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Note on Differentiable Maps and Liapunov Index

Taijiro OHNO
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ABSTRACT. We prove that if a differentiable map $f$ has a negative
Lirpunov index at a point $x$ , then there exists an attractive neighbor-
hood of $x$, and prove in addition that, if $f$ is a unimodal map on an
interval which has negative Schwarzian derivative, and satisfies the same
condition as above, then there exists an attractive periodic point which
absorbs $x$ .

Introduction

Ruelle [1] and Pesin [2] investigated the properties of dynamical
systems by means of Liapunov index. The most remarkable result
among these is Pesin’s work, in which he constructed a Markov partition
for the dynamical systems with smooth invariant measure having non-zero
Liapunov index. On the other hand, without assuming the existence of
smooth invariant measure, Ruelle succeeded in the construction of the
stable and the unstable manifold. In our paper, we will construct
attractive domains for differentiable maps. Unfortunately, it will be
difficult to calculate the Liapunov indices exactly. But we hope that
the study of Liapunov indices will enable us to classify $\omega$-limit sets of
dynamical systems, and will help us to obtain characterizations of orbits
moving densely in the space, characterizations of orbits getting absorbed
in a strage attractor, or characterizations of attractive yeriodic points.
This paper is intended for the first step toward the realization of this
hope.

The reason why we treat differentiable maps rather than diffeomor-
phisms is that we want to treat the logistic equation in our analysis.
Although this equation is one-dimensional, its orbits exhibit the most
complicated behavior. One of the most important results on this map
was given by Guckenheimer [3].
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He proved that if it has an attractive periodic point, then almost
all points are absorbed in this attractive periodic point. Our 8econd result
(cf. Abstract) gives a sufficient condition for the existence of an attrac-
tive periodic point. It is desirable to prove the existence of an attrac-
tive periodic point for an arbitrary one-dimensional map, especially for
a unimodal map.

\S 1. Attractive domain of an $n$-dimensional differentiable map.

Let $m$ be a compact domain in $R$“ with smooth boundary, let $f$ be
a $C^{1.\theta}$ (differentiable and the differential $Df(x)$ is $\theta$-H\"older continuous).
We denote the euclidean norm in $M$ by . $|$ and put $B(x, \alpha)=\{yeM$;
$|x-y|<\alpha\}$ . Let us put $N(f)=$ {$x$ ; det $(Df(x))=0$} and $0(f, x)=\{f^{n}(x);n\geqq 0\}$ .
If $ N(f)\cap O(f, x)=\phi$, we can define the Liapunov index $L(f, x)$ of $f$ at $x$

as follows;

$L(f, x)=\lim_{n\rightarrow\infty}\frac{1}{n}$ log $\Vert\{Df(f^{n}(x))\}^{-1}||^{1/\theta}\cdot\Vert Df^{n}(x)$ Il,

where $||Df(x)$ II is the operator norm of $Df(x)$ . We assume that there
exists such an $x$ in $M$ that $L(f, x)<0$ . Define the number $\alpha_{r,\mu}$ by

$\alpha_{x,\mu}=\inf_{n\geq 0}e^{n\mu}\{\Vert\{Df(f^{n}(x))\}^{-1}\Vert^{1/\theta}\cdot\Vert Df^{n}(x)\Vert\}^{-1}$ exp $(-K\frac{1}{1-e^{\theta\mu}})$ ,

where $K$ is the Holder constant which is defined as $||Df(x)-Df(y)||\leqq$

$K||x-y\Vert^{\theta}$ , and $\mu$ is a constant satisfying $L(f, x)<\mu<0$ . Then we can
prove that there exists an attractive domain for $x$ .

THEOREM 1. If $L(f, x)<\mu<0$ , then there exists a positive constant
$C$ such that $|f^{n}(x+u)-f^{n}(x)|<Ce^{n\mu}$ for $x+u$ in $B(x, a.,\mu)$ .

PROOF. At first, let us estimate $f^{n}(x+u)-f^{n}(x)$ for $n\geqq 0$ , where
$x+u$ and $x$ in $M$.

$f^{n}(x+u)-f^{n}(x)=\int_{0}^{1}\frac{d}{dt}f(t(f^{n-1}(x+u)-f^{n-1}(x))+f^{n-1}(x))dt$

$=\int_{0}^{1}Df(t(f^{n-1}(x+u)-f^{n-1}(x))dt\circ(f^{n-1}(x+u)-f^{n-1}(x))$

$=\prod_{i=0}^{\hslash-1}\int_{0}^{1}\{Df(f^{i}(x))+Df(t(f^{i}(x+u)-f(x))+f(x))-Df(f^{i}(x))\}dt\circ u$ .
It follows that
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$|f^{n}(x+u)-f^{n}(x)|\leqq\Vert Df^{n}(x)\Vert\prod_{i=0}^{n-1}\int_{0}^{1}\{1+||\{Df(f^{i}(x))\}^{-1}||$

$\times Kt|f^{i}(x+u)-f^{i}(x)|^{\theta}\}dt\cdot|u|$ ,

that is,

$\Vert\{Df(f^{n}(x))\}^{-1}||^{1/\theta}|f^{n}(x+u)-f^{n}(x)|\leqq||\{Df(f^{n}(x))\}^{-1}\Vert^{1/\theta}$

$x\Vert Df^{n}(x)\Vert\prod_{\iota=1}^{\iota-1}\{1+K\Vert\{Df(f^{i}(x))\}^{-1}\Vert|f^{i}(x+u)-f^{i}(x)|^{\theta}|u|$

$\leqq\Vert Df(f^{n}(x))\}^{-1}\Vert^{1/\theta}\cdot||Df^{n}(x)\Vert$ exp $(K\sum_{i=0}^{n-1}\Vert\{Df(f^{i}(x))\}^{-1}\Vert|f^{i}(x+u)$

$-f^{i}(x)|^{\theta})|u|$ .

Now we prove the following inequality inductively for $u$ in $B(x, \alpha_{x},\mu)$ .
(1.1) I $\{Df(f^{n}(x))\}^{-1}\Vert^{1/\theta}|f^{n}(x+u)-f^{n}(x)|\leqq e^{n\mu}$ .
For the case of $n=0$ , it is clear. Suppose that

$||\{Df(f^{i}(x))\}^{-1}\Vert^{1/\theta}|f^{i}(x+u)-f^{i}(x)|\leqq e^{i\mu}$ for $i<n$ .
Then we get

(1.2) $||\{Df(f^{n}(x))\}^{-1}\Vert^{1/\theta}\cdot||Df^{n}(x)||$ exp $(\frac{K}{1-e^{\mu\theta}})|u|<\alpha_{x,\mu}^{-1}e^{n\mu}|u|<e^{n\mu}$ .

Thus (1.1) was proved. If we put $C=\sup_{yeM}\Vert Df(y)\Vert^{1/\theta}$ , then the
theorem is proved using (1.2) again.

\S 2. The application for one dimensional maps.

Let $I$ be a closed bounded interval. Let $f$ be a C’ map from $I$ into
$I$ and let $f^{\prime}(x)$ be the differential of $f$ at $x$ . We assume the following
condition (2.1).

(i) $N(f)=\{x\in I;f’(x)=0\}$ consists of only one point $c$ .
(2.1)

(ii) $(\frac{f’(x)}{2})^{2}-f’(x)\cdot\frac{f’(x)}{3}>0$ for $x\in I-\{c\}$ .

REMARK. It is easy to see that important functions $f_{\lambda}(x)=\lambda x(1-x)$ ,
$ g_{\lambda}(x)=\lambda$ sin $x$ and $h_{\lambda}(x)=\lambda xe^{-x}$ satisfy the condition (2.1).

The condition (2.1) (ii) means that Schwarzian derivative of $f$ is
negative. Singer [4] showed that $f^{n}$ has at most one inflection point on
interval where $f^{n}$ is monotonic for $n>0$ . We give the proof of this
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result in Lemma 2 for the sake of completeness. We proved this result
independently. It will be proved more direct than Singer’s one.

Let $I=[a, b]$ and $C_{0}=(c, b)$ . Let $C_{01}=nl=0f^{-1}(C.),$ $\epsilon=0$ or 1.
Clearly, $C_{*0^{\epsilon_{1}\cdots\epsilon_{\hslash-1}}}$ is the maximal open interval where $f$ is monotonic.

LEMMA 2. If $f$ satisfies (2.1), then

min $\{|(f^{n})(\alpha)|, |(f^{n})^{\prime}(\beta)|\}=\inf_{\alpha<t<\beta}|(f)^{\prime}(t)|$ for $\alpha,$ $\beta$

in $ C_{e*\cdots\epsilon_{n-1}}0\iota$

SUBLEMMA. Under the same condition, for any $x_{0}\neq c$ , there exists a
$\gamma>0$ such that

$|f^{\prime}(y)f’(z)|\leqq\frac{1}{|y-z|}|f(y)-f(z)|$

for $ x_{0}-\gamma<y<x_{0}<z<x_{0}+\gamma$ .
PROOF OF SUBLEMMA. We consider the Taylor expansion of $f(x)$ at

$x=x_{0}$ ,

$f(x)=a_{0}+a_{1}(x-x_{0})+a_{2}(x-x_{0})^{2}+a_{3}(x-x_{0})^{s}+O((x-x_{0})^{4})$ .
Let $y=x_{0}+h,$ $z=x_{0}+k$ and $t=|h|\vee|k|$ , then $f^{\prime}(y)f^{\prime}(z)=a_{1}^{2}+2a_{1}a_{2}(h+k)+$

$3a_{1}a_{3}(h^{2}+k^{2})+4a_{2}^{2}hk+O(t^{8})$ . On the other hand,

$\frac{|f(y)-f(z)|^{2}}{|y-z|^{2}}a_{1}^{2}+2a_{1}a_{2}(h+k)+2a_{1}a_{3}(h^{2}+hk+k^{2})+a_{2}^{2}(h+k)^{2}+O(t^{8})$ .

So we have

$\frac{|f(y)-f(z)|^{2}}{|y-z|^{2}}-f’(y)f’(z)=(a_{2}^{2}-a_{1}a_{3})(h-k)^{2}+O(t^{8})$ .
By the condition (2.1) (ii), we obtain

$\frac{|f(y)-f(z)|^{2}}{|y-z|^{2}}\geqq f^{\prime}(y)f’(z)$

for sufficiently small $t$ .
PROOF OF LEMMA 2. For any $x$ in $C_{\epsilon_{0}\epsilon_{1}e_{2}\cdots e_{\iota-1}},$ $f(x)$ is monotonic and

$(f^{i})(x)=0$ for $0\leqq i\leqq n-1$ . By sublemma there exists an $\gamma>0$ such that

$|z-y|\leqq\frac{1}{\sqrt f’(z)f’(y)}$ . $\frac{1}{\sqrt{f’(f(z))f(f(y))}}$ . . . $\frac{1}{\sqrt{f^{\prime}(f^{n-1}(z))f’(f^{n-1}(y))}}$

$\times|f^{n}(z)-f^{n}(y)|$ for $ x-\gamma\leqq x\leqq z\leqq x+\gamma$ ,
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hence,

$|(f^{n})^{\prime}(z)(f^{n})(y)|\leqq\frac{|f^{n}(z)-f^{n}(y)|^{2}}{|z-y|^{2}}=\frac{1}{|z-y|^{2}}(\int^{l}|(f^{n})^{\prime}(t)|dt)^{2}$

Using Schwarz’s inequality, we have

(2.2) $|(f^{n})^{\prime}(z)\cdot(f^{n})^{\prime}(y)|\leqq\frac{1}{|z-y|}\int_{y}^{l}|(f^{n})(t)|^{2}dt$

for $ x-\gamma\leqq y\leqq x\leqq z\leqq x+\gamma$ . Suppose that $x_{0},$ $t_{0},$ $y_{0}$ in $C_{\epsilon_{0}e_{1}}\ldots.$, satisfy $ x_{0}\leqq$

$t_{0}\leqq y_{0}$ and

$|(f^{n})^{\prime}(t_{0})|=\min_{x_{0}\leq t\leqq y_{0}}|(f^{n})^{\prime}(t)|$ .
Then there exist $y,$ $z$ sufficiently near $t_{0}$ which satisfy

$|(f^{n})^{\prime}(x)|\leqq|(f^{n})^{\prime}(y)|=|(f^{n})^{\prime}(z)|$

for $y<x<z$ . Hence we have

$|(f^{n})^{\prime}(z)(f^{n})^{\prime}(y)|\geqq\frac{1}{|z-y|}\int_{\nu}^{l}|(f^{n})^{\prime}(t)|^{2}dt$ ,

which contradicts the inequality (2.2).

LEMMA 3. If there exists an $x$ in $(a, b)$ such that ( $i\rangle$ $L(f, x)<0$ and
(ii) $\overline{O(f,x}$) $=closure$ of $0(f, x)=\{\overline{f^{n}(x);n\geqq 0}\}$ a $c$ ($c$ is the point in (2.1)),
then there exist $s$ an attractive periodic point $x_{p}$ which absorbs $x$ .

PROOF. Let $\mu<0$ and $\alpha_{x,\mu}$ be the one given in Theorem 1. At first,
we prove

(2.3) $\sum_{i\approx\theta}^{\infty}\alpha_{f(x).\mu}:=\infty$

It is enough to show that

$\inf_{n\geqq 0}\frac{e^{n\mu}}{(f^{n})(f(x))}\geqq 1$

for infinitely many $i$ . Assume that there exists an $i_{0}$ such that for any
$i\geqq i_{0}$ ,

$\inf_{n\geqq 0}\frac{e^{n\mu}}{(f)(f^{i}(x))}<1$ .
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Then, for each $i\geqq i_{0}$ , there exists an $n>0$ such that $e^{n_{i}\mu}<|(f)(f^{i}(x))|$ .
Then we can construct the sequence $\{k\},$ $k_{1}=i_{0},$ $h=n_{k_{1}},$ $k_{\epsilon}=n_{\iota_{t}+k_{2}},$ $\cdots$ .
We put $n=k_{1}+k_{2}+\cdots+k_{\gamma}$ , then $e^{\mu}=\prod_{l=1}^{\gamma}e^{k_{i}\mu}<\prod_{i=1}^{\gamma}|f^{k_{i}}(f^{k_{1}+\cdots+k-1}(x))|=$

$|(f^{n})(x)|$ . On the other hand, we have

$L(f, x)=\varlimsup_{n\rightarrow\infty}\frac{1}{n}$ log $\frac{|(f^{n})^{\prime}(x)|}{|f’(f^{n}(x))|^{1/\theta}}$

$=\varlimsup_{\hslash\rightarrow\infty}\frac{1}{n}$ log $|(f)^{\prime}(x)|$ by condition (ii).

Hence we have $ L(f, x)\geqq\mu$ , which is a contradiction; thus we proved
(2.3). By (2.3), there exist $q,$ $p>0$ such that

$ B(f^{q}(x), \alpha_{fJ(x),\mu})\cap B(f^{q+p}(x), \alpha_{f^{q}+p(a).\mu})\neq\phi$ .
Then $L=\bigcup_{n=0}^{\infty}f^{np}(B(f^{q}(x), \alpha_{J^{q\{x),\mu}}))$ is an $f^{p}$-invariant interval. Hence,
$\overline{L}$ contains a fixed point $x_{p}$ of $f^{p}$ . By the attractivity of $f$ on $B(y, \alpha_{y,\mu})$ ,
we can prove that $\omega_{x}=$ {$ y\in I;n_{1}<n_{2}<\cdots$ such that $\lim_{k\rightarrow\infty}f^{n_{k}}(x)=y$} $=$

$O(f, x)$ .
THEOREM 2. Assume that $f$ satisfies (2.1) and that there exists an $x$

in $(a, b)$ satisfying $L(f, x)<0$ . Then there exists an attractive periodic
point $x_{p}$ such that $\omega_{x}=O(f, x_{p})$ .

PROOF. In Lemma 3, we proved the theorem for the case of $ c\not\in$

$\overline{O(f,x})$ , hence we can assume

(2.4) $ce\overline{O(f,x}$).

Let us take a $C_{e_{0}\epsilon_{1}\cdots\epsilon_{*-1}}=(a_{n}, b_{n})$ which contains $x$ for each $n$ . We will show
that for sufficiently large $n,$ $f^{n}(a_{n})$ or $f^{n}(b_{n})$ is contained in $B(f^{n}(x)$ ,
$\alpha(f^{n}(x)))$ . By Lemma 2, we have $|(f^{n})^{\prime}(t)|\leqq|(f)(x)|$ for any $t$ with $a_{n}<$

$t<x$ or $t$ with $x<t<b$ . We consider the first case. Then, $|f^{n}(x)-f^{n}(a_{n})|\leqq$

$|(f^{n})(x)||x-a_{n}|\leqq|(f^{n})^{\prime}(x)||b-a|$ . By the assumption of the theorem, we
can take $n_{0}$ so large that

$e^{-n_{0}\mu}>|b-a|\alpha_{x,\mu}^{-1}$

for $L(f, x)<\mu<0$ .
Then we have,

$\alpha_{f^{n_{0}}(x),\mu}=\inf_{n\geq 0}e^{n\mu}\frac{|f^{\prime}(f^{n+n_{0}}(x))|^{1/\theta}}{|(f^{n})(f^{n_{0}}(x))|}$

$=\inf_{n\geqq 0}e^{|f’(f^{n+n_{0}}(x))|^{\iota/\theta}}(n+0)\mu|(f^{n_{0}})^{\prime}(x)|e^{-n_{0}\mu}$

$|(f^{n+n_{0}})^{\prime}(x)|$
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$\geqq\alpha_{x,\mu}|(f^{n_{0}})^{\prime}(x)|e^{-n_{0}\mu}$ .
Hence, we have $\alpha_{f^{0}(x),\mu}\geqq|b-a||(f^{n_{0}})^{\prime}(x)|$ . It proves that $f^{n_{0}}(a_{n_{0}})$ is con-
tained In $B(f^{n_{0}}(x), \alpha_{f^{\prime\prime 0}(0)})$ .

On the other hand, it is easily shown from $f^{n_{0}}(a_{n_{0}})=0$ , that there
exists $0\leqq q<n_{0}$ such that $f^{q}(a_{n_{0}})=c$ . Therefore, $f^{n_{0}}(a_{n_{0},\mu})=f^{n_{0}-q}(c)$ . By
(2.4), it follows that $B(f^{n_{0}}(x), \alpha_{f^{0}(r),\mu})$ contains $f^{f}(x)$ for some $r>n_{0}$ .
Hence we have $ B(f^{n_{0}}(x), \alpha_{f^{\alpha_{0}}(\$),\mu})\cap B(f^{f}(x), \alpha_{f^{r}(x)})\neq\phi$ . We can prove by
the same argument as in Lemma 2 the existence of an attractive periodic
point $x_{p}$ which absorbs $x$ .
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