Eigenvalues of the Laplacian of Warped Product

Kazumi TSUKADA

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

Let (M, g) be a compact connected Riemannian manifold with metric tensor g and \triangle be the Laplacian acting on differentiable functions on M, that is,

$$\triangle \varphi = -\sum g^{ji} \nabla_{i} \nabla_{i} \varphi$$
.

Let Spec $(M, g) = \{0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots\}$ be the set of eigenvalues of \triangle , where each eigenvalue is repeated as many times as its multiplicity.

Let (B, g) and (F, h) be Riemannian manifolds and f > 0 a differentiable function on B. Consider the product manifold $B \times F$ with its projections $\pi \colon B \times F \to B$ and $\eta \colon B \times F \to F$. The warped product $M = B \times_f F$ is the manifold $B \times F$ furnished with the Riemannian structure \overline{g} such that

$$\overline{g}(X, Y) = g(\pi_* X, \pi_* Y) + f^2(\pi m)h(\eta_* X, \eta_* Y)$$

for tangent vectors X, $Y \in T_m M$. If $f \equiv 1$, then $B \times_f F$ is nothing but the ordinary Riemannian product.

Making use of the warped product, N. Ejiri [3] constructed examples of compact, connected, non-flat and irreducible Riemannian manifolds which are isospectral but non-isometric. He proves that if $\operatorname{Spec}(M, h) = \operatorname{Spec}(M', h')$ then $\operatorname{Spec}(B \times_f M) = \operatorname{Spec}(B \times_f M')$, where f is a positive differentiable function on B.

In this paper we show the converse.

THEOREM 1. Let (B, g), (M, h), and (M', h') be compact connected Riemannian manifolds and f>0 a differentiable function on B. If $\operatorname{Spec}(B \times_f M) = \operatorname{Spec}(B \times_f M')$ then $\operatorname{Spec}(M, h) = \operatorname{Spec}(M', h')$.

Let (B, g) and (F, h) be compact connected Riemannian manifolds and f>0 a differentiable function on B. When we study the spectrum of

the warped product $B \times_f F$, we introduce a differential operator $L_{(f;\lambda_i)}$ acting on differentiable functions on B, which is defined by $L_{(f;\lambda_i)} = \triangle^B - (n/f) \operatorname{grad} f + \lambda_i/f^2$, where $n = \dim F$ and λ_i is the i-th eigenvalue of the Laplacian of (F, h) (cf. Ejiri [3] or section 1). We denote the least eigenvalue of the operator $L_{(f;\lambda_i)}$ by $\mu_i(f;\lambda_i)$. About the relation between $\mu_i(f;\lambda_i)$ and $\mu_i(1;\lambda_i)$, we have the following result.

THEOREM 2.

$$\mu_1(f; \lambda_i) || f ||_n^2 \leq \mu_1(1; \lambda_i) || 1 ||_n^2 = \lambda_i || 1 ||_n^2$$

and the equality holds if and only if f is constant, where

$$||f||_n = \left\{ \int_B f^n dV_g \right\}^{1/n}$$
.

It is interesting to compare the least positive eigenvalue of the warped product $B \times_f F$ with that of the ordinary Riemannian product $B \times F$. Using Theorem 2, we obtain the following result.

THEOREM 3. Assume that the least positive eigenvalue of B is not less than that of F. Then,

$$\lambda_1(f) \operatorname{Vol}(f)^{2/n} \leq \lambda_1(1) \operatorname{Vol}(1)^{2/n}$$

and the equality holds only if f is constant, where $n = \dim F$ and $\lambda_1(f)$ and $\operatorname{Vol}(f)$ denote the least positive eigenvalue and the volume of $B \times_f F$, respectively.

REMARK. Theorem 3 implies that the ordinary Riemannian product is distinguished by its least positive eigenvalue in the class of warped products. In fact, if the assumption in Theorem 3 is satisfied and $\operatorname{Vol}(f) = \operatorname{Vol}(1)$, then $\lambda_1(f) \leq \lambda_1(1)$ and the equality holds if and only if $f \equiv 1$.

The author wishes to thank Professor K. Ogiue for his many valuable comments. He also thanks Mr. N. Ejiri for his helpful suggestions.

§1. Spectrum of a warped product—Review of the Ejiri's Theorem.

We review some results about the spectrum of a warped product which N. Ejiri showed in [3].

Let (B, g) (resp. (F, h)) be an m(resp. n)-dimensional compact connected Riemannian manifold and f be a positive differentiable function on B. By $C^{\infty}(B)$ we denote the space of differentiable functions on

B with the scalar product $\langle \varphi, \psi \rangle = \int_B f^* \varphi \psi dV_g$. For a non-negative parameter λ , we define a differential operator $L_{(f;\lambda)}$ acting on $C^{\infty}(B)$ by $L_{(f;\lambda)} = \triangle^B - (n/f) \operatorname{grad} f + \lambda/f^2$, where \triangle^B is the Laplacian of (B,g) and $\operatorname{grad} f$ is the gradient of f introduced by the metric tensor g. Then $L_{(f;\lambda)}$ becomes a self-adjoint differential operator of $L^2(B)$ ($\supset C^{\infty}(B)$). So $L_{(f;\lambda)}$ has a discrete spectrum with finite multiplicities, which we denote by $\operatorname{Spec}(L_{(f;\lambda)})$.

About the spectrum of the warped product, N. Ejiri showed that $\operatorname{Spec}(B \times_f F) = \sum_{i=0}^{\infty} \operatorname{Spec}(L_{(f;\lambda_i)})$, where $\lambda_i \in \operatorname{Spec}(F, h)$.

§2. Proof of Theorem 1.

We use the same notations as in section 1. We denote the least eigenvalue of the operator $L_{(f;\lambda)}$ introduced by the warped product $B \times_f F$ by $\mu_1(f;\lambda)$.

LEMMA 1. If $0 \le \lambda \le \lambda'$, then $\mu_1(f; \lambda) \le \mu_1(f; \lambda')$. The equality holds if and only if $\lambda = \lambda'$.

PROOF. We apply the minimum principle to the self-adjoint differential operator $L_{(f;\lambda)}$.

For any non-zero differentiable function $\varphi \in C^{\infty}(B)$,

$$\mu_{\scriptscriptstyle 1}(f;\lambda) {\le} {\langle L_{\scriptscriptstyle (f;\lambda)}arphi,\,arphi
angle \over \langle arphi,\,arphi
angle}$$
 ,

and the equality holds if and only if $L_{(f;\lambda)}\varphi = \mu_1(f;\lambda)\varphi$. Using the formula

$$\int_{B} riangle^{B} \! arphi \cdot \psi d \, V_{g} \! = \! \int_{B} (darphi \, | \, d\psi) d \, V_{g}$$
 ,

we have

$$\begin{split} \int_{B} f^{n} \triangle^{B} \mathcal{P} \cdot \mathcal{P} d\, V_{g} &= \int_{B} (d \mathcal{P} \, | \, d (f^{n} \mathcal{P})) d\, V_{g} \\ &= \int_{B} f^{n} (d \mathcal{P} \, | \, d \mathcal{P}) d\, V_{g} + \int_{B} n f^{n-1} \mathcal{P} (d f \, | \, d \mathcal{P}) d\, V_{g} \\ &= \int_{B} f^{n} (d \mathcal{P} \, | \, d \mathcal{P}) d\, V_{g} + \int_{B} n f^{n-1} \mathcal{P} (\mathbf{grad} \, f) \mathcal{P} d\, V_{g} \, \, , \end{split}$$

where $(d\varphi | d\psi) = g^{ji}\varphi_j\psi_i$. Therefore

$$\begin{split} \langle L_{^{(f;\lambda)}} \varphi, \varphi \rangle = & \int_{\mathcal{B}} f^{\textit{n}} (\triangle^{\textit{B}} \varphi - (\textit{n}/f) (\textit{grad } f) \varphi + (\lambda/f^{\textit{2}}) \varphi) \varphi d \, V_{\textit{g}} \\ = & \int_{\mathcal{B}} f^{\textit{n}} \triangle^{\textit{B}} \varphi \cdot \varphi d \, V_{\textit{g}} - \int_{\mathcal{B}} \textit{n} f^{\textit{n}-1} \varphi (\textit{grad } f) \varphi d \, V_{\textit{g}} \end{split}$$

$$egin{align} &+\lambda\int_B f^{n-2}arphi^2d\,V_g\ =&\int_B f^n(darphi\,|\,darphi)d\,V_g +\lambda\int_B f^{n-2}arphi^2d\,V_g\;. \end{gathered}$$

Let $\varphi \in C^{\infty}(B)$ be an eigenfunction of the operator $L_{(f;\lambda')}$ with the least eigenvalue, that is, $L_{(f;\lambda')}\varphi = \mu_{i}(f;\lambda')\varphi$. Then

$$egin{aligned} &\mu_{1}(f;\lambda) \leqq \langle L_{(f;\lambda)}arphi,\,arphi
angle / \langle arphi,\,arphi
angle \\ &= \Bigl\{ \!\! \int_{B} f^{n}(darphi | darphi) d\,V_{g} \! + \! \lambda \int_{B} f^{n-2}arphi^{2} d\,V_{g} \!\! \Bigr\} \! \Big/ \langle arphi,\,arphi
angle \\ &\leqq \Bigl\{ \!\! \int_{B} f^{n}(darphi | darphi) d\,V_{g} \! + \! \lambda' \int_{B} f^{n-2}arphi^{2} d\,V_{g} \!\! \Bigr\} \! \Big/ \langle arphi,\,arphi
angle \\ &= \langle L_{(f;\lambda')}arphi,\,arphi
angle / \langle arphi,\,arphi
angle \\ &= \mu_{1}(f;\lambda') \;. \end{aligned}$$

The equality implies that $\lambda = \lambda'$.

REMARK. Let λ_i be the *i*-th eigenvalue of the Laplacian of (F, h). The least eigenvalue of $L_{(f;\lambda_0)}$ is 0 and its eigenfunction is constant. The least eigenvalue of $L_{(f;\lambda_1)}$ is strictly positive by Lemma 1. So the least positive eigenvalue of the warped product $B \times_f F$ is the minimum of the least positive eigenvalue of $L_{(f;\lambda_0)}$ and the least eigenvalue of $L_{(f;\lambda_1)}$.

Proof of Theorem 1. We denote the *i*-th eigenvalue of (M, h)(resp. (M', h')) by λ_i (resp. λ_i'). Since Spec $(B \times_f M) = \text{Spec } (B \times_f M')$, $\dim (B \times M) = \dim (B \times M')$ and hence $\dim M = \dim M'$. We apply mathematical induction: First of all, $\lambda_0 = \lambda_0' = 0$. We assume next that, for any non-negative integer k, $\lambda_i = \lambda'_i$ for $i = 0, 1, \dots, k$. Since dim $M = \dim M'$, $L_{(f;\lambda_i)} = L_{(f;\lambda'_i)}$ and hence Spec $(L_{(f;\lambda_i)}) = \operatorname{Spec}(L_{(f;\lambda'_i)})$ for $i = 0, 1, \dots, k$. Thus $\operatorname{Spec}(B \times_f M) - \sum_{i=0}^k \operatorname{Spec}(L_{(f;\lambda_i)}) = \operatorname{Spec}(B \times_f M') - \sum_{i=0}^k \operatorname{Spec}(L_{(f;\lambda_i)}).$ Lemma 1, the minimum of Spec $(B \times_f M) - \sum_{i=0}^k \operatorname{Spec}(L_{(f;\lambda_i)})$ is the least eigenvalue of $L_{(f;\lambda_{k+1})}$. By the same reason, the minimum Spec $(B \times_f M') - \sum_{i=0}^k \text{Spec}(L_{(f;\lambda'_i)})$ is the least eigenvalue of $L_{(f;\lambda'_{k+1})}$. $\mu_1(f; \lambda_{k+1}) = \mu_1(f; \lambda'_{k+1})$ and Lemma 1 implies that $\lambda_{k+1} = \lambda'_{k+1}$. for arbitrary non-negative integer i, we have $\lambda_i = \lambda'_i$.

§3. Proof of Theorem 2.

We use the same notations as in section 1. We denote the *i*-th eigenvalue of F by λ_i . Applying the minimum principle to the operator $L_{(f;\lambda_i)}$, we obtain

$$\mu_{\scriptscriptstyle 1}(f;\lambda_i) \leq \langle L_{\scriptscriptstyle (f;\lambda_i)} 1,\, 1 \rangle / \langle 1,\, 1 \rangle \ = \lambda_i \int_B f^{n-2} d\, V_g \Big/ \int_B f^n d\, V_g \; .$$

By Hölder's inequality, we have

$$\begin{split} \int_{B} f^{n-2} dV_{g} &\leq \left\{ \int_{B} (f^{n-2})^{n/(n-2)} dV_{g} \right\}^{(n-2)/n} \left\{ \int_{B} dV_{g} \right\}^{2/n} \\ &= \left\{ \int_{B} f^{n} dV_{g} \right\}^{(n-2)/n} \left\{ \int_{B} dV_{g} \right\}^{2/n} , \end{split}$$

and hence

$$\mu_{\mathbf{1}}(f; \lambda_{i}) \leq \frac{\lambda_{i} \left\{ \int_{B} f^{\mathbf{n}} dV_{\mathbf{g}} \right\}^{(n-2)/n} \left\{ \int_{B} dV_{\mathbf{g}} \right\}^{2/n}}{\int_{B} f^{\mathbf{n}} dV_{\mathbf{g}}} = \frac{\lambda_{i} \left\{ \int_{B} dV_{\mathbf{g}} \right\}^{2/n}}{\left\{ \int_{B} f^{\mathbf{n}} dV_{\mathbf{g}} \right\}^{2/n}} \; .$$

Since $\mu_i(1; \lambda_i) = \lambda_i$, we have

$$\mu_1(f; \lambda_i) ||f||_n^2 \leq \lambda_i ||1||_n^2 = \mu_1(1; \lambda_i) ||1||_n^2$$
.

If the equality holds, f is constant as the equality holds in Hölder's inequality. Conversely, if f is constant, then $\mu_1(f; \lambda_i) = \lambda_i/f^2$ and $||f||_n = f||1||_n$. Therefore the equality holds.

$\S 4$. Proof of Theorem 3.

The assumption of Theorem 3 implies that the least positive eigenvalue of F is the least positive eigenvalue of Riemannian product $B \times F$. Thus we have $\lambda_1(1) = \lambda_1$. On the other hand, by the remark in section 2, we obtain $\lambda_1(f) \leq \mu_1(f; \lambda_1)$. The proof of Theorem 2 implies that

$$\mu_{1}(f; \lambda_{1}) \leq \frac{\lambda_{1} \left\{ \int_{B} dV_{g} \right\}^{2/n}}{\left\{ \int_{B} f^{n} dV_{g} \right\}^{2/n}} = \frac{\lambda_{1} \left\{ \int_{B} dV_{g} \right\}^{2/n} \left\{ \int_{F} dV_{h} \right\}^{2/n}}{\left\{ \int_{B} f^{n} dV_{g} \right\}^{2/n} \left\{ \int_{F} dV_{h} \right\}^{2/n}}$$

$$= \lambda_{1} \operatorname{Vol}(1)^{2/n} / \operatorname{Vol}(f)^{2/n},$$

that is, $\mu_1(f; \lambda_1) \operatorname{Vol}(f)^{2/n} \leq \lambda_1 \operatorname{Vol}(1)^{2/n}$. Therefore, we have $\lambda_1(f) \operatorname{Vol}(f)^{2/n} \leq \lambda_1(1) \operatorname{Vol}(1)^{2/n}$. If the equality holds, Theorem 2 implies f is constant.

REMARK. Even if f is constant, the equality does not necessarily hold. In fact, consider the case where the least positive eigenvalue of $L_{(f;\lambda_0)}$ is less than $\mu_1(f;\lambda_1)$.

References

- [1] M. BERGER, P. GAUDUCHON et E. MAZET, Le spectre d'une variété Riemannienne, Lecture Notes in Math., 194, Springer-Verlag, 1971.
- [2] R. L. BISHOP AND B. O'NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
- [3] N. EJIRI, A construction of non-flat, compact irreducible Riemannian manifolds which are isospectral but not isometric, Math. Z., 168 (1979), 207-212.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
TOKYO METROPOLITAN UNIVERSITY
FUKAZAWA, SETAGAYA-KU, TOKYO, 158