Toxyo J. MATH.
VoL. 5, No. 1, 1982

Uniqueness for the Characteristic Cauchy Problem
and its Applications

Hitoshi URYU

Waseda University

Introduction

In this paper we will consider the local uniqueness for Fuchsian
partial differential operators (See [2]) with C=-coefficients and as its
applications we shall give some examples in the case of partial differential
operators with characteristic or non-characteristic initial surfaces.

The local uniqueness for a Fuchsian partial differential operator has
been obtained by Baouendi and Goulaouic [2], when its operator has
analytic coefficients with respect to space variables x. Recently Alinhac
and Baouendi [1] studied this problem for some characteristic pseudo-
differential operators on a compact manifold. For other many works for
characteristic operators, we wish the reader to consult references of [1]
and [2]. o

On the other hand in the case of a non-characteristic initial surface
there is well-known Holmgren’s theorem for a differential operator with
analytic coefficients. Calder6on [3] showed the local uniqueness result for
non-characteristic partial differential operators with non-analytic co-
efficients, assuming that coefficients of a principal symbol are real-valued
and its characteristic roots are simple from each other. When character-
istic roots have multiplicity, many works are found in Hormander [4],
Mizohata [6], Matsumoto [5], Watanabe [11], Zeman [18] and others. In
the above refered papers, all the authors assume that a imaginary part
of each characteristic root never vanishes or vanishes identically. When
this assumption is not satisfied, Kumano-go [12], Nirenberg [7] studied
some partial differential operators and recently Strauss and Tréves [8]
considered a first order partial differential operator.

The aim of this paper is to show that for some differential operators
with C>-coefficients we can treat the local uniqueness for a characteristic
Cauchy problem and non-characteristic one in the same frame. In our
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theorem we shall prove the local uniqueness for certain Fuchsian partial
differential operators, using a Carleman type estimate similar to Alinhaec
and Baouendi [1]. (This problem is treated by Baouendi and Goulaouic
[2] in the case of analytic coefficients.) Consequently we may obtain
local uniqueness results for characteristic operators which are not
hyperbolic (cf. [1], [9]) and those for non-characteristic operators with
degenerating imaginary parts of its characteristic roots.

An outline of this paper is as follows. In §1 we will state our
theorems and their direct applications. In §2 we shall give Carleman
type estimates for some first order pseudo-differential operators. In §83,
using consequence of §2, we shall obtain the similar estimates for pseudo-
differential operators of order m. The proof of the theorem will be
given in §4. Finally in §5 we shall give generalizations of our theorems,
and shall note that the local uniqueness for certain other differentia)
operators is proved in the same method.

ACKNOWLEGEMENT. The author wishes to thank Professor S. Irie
for his valuable suggestions and discussions.

S§1. Statements of results and their applications.

Let (¢, 2)e[0, TIxR* and (D, D,)=(D,, D,,---,D,), where D,=
—1(9/at), D,;= —1i(d/dz;) (=1, 2, - -+, n). For multi-index a=(a,, ---, a,) €
N", we put Di=Dg1---D», £5=¢..-£5» and |a|=31, a;.

We shall define the following set of functions.

DEFINITION. For any integer k=1, we denote by C® the set of
functions a(t, z) satisfying the property that a(t, )=, tha(t, ) where
li=m./k, m, is a positive integer and a.(, ) e C~ (i=1,2, ---, p).

We consider a differential polynomial P with respect to (A, &)

(1.1) P=Pt, a,n\, &)=A"+ 3 a4t 0)eN ,
0<jsm—1

lai+ism

where coefficients a, ,(t, x) belong to Cy. Then for a differential poly-
nomial P and a positive rational number l=FK|k (=1 is an integer) we
define the differential operator as follows.
1.2) P(t, o, tD,, t'D,)=t"Dr+ 3, a,t, ®)t="+iDeDj .
laifizm
Let the homogeneous part of degree m of P(¢, z, ), £) with respect
to (A, &) be



CHARACTERISTIC CAUCHY PROBLEM 119

(1.3) Bty 2, % =N+ 3 0a it DM .
jam-—1
la|+j=m

Hence we assume the following conditions on P2,.
(A-I) The coefficients a,,;(t, ) of P, are real-valued and belong to
C-. If |a|l¢Z, a,,;t, )=0.
(A-II) The equation P,(t, x, A, £)=0 has simple roots in regard togx.
Then we obtain the basic theorem as follows.

THEOREM 1. Under the assumptions (A-I) and (A-II), for a character-
istic partial differential operator P= P, , tD,, t*'D,) we obtain the local
uniqueness in the following sense:

If a function u of class C~ near the origin satisfies

{Pu:O
Diu|s=o=0 for any j=20,
then w vanishes identically in some neighbourhood of the origin in R X R".

We shall apply Theorem 1 to Fuchsian partial differential opérators
(see [2]).

Let P=P(t, =, D,, D,) be a linear partial differential operator of order
m whose coefficients are smooth of the form
(1.4 pP=P(, z, D,, D,)

=t'D?+an—1(t9 x)t"lDI"_l-l- s +a,_.(t, ﬁ?)DZ""
-+ t“"'"’aj,p(t, x)Dth’

0siSm—1
o<igism—j

for 0<s=m and a(j, B)=max(0,s8+j—m+1). Then P is said to be
of Fuchsian type with weight m —s with respect to ¢.
A characteristic polynomial associated with (1.4) is

(1.5) Z O\, ) =AA—1) - - A—m+1)+ia,_,(0, OANA—1):- - (AN—m+2)
4o+ 0, AA—1)- - - (A—m+3+1) .

Its roots, called characteristic roots, are denoted by
7\'1(/”)’ )"2(‘”)’ ) N,((D), )"a+1(x)=0’ %y 7\‘m(w)"=7'n""'8""1 .
Then we have

THEOREM 2. Let P be of Fuchsian type with weight m—s with
respect to t. We suppose that there exist a differential polynomial
B, x, \, &) satisfying (A-I), (A-II) and a positive rational number 1=Kk
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*'=1 is an integer) such that
(1.6) t~—P(t, z, D,, D,)= B, =, tD,, *D,) .
Let he N be such that |
Re\;0)<m—s+h for 1=j=m.
Then any function u of class C° mear the origin satisfying

{Pu=0

1.7
@7 Diulyee=0 for 0<j<m—s+h—1

vanishes identically near the origin in R X R™.

REMARK 1. If C~=-solution % of homogeneous equation Pu=0 does
not satisfy Dju|,.,=0 for 0<j=<m—s+h—1, then the conclusions of
Theorem 2 are false in general.

REMARK 2. When =0 we cannot expect the local uniqueness
generally even in the case of analytic coefficients (see [2]). On the other
hand recently Alinhac and Baouendi [1] consider the Cauchy problem for
some pseudo-differential operators on a compact manifold. Then they
show the uniqueness theorem for such operators in the case of [=0.

REMARK 3. If 8=0, we can take h=0. Therefore for a non-

characteristic operator the Cauchy problem (1.7) is usual setting one.
Here we shall show that Theorem 1 implies Theorem 2 immediately.
The following lemma follows easily from [2].

LeMMA 3. P is of Fuchsian type with weight m—s with respect to
t. Let he N be such that

ReM;(0)<m—s+h for 1<j<m.
Then any fun,cti’on u of class C* mear the origin satisfying
{Pu=0
Diul=e=0 for 0=j<m—s+h—1
18 flat at t=0 1.e. Diu|,—,=0 fo'r any j=0.
Consequently we can reduce the problem of Theorem 2 to

{t"‘"P(t, «, D,, D,yu=P(t, «, tD,, t*'D,)u=0
u is a function of class C~ and flat at ¢=0.
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Then from Theorem 1 we can conclude that % vanishes near the origin
in RxX R".

From Theorem 2 we can obtain uniqueness results for characteristic

or non-characteristic differential operators. Hence we shall give some
examples.

EXAMPLES.
(1) Let P be the operator with smooth coefficients

P(t, =, D,, D,)=t(D?xD?+a(t, x)D,+b(t, x)D,+c(t, «) .

Then P satisfies our condition with m=2, s=1, I=1.
(2) Let P be the following operator with smooth coefficients

P, %, D,, D,)=tD!=+ D +a(t, ©)D,+b(t, 2)D,+c(t, @) .

Then P satisfies our condition with m= 2 s=1, l=1/2.
(3) Let P Dbe the operator

P(t, z, D,, D,)=D=+tD>?+ (any lower order terms) .

Then P satisfies our condition with m=m, s=0, I=1+1/m.
(4) Let P be the operator
P(t, , D,, D,)=D;+t*"D;+t*a(t, )D,+b(¢, *)D,
+e(t, x) , |
where a(t, x), b(t, ) and ¢(t, x) eC=. Then P satisfies our condition with
m=2, 8=0, l=k+3/2.
(56) Let P be the operator
P(t, 2, D,, D,)=D;+t*D;+t*"*a(t, )D,+b(¢, )D,
+c(t, x)
where a(t, x), b(t, ) and c¢(t, x) € C>. Then P satisfies our condition with
m=2, 8=0, l=Kk+1.

Next we give a generalization of (5) (ef. [9], [10]).
(6) Let P be the operator of order m with smooth coefficients

P=Pm+Pm-1+"'+-Po-

Its principal symbol P, has real-valued coefficients and can be factored
smoothly in the form:

Po(t, 2, %, =11 v—tN(t, 2, )
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where k is a non-negative integer, M1, z, &) € Z ([0, T'], S*) (See §2) and
M#EN; When t#5. P,_; (1=55<m) satisfies

mn—g
Pm—!(t’ z, 7"’ $)= ‘Zo ';‘ bt.i,a(tv x)t[‘k—iheax’“—j_‘
where [A],=max (A4, 0) and b,,;.(t, x) e C~. Then P satisfies our condi-
tion with m=m, 8=0, l=Fk+1. :

§2. Carleman type estimates for first order pseudo-differential
operators.

First we introduce classes of symbols of pseudo-differential operators.
S™(=8r,) is the set of well-known symbols of pseudo-differential operators
with respect to space variable . We denote by <& ([0, T'], S*) the set
of functions a(t, x, &) satisfying the condition: a(t, x, &) € S™ for any fixed
te[0, T] and the map: [0, T]ot—a(t, z, &) € S™ is smooth.

The purpose of this section is to show the following basic proposition.

PROPOSITION 2.1. Let A(t, «, &) and B, z, £) be real valued symbols
of pseudo-differential operators belonging to <& ([0, T'), S*). Suppose that
B, =, )0 for any £+#0 or that B(t, x, £)=0. For a rational number
=K'k and a real-valued function a(x) € C>(R") we define the pseudo-
differential operator P as follows.

P=tD,—t(AQ, =, D,)+1B(, «, D,)) ,

where A(t, %, &)=a(x)A(, =, &) and B, z, &=a®)B{, =, &. Then for T
and N sufficiently small there exists a comstant c¢ independent of T
and N such that

T T
2.1) NS £ |||t de < S £-2¥ || Pu |[dt
0 0

Jor any u € C* with suppucC, where 2=[0, T]1x{x; |z|<r} and || | is
Li-norm with respect to x.

PrROOF. We prove this proposition only in the case of B(t, =, £)+0
for any £+#0. We leave the proof of the other case to the reader. We
may read the proof of this proposition, supposing B(t, x, &)=0.

Set

Pu=f
and v(¢, )=t"Yu(t, ). Then
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(P—Ni)v=t"7%f.

‘We shall consider the integral I=ST £ || £ |[dt.
0

@2  I={ sl
T T
- S [¢Dw—t'Av |'dt+ So I|8:Bv |[*dt
0
T T
+N2§ |v|[dt+2 Re So (tD,, — Niv)dt
0
+2Re ST (—t'Av, —it'Bo— Niv)dt
0 .
+2Re ST(—it’Bv, — Niv)dt+2 Re ST(tD,'v, —it'Bv)dt
1] 0
=L+L+---+1I.
We proceed to calculate each I, (1=4).

T
L=-N| ||lv|rat
I,=2Re ST (—#Av, —it'Bv)dt+2 Re ST (—t'Av, — Niv)dt
0 0
- S’ ({(— 8 B)*(—t'A) + (—t' A)*(—it'B)}v, v)dt
0
+ ST (= Niy*(— ' A) + (—tA)*(— Ni)}o, v)dt ,
0
where (—it'B)*, (—t'A)* and (—Ni)* are the formal adjoint of —it'B,
—t'!A and — Nz, respectively.
Since the symbols A(t, z, &) and B(t, «, £) are real-valued functions,

it follows from the product and the adjoint formulae of pseudo-differential
operators that

Lz —c,. T S: | a(@) A | || v || dt — s, T* ST v |[*dt
— s T'N S: l|vlftde ,
where A is the pseudo-differential operator defined by
Au()=(@my~| e ta+e e,

#(&) being the Fourier transform of u(x) i.e.
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z’i(e):S et u(x)dx .

I,=2NRe S:(t'Bv, v)dt
L=2Re S: (tDyv, —it'Bu)dt
={, d—itBy+(~itB)eDv), vyt
—Sj(_a"t_{t'ﬂB}v, 0)dt
={, 4(—itB)* +(~it'B)tDw), V)it
—(+1) S: (B, v)dt— S:(t'“B,v, vdt ,

where B, is the pseudo-differential operator with symbol (3/3t)B(¢, «, &).
Therefore

L= —¢,, T S: ItDw||||v||dt—(+1) Re S: (£Bv, v)dt

—,, T ST | a(@) 40| || v || dt — e, , T ST llv|Pdt .

Noting that
|tDw||<|[tDp—t'Av||+||t'Av||
=|[tDyw—tAv| +const (||t'a(x)4v || +]|v]) ,

we have
L= —¢, T S: |¢D— t* AvAv |Pdt— (I +1) ReSOT (&Bv, v)dt
—ro(T+ T S’ |t a(@) v || v || dt
—Cro( T+ TH) S: llv|1de .
From I,, ---, I, we easily derive the inequality
23) IzL+L+L-N{ |[v|tdt—eT=N{ |lv|tdt
—c,T™ S | ta@)av || | 0] dt —eo(T™+ T S v |I*de

+(@N—1—1)Re S: (¢'Bv, v)dt—e,T™ S: |¢D,—tAv|dt ,
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where

e {l when 0<I<1
~ 1 when I=1.

Since B(t, =, &) is elliptic i.e., B(t, «, §)><0 for any £+0, we obtain
la(@)Av||=c'(|| Bu||+ ||

for some constant ¢’. Then by choosing 7 so small that ¢,T*=1/2 it
follows from (2.3) that ‘ '

121/211+IZ+I3—N§: Hvllzdt——c{T“NS: || |[d¢
—e,T™ S: 1£Bv || || v|| dt— eX(T™+ T*™) ST [|v|de
—@N—-1-1) S: 8B ||| v dt .
Put e=N-1/2—1/2+¢,T™/2. Then
» T ‘ T T
2 |"NeBololats | 1eBorat+e | viras
o 0 )]
Therefore
IZ(N*—N—c,T*"N—c,T™—c,T*™—¢% ST lvl*de .
Here we can choose T and N sufficiently small in such a way thé,t
N:—N—CT*"N—c;T™—c;T*"—e*21/2N .

Consequently we have the desired inequality

Iz1/2N S: (|v]|d . Q.E.D.

- §3. Pseudo-differential operators of order m.

In this section we shall consider Carleman type estimates for some
pseudo-differential operators of order m. ,

To begin with, we define the pseudo-differential operators of order
1 as follows (cf. [10]). We put

3.1) 0;=tD,—t'a(x)\;(t, =, D,) Agj=m),
where l=F'/k, a(x) € C* is a real-valued function, \,(t, z, &) € Z ([0, T], S*)
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and A, #)\; when i#j. Suppose that Im (%, z, £)#0 for any £+0 or
Im (2, =, £)=0.

Next we define the mudules W, (0<i<m—1) over the ring of pseudo-
differential operators in & of order 0. Let I7,=0,---0,.,. Let W,_, be
the module generated by the monomial operators I7,./0,=0,  +0¢_10¢41° * *Op
of order m—1 and let W,_, be the module generated by the operators
I1,./0.,0; (i+#7) of order m—2 and so on.

Here we introduce a new symbol class of pseudo-differential operators
acting on C>-function % with supp v cC Q.

DEFINITION. For positive integer k <Z ([0, T], S*) is the set of
functions a(t, x, £) which are represented in the form:
a’(t’ x, 6)=g t"a,(t, z, 5) s

where l,=m,/k (m, is a positive integer.) and a.(t, 2, &) € ([0, T], S™).
Then we immediately obtain the following basic lemma.

LeMMA 3.1. For any a,t, z, &) € Z.([0, T], S™) and a,t, x, &€
9, T], S*,

(i) tDa(t, =, &) € (0, T], S™)

(ii) DiDzga,(t, =, &) € (0, T], S™~'*)

(iil) a(t, =, §a.(t, 2, &) € (0, T], S™*™)

(iv) (0, T], S~ c=z(0, T], 8S™).

Hence we have

LEmMMA 3.2. Forany?, jthere exisi A, (¢, 2, 8), B, i, 2, 8), C; 4(t, 2, &) €
A0, T], S°) such that

(3-2) [3” a"]=A‘,, ‘+B¢,,-3_,-+C‘,,- ’

where [0,, 0;]1=0,0;—0,;0, 18 the commutator of pseudo-differential operators
d; and 0;.

PrOOF. Let 0,([0,, 3;]) be the principal symbol of [3,, 3,]. Then, by
the formula of product of pseudo-differential operators, we obtain
ao([0,, 3;1)= g {De.(tEo - t'a(x)).‘)a,a(t& —t'a(z)ny)

—-D e (E80— t'a(x)n;)0 aa(tfo —tla(x)n)}
=t'a(x)D, (¢, =, £) ,

where D, i(t, z, &) € ([0, T], S*) from Lemma 3.1. Here we used the
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notations x,=¢t and ¢&,=Nx.

If we define functions A, ;(t, , &) and B, (%, =, 8 for i#j by A,;=
D, (t,z, &)/(n;—N\,) and B, ;= D, ;(t,x, &)/(A\,—\;) respectively, then 4,,;, B, ;€
Z([0, T1, S° and the inequality:

A, (¢, o, £)(t&— t'a(x)n,) + B, ;(t, ®, £)(&— t'a(x)ny)
=t'a(x)D,,;(t, , £)

holds. Then we obtain
[at, 3,-]=A,,, ¢+B,,,-6,+C¢,,
for some C,; e ([0, T], SY). Q.E.D.

LEMMA 3.8. For any monomial w2e W, (0<s<m—1) there exist 0,
and wi,,e W,,, such that

8+1

(3.3) 0,WI=wi, + 2‘1 ZT'. Cr,iWatij »
=

where ¢;,; € Z([0, T], S° and @).,_; € W,

PROOF. For any w?=d; ---9;, (ji<j,<---<J,) there exists some j¢
{gs <+, 5.} with 1<j<m. Since [9,, 9;]=A,,;0,+ B,,;9,+C,,; by Lemma 3.2
we have immediately (3.3). - Q.E.D.

We define the functionals of e C~ with suppuc® &, 9, ---, P, as
follows. For any N>0

0, = ST £ || w |I*de

o, =\ (ol + |1 oaulPat

Il

0, =\t 5 | wgu it
) T
‘D’":So £ || I |*dt
Then we get

LEMMA 3.4. For T and N sufficient small there exist constant
Co ***» Cm_y Independent of T and N such that :
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(3.4.0) N*®,<c, N (D, +D,)

3.4.1) N9, <, N**D,+ D, + D,)

(3.4.j) N-—l¢. éO,N"_'_l(¢,+1 + Q‘ R Qo)
(34m_1) N¢m—1§cﬂ—1(¢m+¢s—1+ cc +¢o) .

PROOF. We shall show
3.5) NO,=¢.(P,11+ D+ - +D,) 0O=3=m-1).

From Lemma 3.3, for any monomial w?ec W, there exist d,, w!,,e W,
and ¢;,; € <Z([0, T, S° such that

841
0. =wh,,+ 321 Zr“ Cr, @15 -

Putting
U=wiu
s+1
G=wl u+ 32:‘{ z;. Cr,i@is1-5U

we have the equation o, U% G. Hence it follows from Proposition 2.1
that '

NST £ || U|Pdt<c S’ £ || G|t

s+1 T T
so(S5 | e otuirde+ | e ot pde)
J=1 7 0 0

=c@,u+---+9).

Therefore we have
(3.6) N S £ || @ [Pt e’ Doy -+ - +By) -

Since (8.6) holds for any monomial w* € W, we obtain the inequality (3.5).
Q.E.D.

Now we shall consider a pseudo-differential operator P of order m,
satisfying some conditions.

DEFINITION. P is a pseudo-differential operator P=P,+ - - - + P, whose
principal symbol P,=P,(t, x, A\, &) can be factored in the form:
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Pot, o, %, §=K(t, @) [ (h—ta@ht, o, ) ,

where a(x) € C* is a real-valued function, l=F'/k, K(¢, )0 on [0, T] < R",
Nt @, &) € Z ([0, T1, SH) and A, #)\; when 1+#7. Furthermore we assume
that Im (¢, «, £)+0 for any £0 or Im )¢, 2, §)=

If the lower order terms P, ;(1<j=m) can be represented as follows:

P,_;t, @, N, §)= ;0 a(x)‘t”bf,s(t, 2, HEN™

where b, ;(t, x, &) € ([0, T], S*), then we say that a pseudo-differential
operator P satisfies (#)-condition on [0, T'].

We shall proceed to obtain Carleman type estimates for pseudo-
differential operators satisfying (#)-condition on [0, T'].

PROPOSITION 38.5. Suppose that P is a pseudo-differential operator
of order m satisfying (#)-condition on [0, T]. Then for T and N7
sufficiently small there exists a constant ¢ independent of T and N such
that

3.7 N& S: £ | Pt <o S: £ || Pu |Pdt

for any weC™ with suppuCQ.

REMARK. Since K(¢, )0 on [0, T] we may prove Proposition 3.5
only in the case of K(¢, x)=1 on [0, T']. Therefore we suppose K(t, x)=1
on [0, T'] in the following.

Before the proof of Proposition 3.5 we prepare the followmg lemma

LEMMA 3.6 (cf. [10]). Let Pbe a pseudo-differential operator satisfy-
ing &)-condition on [0, T]. Then there exist some c.;<€ B (0, T], S%
and ®%_;€ W,_; such that

3.8) P—Il,= 3, 3% a5 -

PrOOF. The proof of this lemma is done by two steps.

(I) Let 1I,=0,---0,, A=u,< .. <3,<m). Then a(H ), the symbol of
I1,, can be written in the form: ' :

3.9) o(I)=11 (tn—ta(@ne)+Bust -+ +Bo

where R, ;(t, z, N, &) = 352 bs,s(t, @, Ha@)PtH(En) " _and  by,,(¢, @, €
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A0, T, 8.

We carry out the proof by induction on s. When s=1 (3.9) is
trivial. Assume that (3.9) is valid for s. Since ,,=1p,,,, we have,
by the product formula for two pseudo-differential operators,

o(Il,.,)=0(I1,)(t&—a(@)t'\,,,,)
+ z;":ng o(11,)05(t&, — a(z)t'\,

c+1) *

Therefore by the assumption of induction we can easily get (8.9) with
8+1 (see [10]).
(II) From (3.9) with s=m, we obtain

oP—I)= 53 7.0, o, da@tiery=s,
where ¢,;e ([0, T], S°). Let the part of order m—1 of o(P—11,) be
(3.10) Bt o, 0 =3, Buult, 2, Hal@) e (o)™ .
We want to determine A, «, &) ¢ <Z,([0, T], S° so that
@.11) Pt x, i\, &)= g} Aty 2, 9 IT (th—a(@)nt, 7, 8))
From (3.10) we have

B¢, 7, a@th(t, 7, 8), O=al@)* "= Ryt, x, &) ,

where K¢, 2, £) e ([0, T], S~). Putting trn=a(2)t)\(, 2, &) into (3.11)
gives

a(@)" DK (¢, , &)=a(z) gD IO =N AL, 2, 8) -
Then we can find
Ayt @, O=[T O =M EKi(t, =, &)
in ([0, T], 8°. Then (3.9) for s=m—1 yields
(3.12) o(P-t.-% 4,11 5,)

t#5
»
=&

§=2

38,46, 2, Hale)es iy

where d, ;(t, z, &) € ([0, T], S*). Repeating these steps we arrive at the
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relation (3.8). ' Q.E.D.
" PROOF OF PROPOSITION 3.5. It follows from Lemma 3.6 that
(3.13) ST £ || Pu— I u |Pdt <c ’:2 o, .
] =
Note that
(3.14) I u |2 =2{]| Pu—ITu |+ Pull®} .

Then, using (3.138) and (8.14), we have from (3.4.m—1)
No, _<cn . (Pp+--- +9,)
T
gc;_1(¢,,,_1+ el +¢o+§o £V || Py ||2dt) :

Here we choose N sufficiently large to get
T
(3.15) NO S l(Onst -+ + 00t || 427 || Purdt)

for some different constant c.,_,.
Next from (8.4.m—2) and (3.15) we obtain

(3.16) N, ,<e¢, . ND, ,+:-++0)
r
S {N@ st 400+ | 7| Pupat] .

Choosing N sufficient large again, we have
NG oS5 AN @t - +0)+ §T =27 | Pu|fdt} -
Repeating this steps we have
N"qﬁ,,_,-gc;,:_,-{N"“l(q?,,_,-_l+ s+ @0)+ S:t‘”H Pu IPdt} -
Therefore we conclude that
N~o,s6;| || Pulidt .
The proof of Proposition 3.5 is completed.

§4. Proof of Theorem 1.

In this section we shall complete the proof of Theorem 1, using the
consequence of §3.
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It is sufficient for the proof of Theorem 1 that for arbitrary 7>0
and ¥>0 any function u of class C~ satisfying

{Pu-——O in [0, T]x{=: |2|<7)

4.1
1) Diu|,—o=0 for any 5=0

vanishes identically in [0, 7)] x {x: |&|<#} for some T'>0 and # >0.
Hence we shall take a singular change of variables as follows (cf.
[1)).
where t=("—|X|)*T, z=X and r=7/2.
Hence we have

LemMMA 4.1. Suppose that P=P(t, x, D,, D,) satisfies the assumptions
of Theorem 1. By the above change of variables, P is transformed to a
new differential operator P'=PYT, X, D;, D;). Then there exists T'>0
8o that PY(T, X, D,, D,) satisfies the (¥)-condition on [0, T'] with a(x)=
P —| XD)¥, where k'=1k.

The proof of this lemma is given in the last part of this section.
Now we set

uw(r*—|X[)*T, X) when |X|Zr

0 when |X|[=r.

Then %(T, X) is a function of the class C=([0, T"] x R") satisfying
PYT, X, Dy, Dp)u(T, X)=0 in [0, T']xR"

and supp %(T, X) is bounded set in [0, T"] x R".

Though we are afraid of confusion, we denote again T, X by ¢, =,
respectively. - Using new variables we shall rewrite the above. C>-
function #(t, x) satisfies ' :

(4.4) P't, «, D, D,)u(t, x)=0 in [0, T'}x R"

(4.3) (T, X)={

and supp #%(¢, «) is bounded set in [0, T"] x R".
Next we set a function ¢(t) € C=(R") such that
1 if 0=t<T'/2

(4.5) ¢(t)={o if 2T'/3<t<T .

Then ¢(t)#(t, x) € C=([0, T'] x R™) with supp s(£)ii(t, x) [0, 2T"/3] x {=: |x| <}
Therefore Proposition 3.5 implies the following inequality for d(DU, x).
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N S: | gy, 2 H’dtécgjt‘” || PH((EYE, @) |*dt .

It follows from (4.4) and (4.5) that

’ 4

N» S: " e, ) sztch:vz 727 || PY(g(B)(E, =) |I*dt .

Then, from this inequality, we can easily see

14

N~y |, ) (dt
0

L W P LCOLEN S

Therefore we have

l2 T’

4.6) |, lae, o ratseN—= || Py, o)|dt

Letting N— « in (4.6) we see that kthis is impossible unless %(t, )=0
for 0<t<7"/2. Hence we conclude that u(¢, )=0 in [0, T\]x {2: |2| <7}
for some T,>0 and #>0. The proof of Theorem 1 is completed.

PrOOF OF LEMMA 4.1. Making the singular change of variables (cf.
[1]), we have
{t=('r2—-lX|2)"T
- le=X
with tD,=TD; and D,=D,+2kX/(r*—|X|>TD,.

Here we denote the dual variable of (T, X) by (4, Z). Then principal
symbol of P¥T, X, D,, D,) is written as follows.

P.(T, X, 4, 5)
g , 2X
— 2 2\k 2 e i
B.(*—| XP'T, X, T4, (*—| X T +kr2_|Xl2TA>),
where P,(t, @, \, &)= 7\."‘+Zosf,_<,,,._1 Q. ;(, ©)&A'. Then from (A-I) we see

that coefficients of principal symbol P(T, X, A, E) are real-valued C>-
functions.

Next we shall check that characteristic roots satisfy the properties
of the (#)-condition. We proceed to calculate PL(T, X, 4, 5).
P.(T, X, 4, 5)
=(TH™+ 3, a0 s((*—|XPHT, X)X

la|+i=m
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X {(r*—| X [)* T'8 + 2k X(r*— | X[ T T AT A)’
=P ((r—|X)'T, X, T4, (r"—| X)*'T'5)
3 0o, (r"— | X[P*T, X)Cp{(r*—| X ) T'5)

0sism—1 a<p
lal+i=m

X {26 X(r*—| X[)* T TAY*(T 4y
=P ((r*—|XP)'T, X, T4, (@ —|X[)'T'5)
+ 2 3 bas (T, XYTH A (r* — | XY T ST AP

0sijsm—1 a<p
la|+5=m

where b, ;(T, X) is a smooth function.
Hence it is sufficient to see that the equation
@47 P~ |XP)T, X, 4, 5)+ 3 3 bup (T, X)THe015fm101=0

0sSjsm—1 a<p
lal+5=m

with respect to A hals simple roots and the imaginary part of its root
never vanishes for £+0 or identically vanishes.
Putting T=0 in (4.7) we have the equation

(4.8) B0, X, 1, 5)=0.

From the assumptions of Theorem 1, the roots of (4.8) are simple. On
the other hand, roots of (4.7) are continuous with respect to 7. Hence
for some T">0 roots of (4.7) are simple for 0<T=<T'. Since coefficients
of the left-hand side of (4.7) are real-valued functions, it follows from
distinctness that the imaginary parts of its roots never vanish for any
£+0 or identically vanish.

From elementary calculation we can make sure that the lower order
terms of PYT, X, 4, 5) satisfy the (#)-condition on [0, T"] with a(z)=
(r—|X[»¥. Hence we shall omit its proof. Q.E.D.

§5. Concluding remarks.

We shall give generalization of Theorem 1 and 2.

Let o(x)eC> be a real-valued function. Then for a differential
polynomial of P, x, )\, &) of (1.1), o(x) and I=k'/k we define the
differential operator as follows.

(5.1) B, z, tD,, t'o(x)D,)
=t*"Dr+ 3 @, o)t io(x) ' DzDji .

0sjam—1
lal+5sm

Then we obtain
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THEOREM 1'. Under the assumptions (A-I) and (A-II), for a
characteristic partial differential operator P=P(t, «, tD,, t'o(x)D,) we
obtain the local uniqueness in the following sense.

Any function w of class C* mear the origin satisfying

Pu=0
Diuf¢=e=0 for any 35=0

vanishes identically in some meighbourhood of the origim in R X R".

Note that this operator is translation-invariant under the singular
change of variables (4.3).
~ The proof of this generalized theorem is easily seen if we read the
proof of Theorem 1 replacing a(X)=(*—|X[»* by a(X)=(r*"—|X[»*a(X)
in Lemma 4.1.
Consequently from Theorem 1’ and Lemma 3 in §1 we also have a
generalization of Theorem 2.

THEOREM 2’. Let P be of Fuchsian type with weight m—s with
respect to t. We suppose that there exist a real-valued function o(x)eC=,
a differential polynomial P, =, \, &) satisfying (A-I), (A-II) and a posi-
tive rational number l=Kk'lk (K'=1 is an integer) such that

(5.2) t—*P(, x, D,, D,)=P(, =, tD,, t'o(x)D,) .
Then, any function u of class C mear the origin satisfying
{Pu=0
Diulime=0 for 0=j=m—s+h—1
vanishes identically near the origin in RXR", where h 18 the same as

wn Theorem 2.

Next we shall note the following fact. In our theorems we assumed
that coefficients of principal symbol are real-valued functions. But let
us review the proof of Theorems. Hence it is sufficient for the proof
of the local uniqueness that the transformed operator under the singular
change of variables satisfies the (#)-condition. Consequently we can show
the local uniqueness for certain other operators whose principal symbol
has non-real coefficients. For example

P=D,+it*K(t, )D,+c(t, )

where 8=0 is an integer, K(t, ) is a real valued C*-function, K(0, 0)+0
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and c(t, ) e C~ (see [8)).
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