie algebras by small German letters and for any real
vector space V, we denote by V, the complex vector space of V and by
V* the dual space of V. Then p=m-+a-+n is the parabolic subalgebra
of g corresponding to P. In this case, A=expa, N=expn and P is the
normalizer of p in G. Let .# be the dual space of a, i.e., F =a*.

Let t=(z,, 7,) be a unitary double representation of K on a finite
dimensional Hilbert space V. Here we assume that V satisfies the
conditions in Harish-Chandra [6] §8. Then we define the V-valued
Schwartz space & (G, V) and the subspace of z-spherical functions
(G, t) as usual. Moreover we denote by °&(G,z) the space of
z-spherical cusp forms on G. Next let z,, be a representation of K, on
V which is the restriction of 7 to K,. Then we can also define
€M, V), €M,y and °E (M, t,) respectively.
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Let &(G) be the set of equivalence classes of irreducible unitary
representations of G and &*(G) be the subset of £ (G) which consists
of equivalence classes of square-integrable representations of G, i.e., the
discrete series of G. For other Lie groups we shall define & () and
&* ) in the same way.

Now we fix a parabolic subgroup P=MAN of G and put L=
°G (M, 7,). Then dim L<o. Let 57 (we &*M)) be the smallest closed
subspace of L*-space on M containing all matrix coefficients of @. Then
it is well-known that L is an orthogonal sum of L(w) (w € £*M)), where
Lw)=L N (54,QV). Thus, L can be decomposed as
(1.1) L= @ D L(sw)),

1<5sm seW—W(w,-)
where W= W(A) is the Weyl group of (G, A) and W(w;)={se W: 8W; =w,}
for w;e &*(M) (1=j<m). Here we denote an orthonormal basis of L(w;)
as follows;

(1.2) {pi; 1=i=mn;}, where n;=dimL(w; (1<jsm).

From now on, we shall define a Fourier transform on (G, 7). First
of all we shall regard .# as an Euclidean space and define the
Schwartz space 2°(% ) on it as usual. Next for feZ(G, 7) and ¢ie
° (M, ty,) we put

(1.3) F@h, v)=(")7'(f, BP: ¢i: 1)) (ve.F)

(for notation see Harish-Chandra [6], §2 and §11). Then from the re-
sults in [5] we obtain that f(¢i, v) belongs to & (F) for fixed ¢i(l=<i<n,,
l=j=m). Then we define a Fourier transform &% (G, 7)—
G (F )" (m=<ci<aN;) a8 follows;

(1.4) guN=(&), &), -+, Eu(f) for fe& (@G, 1),

where £,(f)=(f(g{, v), £(g}, ), - - -, F(¢%, )1 =<j=m). For simplicity put
e.=¢i{, where k=3 ,.; n,+1(1=<k=n).
Let V be an arbitrary element in 2°(%)*. Then V can be written
as; V=(V, V, -+, V,.) where V; is an element in &(& )" for 1<j<m.
Let (& )% be the closed subspace of & (F )" consisting of all
V=(V, V, ---, V,) which satisfy the following relations;

(1.5) Vi(s™v)'="Cpp(s; s7w) V;(v)* for all sec W(w;) and ve F (1<j<m)

(for the notation, see T. Kawazoe [9]). Moreover let S# ()% be the
subspace of (% )% consisting of V whose each component extends to
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a holomorphic function on .&#, which is an exponential type and satisfies
the following conditions;

if there exists a relation,

2 X XX AU, 7')

15jSm 15t 1stsTd 1sesn]
(1.6) where A(7,1%,t, r)eC and v{(t)eﬁ‘ for all 1<i<m;, 1<j<m, then
2 2 XX AU, |

1SjsSm 15isa; 1stsTJ 1Srsu’

where V;(v)=(ai(), ai(»), -- -, af,,.(v)) for 1<j=<m.

—— =i B(P: ¢i: v: 2)=0 ,

r

|v=y‘:(t)a£(v) =0,

§2. Main results.

Let P, P,, ---, P, be a complete set of cuspidal parabolic subgroups
- of G, no two of which are associate and P,=M,A,N, be the correspond-
ing Langlands decomposition of P,1<i<7r). Now we denote by
&G, 1)=& (G, T)A=<i=7) the closed subspace of (G, ) which consists
of all f satisfying f@~0 for every parabolic subgroup Q@=MAN of G
such that A is not conjugate to A, under K. When we apply the pre-
ceding argument to P,, we shall use the notation such that &,, .#; and
n'® instead of £, # and n for P respectively.

THEOREM 1. If P, is mot @G, t_hen the mapping &, 18 ab homeo-
morphism of FG, T) onto & (F; ).

THEOREM 2. Assume that the real rank of G is equal to one. Then
an element V in & (F )% belongs to SZ2°(F )% if and only if there exists
a function f in C (G, 7) such that £,(f)=V, where P=MAN 1is the
minimal parabolic subgroup of G.

REMARK 1. From the proof of Theorem 1 (see §3) we can easﬂy
prove that

gA;(f) =0

for all f in &,,(G, 7)(¢#J, 1=1%, j=7). Therefore using the decomposition
of (G, 7) (see T. Kawazoe [9] (4.5)), we can regard &,, as the mapping
of (G, ) onto Z(F;)%”. We shall denote this extension by the same
notation.

REMARK 2. Noting the proof of the surjection of Theorem 1 (see
§ 8 (iii)), we can easily obtain the inverse mapping of &, (1=k=7) as
follows,
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ERNELMN=5 W) S| _p@;, »EP: gi: v: 0)F (41, v)dv
for feZ (@G, 7).
§3. Proof of Theorem 1.

Assume that P, is not equal to G. For simplicity we put P=P, and
moreover for the other notations we shall omit the suffix; 1.

(i) First of all we shall show that &,(f) belongs to (&) for
all fe&(G, 7). Now let f be an arbitrary element in (G, ) and we
shall write &,(f) as follows;

(3.1) EAN=(&), &), -+, Eu(f))

see notation for (1.4). Then from the definition of &, and &, it is
quite obvious that &;(f) belongs to & (& )* for 1<j<m and moreover
&.(f) belongs to (& )*. Therefore in order to prove that ,(f)e
& (F )y it is enough to prove that &,(f) satisfies the following relation;

3.2) &,(f)87) ="Cpp(s; 370) &;(f)(»)* for se W(w;) and ve F (1=j=m)

(for the notation, see (4.2) in [9]).
Here we note that the Eisenstein integral satisfies the relation as
follows;

(3.3) E(P: ¢: s7'v: ) =E(P: °Cp p(8; 87'v)¢: v: x)

for peL,ve % and sc W (cf. Harish-Chandra [6] Lemma 17.2) and
moreover °Cpp(8; 87'v)p belongs to L(w,;) for ¢e L(w;) and se W(w,;)
(1=j=m). Therefore, using these facts and the definition of the Fourier
transform (1.3), we can easily prove that &;(f) satisfies (3.2) for 1<j<m.
Thus, we obtain the desired results.

(ii) Next we shall prove that the mapping &,: Z,(G, ©)—>&(F);
is injective. Now let f be an element in Z%(G, 7) such that £,(f)=0.
Then from the definition of &,(f), we have,

(3.4) (Flew »), Flew v), -+, Flew ¥))=0
ie., (f, B(P: e;:v:.))=0 for all 1=i<n and ve ZF .

Since e¢,(1=1<n) is an orthogonal basis of @,c;c. L(®;), the above rela-
tion is valid for all e@,cjcm L(w;). But, here we note that
{°Crip(8; 87W)¢i; 1<i<m;} is an orthogonal basis of L(sw;)(se W) and

(8.5) (f, E(P: °Cpip(8; s7')gi: v:.))=(f, B(P: ¢i: s7:.))=0 (e .F)
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by (8.8) and (8.4). Therefore from (1.1) in §1 we can obtain
(3.6) (f, E(P: 4:v:.))=0 for all eL and ve.# .

Then f®~0 (cf. Harish-Chandra {4] §20). Then from the fact that f
belongs to (G, ), we can easily obtain that " ~0 for every parabolic
subgroup P'=M’A’N’' of G such that A’ is not conjugate to A. There-
fore we have, f'‘®~0 for all parabolic subgroups of G. Thus, f must
be 0, i.e., the mapping &, is injective (cf. Harish-Chandra [4] Lemma
20.1).

(iii) Now we shall prove that the mapping &,: Z.(G, 7)—&(F )
is surjective. Let V be an arbitrary element in (% )%. Then V can
be written as follows;

(3.7) V=(V, Vy -+, V)

where V; belongs to (% )"/, which denotes (ai(»), ai(v), - - -, ai.(v)) and
moreover satisfies the relation (3.2) in (i) with respect to V;1<j=<m).
From now on we shall construct a function f in 2°,(G, ) such that

gA(f ) =V.
First of all we shall define a function f as follows;

(3.8) f@) =3 W@)I" S @i 5 @ed

(for the notation, see T. Kawazoe [9] (3.2)). Then it is obvious that f
belongs to #°,(G, ) (see Harish-Chandra [6] Lemma 26.1). We shall cal-
culate the entry of &,(f) which corresponds to ¢?, i.e., f (g7, v) for
1=9=m,, 1=p=<m. Here we shall use the same notations and calcula-
tions in Harish-Chandra [6] §§26 and 27.

Pt v)=(@0)7(f, BP: g: v:.))
=@ (B W@ 3 @ieh,.), BP: 1))
=) 35 W (@)™ 3% @i )7, 8
=3 W@ 5 S, i) Crinls; s, 47) -

Here we recall that °Cpp(s;s™'v) is an unitary operator which maps
L(w) onto L(sw), and moreover L(w) is orthogonal to L(sw) for se
W— W(w;). Therefore from the decomposition of L (see (1.1) in §1),
we can obtain,
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P V=IW@AI™S, 5 ale™)(Crirla; )81, 1)

=ag(v) , p

here we used the relation (8.2). This proves that #,(f)=7V, i.e., the
mapping &, is surjective.

Therefore from (i), (ii) and (iii) we can prove that the mapping &.:
Z. G, T)—>F(F )% is bijective. However from the results of Harish-
Chandra [5] we can easily obtain that &, is homeomorphism of &,(G, 7)
onto (& )%. This completes the proof of Theorem 1, and moreover
Remark 1 in [9].

§4. Proof of Theorem 2.

Let notation be as above and assume that the real rank of G is
one.

(i) First of all we shall prove the necessary condition. Let f be
in C2(G, ) and put V=,(f). Then we can prove that V belongs to
& (F)% in the same way in (i) of §3. Moreover using the fact that
f® is in C*(M, 7,) Q& (F ), we can easily obtain that each component
of V can be extended to a holomorphic function on .#, which is an ex-
ponential type and satisfies the condition (1.6) in §1. Thus, we obtain
that &,(f) belongs to 52 (% )%.

(ii) Next we shall prove the sufficient condition. Let V be an
arbitrary element in 52 (% )% and assume that V has the form of (3.7).
First of all we shall define the function f by (3.8), i.e.,

(.1) @) =3 W @S| @i, WEP: gt v: i)y ,

see (3.2) in [9]. It is obvious that f belongs to & ,(G, 7).

Now we shall prove that there exists a compactly supported function
F(x) which satisfies &,(F)=V.

At first we shall change the line of the integral in (4.1) as figure 1,

(—1*
[ ]
_—m_—r
*0
Ficure 1

where >0 is a sufficiently small real number. This change is valid
from the facts that ai(v) is an analytic function on #, and w;, v) is
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also analytic on the domain;
(4.2) {ve 7, Im(v)|<é},

for a sufficiently small 6>0 (cf. Harish-Chandra [6] Theorem 25.1).
Next we shall use the following expansion of the Eisenstein integral.

(4.3) e OB F(P: g 1 q) = %@(s}).: a)Cp p(8; v)p(1)

for ac A* and vel'(c)c.~#,, where A+t=expat(at is the positive Weyl
chamber of a) and

4.4 O: @)= 3, Ty((— 1)y — p)ett—"/»~itoxten
A€ L

(for notation see G. Warner [11] p. 289).
Then using the above expansion we have

g

5 flay=ermw 3 W)™ 3 | @, 9) 3 060 0)Coinle; wpiDi)A

=

= g~ Prlog(a)) i |W(Cl)j)[—1§ c?
x{ |, 201 @)Crin(1s )7 g0 ai()
+| 00 Crnles s siaie D)

where s is the non-trivial element in W and we used the following re-
lation;

4.6) ptw, v)Cp p(8; V)*Cpip(s; v)=c* for se W and vel

(cf. Harish-Chandra [6] Lemma 17.1) .

Now we note that C, (s; sv)* '(se W) and @(v: a) have no poles on the
line 87 and moreover has only finite poles on D, where D is the upper
domain of the line s (see 0. Campoli [2] and G. Warner [11] Chap. 9.1).
Therefore using these facts, we can give these poles suffixes as follows.
Let vi(t)(1=<t=<kj) be the poles on D of @(: a)Cpr(1;v)* '¢i(1) and let
vi(t)(ki+1=<t<Ti) be the poles on D of D(v: a)Cyp»(s; s7v)* '¢i(1). More-
over let mi(t) be the order at vi(¢) for 1<t<Ti.

Next we note that C, .(s;v) and ®(v:a) satisfy the following in-
equalities. Suppose that v+(—1)V)(», » € .~ ) is sufficiently distant from
the poles of the following functions. Then for any integer M, there
exist constants ¢, for which
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4.7 ||Cpip(s; s @+ (=1 N* | <ew@+|v+(—D)*p)* for se W,
4.8) ||+ (—=1)"n: a)||<ex(d+|v+(—1)"n])*

where O(v: a)=90'(v: a)et™"/*deeed (for these inequalities see O. Campoli
[2]). Then since ai(r)(1<i<mn;, 1=<j=m) is an exponential type, we can
change the integral line; sY—. % +(—1)*), where s€ W as follows;

(4-9) f(a)=e—0(10g(a)) g‘l lW(wj)l—'l gl c?
X {Z Sf@(v“"('—l)lﬁy}. a)Crp(8; 87 (W4 (— 1)1,277))*__1

8 €

X gi(Dai(s™ v+ (— 1))y}

+t§ Resv=»{:u) O(v: a)Cpp(1; v)*™ ' (v)

77
+ 2; Res, iy ®(v: a)Crip(s; s79)* 'pi(Lai(s™) ,
:=ki+1
where ne. & *+ is sufficiently large and satisfies [7{>|Im (i(t))| for
1<t<Ti 1<i<n; 1<j<m. Let I;(a) be the integral part of (4.9) and
R;(a) be the residue part of (4.9). Then we can easily prove that for a
sufficiently large a € A, I;(a) must be 0 by the same method in the clas-
sical Paley-Wiener theorem on an Euclidean space. (Note that aj(v) is an

exponential type and (4.7), (4.8).) Thus, for a sufficiently large ac A*
we have

(4.10) fla)=Rs(a) .

Now put si(t)= {1_1 %,S_i_tf Sk;)s i) and let F, E,, ---, B, be a max-
imal linearly independent subset of

(4.11) {%T[D:vg(t)E(P: i sit)y: @); 0=r=mit)—1, 1<t<Ti,
1<i<m; and 1§j§m} .

Therefore we may assume that E,(1<p=v) can be written as,

4.12) B, (x)= d i E(P: ¢i): siBt(@)): @)

dor® [p=piBwm

for some 1=j(p)=m, 1=<i(D)Sn;p, 1StP)=Ti and 0=r(p)=mij—

i (p)

1(1<p=7). For simplicity put siZ)(t(p))=s(p) and i (¢(P))=v(P)A1=P=").
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Then there exist A(J, 7, t, r: p) € C for which

ar B(P: ¢i: siit: )= 3, A(, i, t, r: B)E,(®)

(4.13) dor | v=vi(t) 1<p=r

for all 1<j<m,15i<n;, 1St<Tj and 0=r=mj(t)—1. However, since
V belongs to S#° (& )%, each component of V has to satisfy the condi-
tions as follows;

dr r(p)

(4.14) o7 |v=pi(t) ai(s? (t)y)-— Z A(J’ T, T, 7 p) pro | y=v(Dp)

i (s(p)»)

for all 1=<j<m, 1=51=<m;, 1=tsT{ and 0=r=mi(t)—1. :
Here we note that E,(1<p=v) is a real analytic function on G for

all ve . &#,. Therefore we can choose compactly supported functions
h,€ CS(G, T)(1=q=~) which satisfy

(4.15) (b, E,)=0,, for all 1<p, q<v.

Now we put

@16 G@=f@)- 35 L o dlBemph@ @e6).

Then we have for all 1<j<m, 1<i<m,;, 1=t<T? and 0=r=mi(t)—1,

dr 5 ;
_d")_,'] ) =”.‘l(t)Q(¢ S,;(t)])) = l Y= v:(t)f(sﬁh 8z(t)’)>

dr(p)
- ISngr W I Y= V(p) ,,(p)(S(p)U) |1) U’(t) P(¢n si(t)v)

(4.17)

By the way, using the relation (4.12) and (4.15), we have

ar P~ od g _ ar , e g e (FVee
@18) Lo Bl siew)= (R L i) B o HOTSY

:(hp; 1qusrA(j’ 7:: L, r: p)Eq)
:A(jy 7:9 t, r: p)

for 1=<p=<v. Therefore from the relation (4.14) and the fact that
f(#5, v)=ai(v) (see §3 (iii)),

dr Alai i _ .
(4.19) —o lv=vi(t) G(#i, si(t)v)=0 for all 5,4,¢t and »,

i.e., G4, si(t)y) has zero of mi(t)-th order at si(f)y for all 1<j=m,
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1<i=<m;, 1=t<Ti. Now for an arbitrary function g in (G, 7), we put
0= (Z.(9) and g°=g—g’. Then from Theorem 1 it is obvious that
g’ belongs to Z,(G, ) and g° to °& (G, 7). Here we apply the preceding
argument to G instead of f. Thus, we obtain

(4.20) G'(a)=Is(a)+Rg(a) for aecAt.
But, here we note that é =Q’ and (4.19). Then we can easily prove that
(4.21) Ry(a)=0 for acAt,

and moreover for a sufficiently large a € A* we have G'(a)=0 (see (4.10)).
Therefore using the Cartan decomposition; G=K-CL(A*)-K and the fact
that G’ is a 7-spherical function on G, we can prove that G’ has a com-
pact support, i.e.,

(4.22) fl@)— SEp‘.éTC'(ZD)h;(w) e Cx(G, 7)

(note f=f"), where C(p)=d"®[dv"® -, @i (s(PV)A=p=<7). Now we put
Fx)=f(x)+ << C(P)hy(x)(x € G). Then it is obvious that

(4.23) SAF)=&(NH)=V,
and moreover F e C>(G, 7). Here we used (4.22) and
(4.24) F(z)=f(z) +1SPZS.T C(p)h,(x) —lgé rC(p)h;(x)

=(f@)— 35 COM@I+ 3, Coh,@) @e6).

Thus F is the desired function on G. This completes the proof of
Theorem 2.

REMARK 3. Using Theorem 2 and its proof, we obtained Paley-
Wiener type theorem on & (G) and some relation between an imbedding
of the discrete series for G and singularities of @(v: a)Cp r(1; v)*16i(1)
We shall deseribe these results in a next article.

References

[1] J. ARTHUR, Harmonic analysis of tempered distributions on semisimple Lie groups of real
rank 1, Thesis, Yale Univ., 1970.

[2] O. CampoLl, The complex Fourier transform for rank-1 semisimple Lie groups, Thesis,
Rutgers Univ., 1977.

[3] R. GaNGoLLI, On the Plancherel formula and Paley-Wiener theorem for spherical func-
tions on semisimple Lie groups, Ann. of Math., 93 (2) (1971), 150-165.

[4] Harise-CHANDRA, Harmonic analysis on real reductive groups I, J. Functional Analysis,



PALEY-WIENER THEOREM I 407

19 (1975), 104-204.

[5] HaRrisH-CHANDRA, Harmonic analysis on real reductive groups II, Invent Math., 36
(1976), 1-55.

[6] HarISH-CHANDRA, Harmonic analysis on real reductive groups III, Ann. of Math., 104
(1976), 117-201.

[7] S. HELGASON, An analogue of Paley-Wiener theorem for the Fourier transform on
certain symmetric spaces, Math. Ann., 165 (1965), 297-308.

[8] S. HELGASON, A duality for symmetric spaces with applications to group representations
II, Advances in Math., 22 (1976), 187-219.

[9] T. KAWAZOE, Some characterization of the Schwartz space and an analogue of Paley-

Wiener type theorem on rank 1 semisimple Lie groups, Proc. Japan Acad., 55
(1979), 205-208.

[10] V. S. VARADARAJAN, Harmonic analysis on real reductive groups, Lecture Notes in Math.,
576, Springer-Verlag, 1977.

[11] G. WARNER, Harmonic Analysis on Semisimple Lie Groups II, Springer-Verlag, 1972.

Present Address:
DEPARTMENT OF MATHEMATICS
KE10 UNIVERITY
Hrvosni-cEo, KOHOKU-KU,
YoroHaMA 223



