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Introduction

A convex cone V in the n-dimensional real number space R" is a
non-empty open subset of R* satisfying the following conditions:

(1) If xeV and e R with A>0, then Axe V.

(2) If 2,yeV, then x+yeV.

(3) V contains no full straight line.
We denote by G(V) the group of all linear automorphisms of V, that is,

G(V)={AeGL(n); AV=V}.

If the group G(V) acts transitively on V, then V is called homogeneous.
Let { , > be an inner product in R". Then the dual cone V* of V with
respect to the inner product ( , > is defined by

V*={y e R"; {x, y>>0 for every z€ V—(0)},

where V is the topological closure of V in R*. A cone V is called self-
dual if the dual cone V* of V with respect to a suitable inner product
coincides with V. The characteristic function @y of V is defined on V by

Py (@)= SV‘ exp — <=, ¥ydy ,

where dy is a canonical Euclidean measure on R". The characteristic
function of a homogeneous convex cone V is determined uniquely up to
a constant factor by the following property:

Py(Ax)=py(x)/|det A|

for every eV, AecG(V). Let us take a system of linear coordinates
(@, %, * -+, %,) of R*. Then using the characteristic function we can define
a G(V)-invariant Riemannian metric g, on V by ‘
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— azlo—g?”.dm dx
9r cz} 0,00 ; e

This Riemannian metric g, is called the canonical metric of V (cf. Vinberg
[6D).

The theory of homogeneous convex cones has been developed mainly
by M. Koecher, E.B. Vinberg, O.S. Rothaus and others (cf. e.g., [2],
[6], [6]). It is known that every homogeneous self-dual cone is a
Riemannian symmetric space with respect to the canonical metric (cf.
[2], [4]). In 1965, Y. Matsushima raised the question whether every
Riemannian symmetric homogeneous convex cone is self-dual or not. The
purpose of the present paper is to give an affirmative answer to the
above Matsushima’s problem. Our main result is stated as follows:

THEOREM.™ If a homogeneous convex come V is Riemannian sym-
metric with respect to the canonical metric, then V is self-dual.

In proving the above theorem, the notion of T-algebras due to
Vinberg [6] plays an important role. In §1, we will recall a fundamental
correspondence between homogeneous convex cones and T-algebras. In
§ 2, by making use of the theory of invariant connections due to Nomizu
[3] and the results in §1, we will calculate the Riemannian connection of
the canonical metric (Lemma 2.2) and some of the covariant derivatives
of the curvature tensor. And we will give necessary conditions for a
homogeneous convex cone to be Riemannian symmetric (Lemmas 2.3 and
2.6). Using the results obtained in §2, we will prove in §3 the main
theorem (Theorem 38.2) and give an application (Corollary 3.3).

The author would like to express his hearty thanks to Prof. S.
Kaneyuki who kindly taught him the Matsushima’s problem and gave
him helpful suggestions, and to Prof. T. Sasaki for his valuable comments.

§1. Homogeneous convex cones and T-algebras.

In this section we will recall some of fundamental results on homo-
geneous convex cones due to Vinberg [6].

1.1. It is known that there exists a natural bijection between the
set of all isomorphism classes of homogeneous convex cones and the set
of all isomorphism classes of T-algebras. For later use, we will review
this bijection.

We begin with some definitions on T-algebras. Let » be a positive

* H. Shima obtained the same result independently [8].
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integer and A a finite dimensional algebra over the field R of real num-
bers. Then 9 is called a matrixz algebra of rank r if U is bigraded with
subspaces 9;; (1<%, j<7) such that

(1.1) Wi W oA, and A, 7 (0) A=Z4, 4,k IST) .

An involution of a matrix algebra 9 is an involutive anti-automorphism
* of A such that AX=9A,, (1=54, j=<r). We will employ the following
notations:

[ab]=ab—ba , [abc]=a(bc)— (ab)c for every a,b,ce¥A.
'n'tizdimmij ’ ni=1+lznki+l2nik .
2 k<i 2 i<k

a;; denotes an arbitrary element of 9,;; also we write a=(a,;),
where a,; is the 9,;;-component of an element a €.

DEFINITION. A matrix algebra A=, <, U;; of rank 2 with an
involution * is called a T-algebra if the following axioms (T.1)-(T.7) are
satisfied:

- (T.1) Each subalgebra 9, (1=<4<7) is isomorphic to the algebra R
of real numbers under an isomorphism p.

(T.2) aua,;=p(00)a:;, a,;0;;=p0a;)a; 1=1, J=r).

(T.8) Sp[ab]l=0 for every a, b€, where Sp is the trace of an ele-
ment a=(a;;) defined by Spa=> <<, 7.0(a:).

(T.4) Splabc]=0 for every a, b, c € .

(T.5) Spaa*>0 for every a+0¢e¥.

(T.6) [abc]=0 for every a, b, ¢ € Diicicic, Wije

(T.7) [abb*]=0 for every a, b€ > icici<r Usj-

In what follows, we will identify an element of %, with a real
number under the identification p. We put

T)={t=(t:3); t«>0 for 1=i=<r, ¢,;=0 for 1=j<i=7},
V) ={tt*; te TA)} and XA={acWY;a*=a}.

Then the following results are known in Vinberg [6]: For any T-algebra
A, the set V(A) is a homogeneous convex cone in the real vector space X(AN).
The set T(N) is a connected Lie group which acts linearly and simply
transitively on V(). Conversely, every homogeneous convexr cone 18
realized in this form and this correspondence induces naturally a bijec-
tion between the set of all isomorphism classes of homogeneous convex
cones and the set of all isomorphism classes of T-algebras.
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1.2, Let A be a T-algebra of rank » and V(%) the homogeneous
convex cone which corresponds to %. Then we define the rank of V()
by 7 the rank of the T-algebra %. We denote by () the Lie algebra
of the Lie group T(%). Then the bracket operation [ , ] in %) is given
as follows:

1.2) [a, b]=[ab]=ab—ba

for every a, bct(Y) (cf. the formula (20) in p. 383 of [6]). We put e=(e,;)
the unit element of 9A, that is,

1.3) ex=1 for 1=7=<r and e;=0 for 1<i#j<7r.

Then the tangent space of V() at the point e can be identified naturally
with the ambient space X(). Furthermore, there exists a natural linear
isomorphism ¢ from the Lie algebra t(%) onto the real vector space X()
as follows:

1.4) Etet@@—t+t*e X(N) .

By the formula (34) in p. 389 of [6], the canonical metric gvm at the
point e is given by

gvw(a, b)=Spab

for every a, be X(A). By using g, and the isomorphism &, the canonical
inner product can be defined on the Lie algebra t(), which is denoted
by {, >. Then by (1.4) we have

1.5) {a, b)=Sp (a+a*)(b+b*)

for every a, b et(Y).

It is easy to see that with respect to this inner product ¢ , >, the
Lie algebra t(%) is an orthogonal direct sum of subspaces Ay A=
J=7): HA) = icizis Wes; and the bracket operation [ , ] in t(A) satisfies
the following relation:

(1.6) (25, mkl]cajkmﬂ'i‘atlmki =1, 4,k 1) .
By the formula (A) in p. 893 of [6], the following equality holds:
1.7) <aijb:ik, a;jb;'k> +<0/¢j ;’k; a:jbik>=(1/nj)<a’ti’ a::'> <b:iky b;'k>

for every a.;, ai;€ W, by, b€, with 1<i<j<k=r. From (1.7) it
follows that for i<j<k with n,n;#0, the inequality

(1.8) max (M, Mji) =N
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holds.

1.3. For each ¢ with 1<i<r, we put

(1.9) et=(1/2]/—'n_¢)eu .

Then by (1.3) and (1.5) we have (e, e¢,>)=1.

For each pair (¢, j) with ¢<j and n,%0, we take an orthonormal
basis {65;}1515n,5 of the subspace 9;;. If n;n;,#0 and 1<i<j<k=<r, then
we define a system of linear operators {T:}is250,; DY

(1.10) T, Uj— YU, , T:a;= 6§jaa'k

for every a;,€¥;. Then from the condition (1.7) it follows that the
system {T}i<:<.,; satisfies the following conditions:

(1.11) ‘TiTu+'"TWTi=1/n;)001 5 ,
where I; is the identity operator on 9,.

LEMMA 1.1. The bracket relations in the Lie algebra t(A) are given
as follows:

(1) The case of nym;,#0 (1<j<k).

[e, ai;]=— [a:;, e]=(1/ 21/')_’1; )85, [es, anl=—[au, e]=(1/ 21/;;;)“:1"

les, ai;]= —lai;, e;]=—(1/ 2‘/%)6!“', lei, aj]= —[a, e;]= (1/21/-’"1_:')@5»,

[er, ae]= —[aw, ex]=— (1/21/’7";)011" [ex, aji]l= —[a, er]=— (1/21/n—k)ajm

lets, asl=—[as, eh]=Tha;, for 1SN=n,; and all other bracket relations
between elements in W,s (a, B {3, 7, k}) are zero.

(2) The case of myn,#0, n;=0 ((<j<k) or numu#0, n,;=0 (1<
J<k).

le:, ai]=— [a:;, e]= (1/2]/"-?:)&5, [e:, aul= —[aw, e]= (1/21/;1:)%,

[es ai]= —[ai; e;]=—(1/ 21/"1,;)04;, less asel=—[a, e;1=(Q1/ ZI/ni)aik’

lex, aul= —[au, e.]=— 1/ 21/9"/1:)041» lexy ajel= —[aji, ex]=—(1/ zl/n_k)a.‘ik
and all other bracket relations between elements in U, (a, Be€{i, j, k})
are zero.

The proofs of the above lemma follow from (1.2), (1.6), (1.9) and (1.10) in
a straightforward manner. So, we omit them.

§2. Invariant connection of the canonical metric.

Let % be a T-algebra of rank » and V(%) the corresponding homo-
geneous convex cone. We will denote simply V() and #(2) as V and t,
respectively. Making use of the theory of invariant connections due to
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Nomizu [3], we can calculate the Riemannian connection and the curva-
ture tensor of the canonical metric on V in terms of the Lie algebra t
and the inner product ¢, ) in (1.5).

2.1. Let a be the connection function for the canonical metric of
a homogeneous convex cone V. Then a is given as follows:

@2.1) a:txt—st,  ala,b)=Ula, b)+-;—[a, 5,

2(U(a, b), ¢)={l¢, al, b)+<a, [¢, b))

for every a, b, cet (cf. [3]).

First of all, we will calculate the symmetric part U of the connection
function « in the respective cases in Lemma 1.1. From Lemma 1.1 and
(2.1), we have easily the following

LEMMA 2.1. The symmetric part U of the connection function o is
given as follows:

(1) The case of mymu+0 (1<j<k).

Ule;, e,)=0 for \, pefi, j, k}, .

Ule, a:)=—(1/ 41/"7/—:)045; Ules, a;)=0, Ule, au)=—(1/ 41/”«)041:;

Ule;, a:;5)=(@1/ 41/’175)0«5, Ulej, aj)=—(1/ 41/n_,-)aj,,, Ule;, au)=0,

Ules, a:5)=0, Ules, aj)=(1/ 4‘/%;)0'51" Ules, au)=(@1/ 4l/n_k)aik’

Ula.;, ai))=<as, ai;)(1/2V n)e.—(1/2V ny)e;),

Ula;, a;)=0, U(ef,-, au)=(—1/2)'Tay for 1=AN=n,,

U@, @i)=<as, amy((1/2V n)e;—(1/2V n)ey),

U(ailn aik) = (1/2)(215151;“' <1_11_a:'ky a¢k>ef.1')9_

Ulau, ai)=<{au, au)((1/ 21/’”'1 de.—(1/ 2‘/’nk)ek)~

(2) The case of nyny#0, n;=0 (1<ji<k) or n;m,+#0, n, ;=0 (1<
i<k).

Ule,, €x)=0 for N, pefs, j, k},

Ule., aiy)=— 1[4V n)a.;, Ule, au)=0, Ule, au)=—(1/4V"n)aq,

U(e:'r a'i.‘l') = (1/4]/77.1')0'0'7 U(ea" a’ilc) = (1/4‘/;’-?’_.1')01.1'159 U(e.i’ atk) = 0’

Ule, a:)=0, Ulew, a;)=@1/ 4‘/”71:)“51" Ules, au) =1/ 41/’”'—1:)“:1"

U (@, a;,') = <a¢j, a:,'> @/ 21/‘;-7: Ye.—(1/ 21/"-;)35), Ula;, a;)=0,

U(ass, au)=0, Ulaz, ais)=1<au, ai(1/2V n)e;—1/2V n)es),

U@, aa)=0, Ulau, ai)=-<au, auy(1/2V n)e.—1/2V n.)es).

Directly from the formula (2.1), Lemmas 1.1 and 2.1 we have the
following

LEMMA 2.2. The connection function o« of the canomical metric is
given as follows:
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(1) The case of nyn;:+0 (1<j<k).

a(eb am.n)z:o fOT 7\'1 mr n € {";, j’ k}!

a(aq;, e)=— (1/21/"?'_:)‘145: a&'_/m e;)= (l/z_l/n—j)atj’ a(aq;, e)=0,

(@, aij) =<y, ai)(1/2V n0)e— (1/2V'nj)e;),

alelj, a;)=1/2)Tia; for 1=N=m, olel, aw) = (—1/2)'Tay for 1=
Né Ny

a(a;, €,)=0, a(a, e;)=—1/ 21/""4_3')(11'1” a(a g, e)=(1/ 2%)“,‘1”

; ?‘(ajk, ei)=(—1/2)T:a; for 1=N=n, (@, Guw) = (1/2)215251.,,- (T30

Qi) Cijy

(@i, @) =@ @ (1/2V ' n5)e;— (1/2V n1)es),

(s, €)= — (1/21/'”—4)041" a(au, e,)=0, a(au, e)= (1/21/:'_”;)01:1”

N ?(a‘tln el) =(—1/2)}'Tia, for 1=N=ny, al@w, G = (1/2)21515n15<T2a5k!

A1) €559

a(@ipy Qi) = Ay Aiz) ((1/21/’;;;)31"‘ (1/21/’n_k)ek)-

(2) The case of nmy#0, n;=0 (1<j<k) or n;mu+#0, n,;=0 (1<
i<k).

ez, Ama) =0 for N, m, nefs, j, k},

a(aq;, e)=—@1/ 2V n, g, a(agg, e;)=(1/ 21/714_5)04:', a(a.;, ex) =0,

a(aqg, ai;) =<y, ai;y(A/ 21 n,)e.— (1/ 21/’"'_5)6:'),

a(aijy a'jk) = 0: a(a_tjr a‘ik) = 0: a(a:‘k’ ei) = 09 a(a’:ik! e:i) = (1/21/'"'_.1')“.7'7"

ala;y, e)=(1/ 21/9%)“51:: a(a, a:;)=0,

(@ ja, @) =< @) (1/2V n5)e;— _(_1/21/n—:=)6k),

a(a‘:iky aftk) = 0’ a(_a;tk; et) = (1/21/'”'{)“11:’ a(atln e:i) =O,

a(au, €)= (1/ 2l/nk)aik! (@i a:5)=0, alau, a;) =0,

@y Biz) = {@ary @) (L/2V n0)e—(1/2V m,)ey).

2.2, Let R and VR be the curvature tensor and its covariant deriv-
ative of the canonical metric, respectively. Then R and VR are given
by the following formulas (cf. [3]):

(2.2) R:txtxt—t,

R(a, b, ¢)=R(a, b)c=a(a, a(d, ¢))—a(d, ala, ¢))—a([a, b], ¢)
and
2.3) PR:txXtxXtxt—t,

VR(a, b, ¢, d)=(F 4R)(a, b, ¢)=a(d, R(a, b, ¢))— R(a(d, a), b, ¢)
— R(a, a(d, b), ¢)— R(a, b, a(d, ¢))
for every a, b, ¢, d €t.
In the following lemmas, we will obtain the necessary conditions for

a homogeneous convex cone to be Riemannian symmetric, in terms of the
Lie algebra t or of the corresponding T-algebra .
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LEMMA 2.3. If there exists a triple (i, j, k) with 1=i<j<k=r such
that niing+#0, ;=0 or nung+0, n,;=0, then FR+0.

Proor. First we will show, in the case of n,n,+0, n;=0, that
(Veg,.R);&O for 1=A=<n,;. In fact, by Lemmas 1.1, 2.2 and the formula
(2.2) we have R(e,, ek, e)=0 for 1<n=<n,. Therefore, by the formula
(2.3) and Lemma 2.2 we see that

(4 ef,.R)(ej, el, eh) = — R(a(elj, e;), ek, eh)=—(1/ ZVn_j)R(efiy €%, €0)

= —(1/21/E)(a(eij alen, ef)) —aleh, alel;, eh)))
=(1/8n/ n;)el;+#0 .

Now we suppose that n;mn,+#0, n,;=0. Then we can show analogously
as in the above case that (VenR)(e, eb, ei)=(1/8n,1 n,)ef for 1<m=n;
and 1=n=n,. q.e.d.

LEMMA 2.4. If PR=0 and mn;#0 with 1<i1<j<k<r, then the
equalities m;=n; and ng,=mn; hold.

PROOF. From R(e;, el, ei)=R(e;, e, alel;, ex))=0 for 1=n, n'Sn,
and 1=\=<n,;, we have

(7 g2, R)(e;, €%, €)= — R(a(el;, €5), €ls, €X) — Rle;, alel;, et), em) -
On the other hand,

R(a(el, e;), e, ex)=(1/2V"n;)R(el;, ek, et
=1/8V'n;) 3 (T.Tek, exdels—1/8nV n,;)0,..€;

ISFSOI{,'

and
R(e;, a(el;, eb), e:‘é)=%a([e;, *Ten], en)
=(1/8l/ n,') E <TptT)erky 6?1;>e£‘,- .
1spsng;
Therefore, we have

(7 e3,R)(e;, efi, €)= (1/8V n)(1/n)0nneli— 3, (Ti*Tu+Tu*Ti)en, eldels) -

1spsng;
Hence, the system {T'},<isn,; satisfies the equations:
T'Tu+T.' T, =1/n)0.1,; .

Putting n=p, we have T,'T;=(1/2n)I,; and by (1.11) ‘T, T,=1/2n,)I,,.
Thus, we have n,=n; and n,=n. q.e.d.
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LEMMA 2.5. If VR=0 and nn;;#0 with 1=5i<j<k=r, then the
equality n/m;=mnu/n, holds.

PROOF. We want to calculate (FgmR)(e;, e, er) for 1=m=<mn,, and

1<n=<n,. By Lemma 2.2, we have R(a(e}, ¢.), ¢&, ex)=0. Therefore,

7 enR)(es, €k, i) =a(eR, R(e, €, ek))— Rle, alef, ek), ek

— R(e,, eh, a(el, ex)) -
From Lemma 2.2 it follows that

a(e?}n R(eh e?ky e?k)) = (l/snk‘/%:)e?k

and
R(e,, a(eR, ek, eh)=R(e,, ek, (e, €fi))
=1/8v'n) 3, (Tieh, ety Tl -
Therefore,

VepR)(ew, el €)= 1/8V n)(L/n)efi—2 3 <(Tieh, eiy Taele) =0 .
nij

Summing these qualities with respect to n, we have

(nu/n)el=2 3, ‘T Tef=(n/n;)eR -
152an;;

From this, it follows that n,/n;=mn./n:. q.e.d.
From Lemmas 2.4 and 2.5, we get the following

LEMMA 2.6. If FPR=0 and n,n;;+0 with 1=i<j<k=r, then the
equalities n,;=mn;,=n, hold.

ProoF. First we want to show that the equality
2(1/n,—1/m;) = (nu/n;—niln;)

holds. We note that from the assertion n,=mn; in Lemma 2.4, the
condition (1.11) is equivalent to the following condition:

(2-4) Tt Tu+ T Ti=1/n;)0:l; ASN, p=ny) .
Now, we calculate for 1=\<n,;, 1=m=n; and 1=n=ng,,

(VeﬁR)(eéh e‘;’cr e:k)=a(e’ﬁc’_ R(ei:i; 6%, e?k))_R(a(e?k; ei:i)’ eﬁv e?k)

— R(e};, aleh, en), en)— R(el;, efh, alel, %)) -

By direct calculations using Lemmas 1.1 and 2.2, we can see that
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R(el;, e, en) =1/4V n) Tk, ehder— 1[4V n) (TR, ehDe; .
Therefore, we have
ale, Bei;, €T, €)= (1/8n,){TseR, ehel -
The second term is given by

R(a(e}, eij), eh, et) =(1/8) >, (Tueh, eny T Tieh—(1/8n,) TseM, edem .

1sin;;
Similarly we have
R(el;, aleR, en), ex)=1/8n;)T;ep
and
R(eij, e, aleR, ez'.))=(1/8)ls,§m<‘Tpe&, €5y T2 T e
+QA/4) 3. (Tueh, ei) TuToehi— (1/8n,)< Tiek, enel .

#Ing s
Summing the equalities (7,3 R)(el;, €}, €5)=0 with respect to m, we get
the following:
((1/4n:) + (1/8n ;) — (n;3/8n;)) T, —(1/8) >, (3*TWT:*Tut+'T T, 'T,)=0 .

ISF‘S”,"-

By the equalities (1.11) and (2.4) it follows that
@A /ne—1/n)—®uln;—nin,) T, =0

for 1=<A=<n,;. From 2(1/ny—1/n)=(nu/n;—n,;/n;) and the equalities ob-
tained in Lemmas 2.4 and 2.5, we conclude that Ni; =M= Nep- q.e.d.

§ 3. Main result.

In this section we will prove the theorem stated in Introduction and
give an application.

LEMMA 8.1. Let A=< <, Uy be a T-algebra of rank r with r=3
satisfying the following two conditions:

(1) For each pair (i,j) with 1=<i<j<r, there exists a series
Toy U1y * 5 T SUCh that t,=1, t,=7 and Ny, 70 for 1SN m.

(2) For each triple (3, j, k) with 1<i<j<k<r satisfying the con-
ditions nma+#0, or nun,+#0, the equalities Ne; =N =Ny hold.
Then n,; is constant for 1<i<j<r.

PROOF. First we show that n.;#0 for every pair (i, j) with 1<i<
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j<r. Suppose that there exists a pair (¢, 7) (i<j) with n,;=0. Then
we can take a series 4, iy, +*°, in (m=2) of different indices satisfying
the condition (1). We consider the three indices 1, i, 7. From the
conditions (2) and (1.8) it follows that 7y n,,:,#0 implies the equalities
NWigt, = Magsy = Mgty Therefore, the series i, %, - - -, in satisfies the condition
(1). Again, starting from the series 1, oy =y tmy We get the condition
Ny, 70 in the same way. This procedure finally leads to the condition
N4y, #0, Which contradicts the assumption.

Next we show that =,,=mn,, for every (i, j) with 1gi<jsr. By
the condition (2), we can assume that ¢=8. Let us consider the triple
(N33, Mag, Nag). Then by the conditions (2) and (1.8) we have m,=n,. On
the other hand, for the triple (ny, %, m,;) We have n,=mn. Therefore
Nyj=Ngae q.e.d.

Now we are in a position to prove the main theorem which is an
affirmative answer to the Matsushima’s problem stated in Introduction.

THEOREM 3.2. Let V be a homogeneous convex cone. If V is
Riemannian symmetric with respect to the canonical metric, then V s
self-dual.

PROOF. A reducible homogeneous convex cone V is linearly iso-
morphic to a direct product Vi x Vyx--- XV, of irreducible homogeneous
convex cones V,; the decomposition is unique up to an order. In this
case, from the definition of the characteristic function (cf. Introduction),
it follows that @,=®, Py, - Py, and the Riemannian manifold (V, gv)
is isomorphic to the direct product of homogeneous Riemannian manifolds
(V. gv,). Therefore V is Riemannian symmetric if and only if each V;
is Riemannian symmetric. It is known that V is self-dual if and only
if each irreducible component V, is self-dual (cf. [7]). A homogeneous
convex cone of rank one is the cone of positive real numbers and an
irreducible homogeneous convex cone of rank two is the circular cone.
These two cones are self-dual. Therefore, in order to prove the theorem
we can assume that V is irreducible and the rank » of the T-algebra U
satisfying V= V(¥) is greater than or equal to 3. Then it is known in
Asano [1] that for an irreducible cone V(2), the condition (1) in Lemma
3.1 is satisfied. On the other hand, from Lemmas 2.3 and 2.6 it follows
that the condition (2) in Lemma 3.1 is satisfied. We obtain, by Lemma
8.1, that n,; is constant for every <, j with 1<i<j<r. It was proved
in Vinberg [7] that an irreducible homogeneous convex cone V() is
self-dual if and only if =, is constant for every i, j with 1=i<j=s7r.
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Therefore, V is self-dual. q.e.d.

Finally we give an application of the above theorem. It is known
that every homogeneous self-dual cone is Riemannian symmetric with
respect to the canonical metric (ef. [2], [4]). It was proved by Rothaus
[5] that a homogeneous convex cone V in R" is self-dual if and only
if the tube domain D(V)={zeC™;Imze V} over V is Hermitian sym-
metric with respect to the Bergman metric of D(V). Therefore, as an
application of the above theorem, we have the following

COROLLARY 8.8. For a homogemeous convexr come V, the following
three conditions are equivalent:

(1) V 4is Riemannian symmetric with respect to the camonical
metric.

(2) V 1is self-dual.

(8) The tube domain D(V) over V is Hermitian symmetric with
respect to the Bergman metric.
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