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Introduction

There exist various residue theorems in complex analysis whose
archetype is the residue theorem for meromorphic 1-forms on a compact
Riemann surface. In this case a 1-form can be considered as a connec-
tion form of the trivial line bundle or of any holomorphic line bundle
with flat representatives. Thus the fact that the sum of the residues of
a meromorphic 1-form is zero means that the sum of the residues of a
meromorphic connection of a holomorphic line bundle is equal to the
Chern class (or number) of the bundle on a compact Riemann surface.

Now let us generalize the situation to higher dimensional cases.
Let E be a holomorphic vector bundle over a compact complex manifold
M, and let D be a meromorphic connection of E. Then we hope that
there may exist some relations between the residues of D and the Chern
classes of E. In this paper it is shown that if D is logarithmic and if
the pole Z of D satisfies certain conditions, then there are relations
among the residues of D, the pole Z and the Chern classes of E. Our
theorem states:

If the pole Z of a logarithmic connection D is normally crossing,
and if each irreducible component of Z is smooth and the intersection
of any finite number of irreducible components of Z is connected, then
the following relation holds in the cohomology group H*(M, 2%)

where c,(F) is the k-th Chern class of E, Res;; D is the residue of D
along the irreducible component Z; of Z, ¢,(4,, ---, A,) is the completely
polarized form of the k-th Chern polynomial c¢,(4), ¢,((W]) is the Chern
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class of the line bundle associated with a divisor W, and the summation
is taken over all k-uple ordered sets of irreducible components of Z.

In §2 we will state precisely the theorem; its proof will be given
in §3.

§1. Logarithmic connections and its residues.

Let M be a compact complex manifold and z: E—M be a holomor-
phic vector bundle over M of rank ¢q. For an analytic subset Z of pure
codimension 1, we denote by 2%(log Z) the sheaf of germs of meromor-
phic p-forms on M with a simple logarithmic pole along Z.

DEFINITION. A meromorphic connection D of E with a simple
logarithmic pole along Z is a C-linear map

D: Z(E)— 2y(log Z)9 /4075

which satisfies
D(f.8)=dfRs+ f.D(s)

for any local sections f of <, and s of Z(E).

Such a connection D is called a logarithmic connection of E, and Z
is called the pole of D.

In this paper we assume that Z satisfies the following condition:

(H.1) Z is normally crossing.

(H.2) Let Z=U;cx Z; be the decomposition of Z into irreducible
components (N is a set of indices). Then each component Z; is smooth.

Choose a sufficiently fine coordinate covering {U,} of M such that:

(i) the restriction of E onto U, is trivial, and

(ii) for each Z;, a defining function f;; is chosen in U, and it is a
coordinate function of the local coordinate system in U,. (This is possible
by the above assumptions. If Z;N U, is void, we set f;;=1.)

Let e;=*%(eu, €1, -+ -, €;,) be a holomorphic frame of E on U,. The
connection matrix D, of D with respect to the frame ¢; is defined by

D(e;)=D;Qe; .

Then D, is a matrix whose elements are sections of Q24(log Z).
Let e;, be the transition functions of the frames e¢;, On U,N U,
e and D, satisfy the following:

€2=€uCy ,
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( 1 ) DgexyZdezp'J{"ex‘uDy .

Under the assumptions (H.1) and (H.2), the matrix D, is written,
for each Z;, by

(2) D1=A2j df“ +sz ’

S
where A,; is a ¢x g matrix of holomorphic functions on U, and B;; is a
gxq matrix of logarithmic 1-forms on U, with a simple pole along

Uh&j Zl'
Then the residue of D, along Z; is defined by

(3) ReSZj.D;=A2,-|Zj.

This is a matrix-valued holomorphic function on Z;N U, and does not
depend on the choice of the local equation f;; and the above representa-
tion of D,. The following lemma is an easy consequence of (1) and (2).

LEmMMA 1. On U,NU.NZ;, we have
Res;; Dexu lz,-=ez# |z,- Resz,- D, .

{Res;; D;} defines an element of of H°(Z,, <(End E)), where End B
is the endomorph1sm bundle of E. We denote it by Res;; D, or simply
by Res; D, and call it the residue of the connection D along Z;.

§2. Statement of the theorem.

Let J=(4,, 7, -+, 4:) be an element of N*=NXNX--- XN (k times).
If among 7, js, - -+, j, there exist p different indices, say j¥, j¥, -+, J7>
put J*={j¥, j¥, ---, %} and let a, be the number of j% appearing in J
1=m=p):

For each Je N*, define Z,. as Z,,.=\,-,Z;;. This is a submanifold
of M of cod1mens1on p or empty because of the assumptions (H.1) and
(H.2). Let Z,.=J.Z% be the decomposition of Z,. into connected com-
ponents (Z,. being not necessarily connected).

Recall the definition of Chern polynomials ¢,(A). This is, by defini-
tion, the coefficient of ¢* of the following polynomial:

det (I+ At)= ,,Z_o (At
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where I is the unit matrix of size ¢, A is a matrix of size ¢, and ¢ is
an indeterminate. ¢,(A4) is a homogeneous polynomial of the components
of A of degree k. Moreover it is invariant:

ci(BAB™)=¢,(A)

for any invertible matrix B.

Let cu(A,, 4,, ---, A,) be the completely polarized form of c,(A).
This is uniquely determined by the following properties:

(i) eu(4,, ---, A)) is multilinear,

(ii) symmetric in A4;, and

(iii) normalized, i.e., c,(4, ---, A)=c,(A4).
Then ¢,(4,, ---, A,) is also invariant:

c(BA,B™', BA,B™, - -+, BA,B)=c,(A,, 4,, -+, A)

for any invertible B (see Chern [3]).
Now the following proposition is an easy consequence of Lemma 1
and the compactness of M:

PROPOSITION 2. For any element J=(j,, ---, 7.) € N*¥,
c.(Res;, D, Res;, D, -- -, Res;, D)
18 constant on each component Z32.
We denote this value by c,(Res, D).
Let W be a submanifold of M of codimension p. For a C=-dif-
ferential form @ of type (n—p, n—p) on M (n=dim M), the functional

wigl=| o

is a 9-closed current on M of type (p, ). So it determines a cohomology
class in H?(M, 2*) by Dolbeault’s theorem. We denote this class by
co(W).

Now our main theorem is:

THEOREM 3. Let E be a holomorphic wector bundle over a compact
complex manifold M and let D be a logarithmic conmection of E with
the pole Z. Moreover Z satisfies the two conditions (H.1) and (H.2).
Then the following relation holds in the cohomology group H*(M, Q%)

eB)=(—D* 33 S {eu(Res, D)¥e,(Z) T1 eu(Z D,
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where c,(E) is the k-th Chern class of K.

REMARKS. (1) Let K be the curvature of a C~-Hermitian metric
of E. ¢, (E) is, by definition, the class in H*(M, 2*) represented by the
(k, k)-form ¢,((—1/27i)K). (We adopt the definition from Bott-Chern [2]).

(2) In general, c,(Res; D) takes different values on various com-
ponents Z%. If Z,. is connected for each Je N*, then we have
cy(Zs)=c\(Z;)- - -cl(Z,.;) and we have the formula stated in the intro-
duction.

§3. Proof of the Theorem 3.

3.1. An Hermitian metric of the bundle E.

Let H: EQQE —C be a C*-Hermitian metric of E where H is C-linear
on the first factor and anti-linear on the second factor. On a coordinate
neighborhood U,, H is represented by

Hz=(Hzﬁ) ’ Hu;':H(eu, ezj) .

Let I';=0H,H;* be the connection matrix of the metric H and K;=
dl';—I';ANI';=0I"; be its curvature matrix with respect to the frame e;.

Now K={K;} is the C=-curvature of E and c,((—1/2xi)K) is a o-
closed (k, k)-form on M.

3.2. Metric of the bundle [Z;].

Let [Z;] be the line bundle associated with the divisor Z;. Put
fuwi=Ffuilfz; on U;NU.. Then a metric of the bundle [Z;] is a set of
positive C~-functions h,; on U, such that

Bai=|fwilthu; on TN Uy .

Put w,;=0h,;h;}=0log (hy;;) and 6,,—=0w,;=dd log (hy;;) on U, Then on
U,NU,, 6,;=6,; so that {6,;} determines a global 3-closed (1, 1)-form §6,,
which is the curvature form of [Z,].

LEMMA 4. The form (—1/2mi)0; is 0-cohomologous to the current Z;
defined in §2.

This lemma is well-known and the proof is omitted.

3.3. Now we prove the theorem 8. The left hand side of the
formula in the theorem is represented by the differential form
e ((—1/27)K)=(—1/2ni)*c (K, K, -+, K), and the right hand side is
represented by the current
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k (4) 1 m—l (%)
(1 3, {SieuRes, D)O(T1 (205,)" ) 252} -
This follows from Lemma 4. So it is sufficient to prove the above two
currents are mutually d-cohomologous.
We fix a C~-metric of M and for a subset X of M, we denote the
e-neighborbood of X by X°.

LEMMA 5. Put L=D-I. It is an End E-valued 1l-form on M,
having a pole along Z. L satisfies: ‘
(i) 0L=—K on M—2Z,
(ii) Res;; L=Res;; D for any component Z;.

(We defined residues only for logarithmic forms but the component of
the matrix L is a sum of a logarithmic form and is a C=-form. So the
residue of such a form is also well-defined.)

The proof of the above lemma is easy and omitted.
Now let @ of a C~-form on M of type (n—k, n—k). Then

(22) eumlg]

=(——1.)k Suck(K’ K, -, K)AP

271
() im{, o - BOne
=(2—71')k lim S,_z. c(—0L, K, -+, K)A@

= _(é—n_i) lim | L K, - K)AS

t—0

M—

(2m) th AL K, -, E)AD)
S cuL, K, -+, K)Aop

— lim
(Zm el—~o

(2m> lim L el K, -+, K)NP)—T[39] ,

&—0 €

M-z

where T[+]=(—1/27i)* llm,_.os c,,(L K, -, K)AN+ is a well-defined

current of type (k, k—1) on M called the principal value of Cauchy.
Then, by Stokes’ theorem,
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(2) emle]

~(G0) tim Lo K o 0N =Tl

- (2—71),‘ (@rd) 2 Sz]. Res, (L, K, -+, K)AP)— T[37]
__(—DF .
= @ A S ciRes; D, K, -+, K)AP—oT[p] .

Therefore the current (—1/27%)*c,(K) is 9-cohomologous to

(=1* _ ,
s B ZueuRes D, K, -+, K)
Next, in order to modify the last integral, we prepare two lemmas.
Fix an element J=(j,, 75, -+, ju») € N®&. On U,, the connection matrix D,
is written by

D;= 3, Ay Af +B,,

e fu

where B, is a matrix of logarithmic 1-forms on U, having a pole along
Z,, s¢J*. Let B;;=B;|;,« and let

Bu:BxJ—, Res; D;w;;lz,+ »
jeJ*
where w; is the previously chosen metric connection of [Z;].

LEMMA 6. B,={B,} is a connection of E|;,., having a pole along
Z,NZ, 8¢J*.

The proof of this lemma is done by an easy calculation, so it is
omitted.

LEMMA 7. Put L,=B,—TI|;,., where I" i3 a metric connection of E.
Then L; is an End E-valued 1-form on Z,., satisfying

(i) 0L;,=—;c«Res; DO;,— K on Zp—U,esZ,,

(ii) Res, L;,=Res,, D for s¢J*.

The proof is analogous to the proof of Lemma 5 and is omitted.
In the following, we write R; for Res; D. For J=(j,, Js, * **, J1) € N,
J*={j¥, ---, 7%}, (I<k), we consider the integral

—1 -? a;—1 a,—1
I(g)):W Sthc"(th’ -, R, K, -+, K)@3) - (05) 7P
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= =D

(27f’i)k—p s—0 SZJ'_XQ ck(le’ Tty R"l’ K’ Tt K)P"(o)g) ’

where X=(U,.s+Z)NZ,., and we denote the product (7R (ko
by P,;#). We get, by Lemma 7,
» 5LJ=_Z R,ﬂ,-—-K on ZJn_U.¢JtZ, .

jea*

Substituting this, we have

_ (—1)-7+t
1) =iy lim Sz,-_zs

Ly |
Gy B2,

—71)i—2p+1 _
- ((27:1?)":)’ linct1 Sz *_x¢ a(c”(Ril’ T Ril’ LJ’ K: ) K)PJ(0)¢)
8 JT*—

ck(RJ’p Sty R.ip 5LJ, Ky Tty K)P,(0)¢

ck(R:’p ) R.ip Rioi’ K’ ) K)Pl(a)q)

(=1t _
* (27[’1:)"_’ 111:? Sz . xt c"(R-ﬁ’ ) R-"’l’ LJ’ Kr % K)PJ(0)3¢
8 J'—

(—1)+-»Ht
W"_ ,-%‘. SZJ.ck(RJ'p A R:‘p R; K, ---, K)§;P,0)p

_ (=L
- (€272 hintd ( 2m).§_}. Sz,nz;

+ T'[op]

—1)¢—rt+1
((27:’2)"_’ :'}e;'r* SzJ-c"(R"'l’ T Ril’ R; K, ---, K)0;P,0)p ,

where T[y]=(—1)"*+/(2mi)*~* lim,_, S
Z gt
is a principal value current on M. So

.ck(Rip %y R:'p Res, 'D) K; *t %y K)PJ(O)q)

X ck(Rip e ,R:'pL.n Ky e ’K)PJ(O)"J"

(—1)@+n—to+n
- @2ri)t—tetn eNl+ISzJ'~

4 (_1)(l+1)—1’ S
(ZIi)k—P JIenNi+1 Zy*

I(p)

ck(RJ‘p Tty Rju Ru -K: ) K)PJ'(0)¢
ck(Rip Tty R:‘p Ri: K’ Tty K)PJ"(0)¢+5T[¢] ’
where J’=(j17 Tty jl’ 8)=(J; 8), 8 ¢J* and J”=(j1’ Tty jl’ j)=(Jy j)r jGJ*.

This shows that we have at last

1
@m.—),; SMck(Kv .-, K)o

B %E_é%)i— SZJ."KR:I' +++, Ry )P, (0)p+3T (o]
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for some (k, k—1)-current T on M.
Now

(é}l‘%)k"?PJ(e) = <§—7C_t>k—?(0jf)a1—l . e (0j;)ap_1

WA LNE i
271 2w 7

and cy(R;, ---, R;)=c.(Res; D) is constant on Z{®. This proves the
theorem completely.
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