Ambiguous Numbers over $P(\zeta_3)$ of Absolutely Abelian Extensions of Degree 6

Hisako FURUYA

Tsuru University
(Communicated by J. Kojima)

Let K be an abelian number field of degree 6 over the rational number field P and suppose K contains a primitive 3rd root ζ_3 of unity. Then the ambiguous number of $K/P(\zeta_3)$ is 3^{2t-2} when 3 unramifies in $K/P(\zeta_3)$ and it is 3^{2t-1} when 3 ramifies in $K/P(\zeta_3)$ where t+1 is the number of prime numbers which ramify in K/P.

Let Γ be the genus field of K/P, then Γ/K is unramified and the number of these ideal classes of K which are principal in Γ is a multiple of $(\Gamma:K)$ and it is larger than $(\Gamma:K)$ if $t \ge 2$.

§1. Preliminaries.

Throughout this paper we shall use the following notations.

P The rational number field.

 ζ_n A primitive *n*-th root of unity.

In this paper, the conductor of K is the minimal number f such that $K \subset P(\zeta_f)$ when K is abelian over P.

 I_K The group of ideals in K.

 P_{κ} The group of principal ideals in K.

 $h_K = [I_K: P_K]$ The class number of K.

 $\mathfrak{A}\sim 1$ An ideal \mathfrak{A} is principal in the field.

 $\mathfrak{A} \sim \mathfrak{B}$ Ideals \mathfrak{A} and \mathfrak{B} are contained in a same ideal class in the field.

We call $\mathfrak{A} \in I_K$ an ambiguous ideal if $\mathfrak{A}^{\sigma} = \mathfrak{A}$ for all $\sigma \in \operatorname{Gal}(K/k)$ and we call $\mathfrak{A} \in I_K$ an ambiguous class ideal if $\mathfrak{A}^{1-\sigma} \in P_K$ for all $\sigma \in \operatorname{Gal}(K/k)$.

 $A_{0,K/k}$ The subgroup of I_K/P_K consisting of classes each of which contains an ambiguous ideal for K/k.

 $a_{0,K/k}$ The order of $A_{0,K/k}$.

 $A_{K/k}$ The subgroup of I_K/P_K consisting of classes each of which

contains an ambiguous class ideal for K/k.

 $a_{K/k}$ The order of $A_{K/k}$.

We call $a_{0,K/k}$ the ambiguous number and we call $a_{K/k}$ the ambiguous class number.

 E_{κ} The group of all units in K.

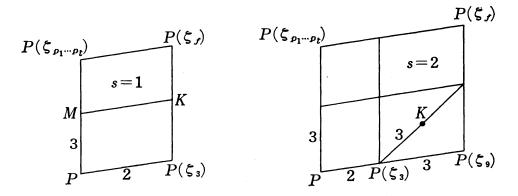
Let K be an abelian number field over k. If a number field Γ satisfies the conditions

- (i) Γ/k is abelian
- (ii) no prime divisor in K ramifies in Γ/K
- (iii) Γ is maximal under the conditions (i) and (ii), then we call Γ the genus field of K/k (in the wide sense).

§2. Ambiguous numbers.

THEOREM. Let K be an abelian number field of degree 6 over P and suppose K contains ζ_3 . Then the factorizaton of the conductor f of K into prime numbers is $f=3^sp_1p_2\cdots p_t$, s=1 or 2. When $t\geq 1$, we have $N_{K/P(\zeta_3)}E_K=\{\pm 1\}$ and $[E_{P(\zeta_3)}\colon N_{K/P(\zeta_3)}E_K]=3$. When s=1, we have $a_{0,K/P(\zeta_3)}=3^{2t-2}$. When s=2 and $t\geq 1$, we have $a_{0,K/P(\zeta_3)}=3^{2t-1}$. When s=2 and t=0, we have $a_{0,K/P(\zeta_3)}=1$ and $N_{K/P(\zeta_3)}E_K=\{\pm 1,\pm \zeta_3,\pm \zeta_3^2\}=E_{P(\zeta_3)}$.

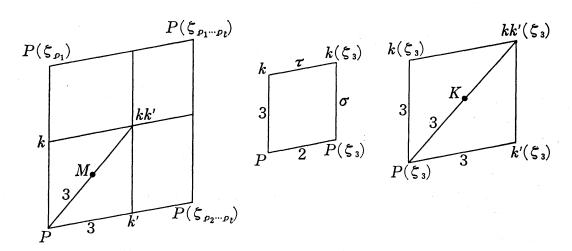
PROOF. $p_i \equiv 1 \pmod{3}$ for $i=1, 2, \dots, t$.



First we consider the case s=1. We put $M=P(\zeta_{p_1p_2...p_t})\cap K$. These factorizations of p_i into prime ideals are $p_i=\mathfrak{P}_i^3$ in M, $p_i=\mathfrak{p}_{i,1}\mathfrak{p}_{i,2}$ in $P(\zeta_3)$ since $p_i\equiv 1\pmod 3$ and $\mathfrak{P}_i=\mathfrak{P}_{i,1}\mathfrak{P}_{i,2}$ in K. And $\mathfrak{p}_{i,j}=\mathfrak{P}_{i,j}^3$ (j=1,2) in K. Since the class number of $P(\zeta_3)$ is 1,

(1)
$$\mathfrak{P}_{i}^{3} \sim 1$$
 in M , $\mathfrak{P}_{i,j}^{3} \sim 1$ in K $(i=1, 2, \dots, t; j=1, 2)$.

We put $k = P(\zeta_{p_1}) \cap M(\zeta_{p_2 \dots p_t})$ and $k' = P(\zeta_{p_2 \dots p_t}) \cap M(\zeta_{p_1})$. Then we have the following diagrams:



We have $k(\zeta_3)=P(\zeta_3,\sqrt[3]{b})$ for $b\in P(\zeta_3)$ and $b=\mathfrak{p}_{1,1}^{s_1}\mathfrak{p}_{1,2}^{s_2}\alpha^3$ for $\alpha\in I_{P(\zeta_3)}$, $(\alpha,p_1)=1$, $3\nmid s_1$, $3\nmid s_2$, since $k(\zeta_3)/P(\zeta_3)$ is a cubic Kummer extension, $\mathfrak{p}_{1,1}\nmid 3$, $\mathfrak{p}_{1,2}\nmid 3$ and only $\mathfrak{p}_{1,1}$, $\mathfrak{p}_{1,2}$ ramify in $k(\zeta_3)/P(\zeta_3)$. Since $h_{P(\zeta_3)}=1$, we can put $b=\mathfrak{p}_{1,1}^{s_1}\mathfrak{p}_{1,2}^{s_2}$, s_1 , $s_2=1$ or 2. We can put $\mathrm{Gal}(k(\zeta_3)/P(\zeta_3))=(\sigma)$ and $\sqrt[3]{b}^{1-\sigma}=\zeta_3$. We put $\mathrm{Gal}(k(\zeta_3)/k)=(\tau)$. Then $\sqrt[3]{b}^{(1+\tau)(1-\sigma)}=\zeta_3^{1+\tau}=1$. Therefore $\sqrt[3]{b}^{1+\tau}\in P(\zeta_3)\cap k=P$. Since $\sqrt[3]{b}^{1+\tau}=(\mathfrak{P}_{1,1}^{s_1}\mathfrak{P}_{1,2}^{s_2})^{1+\tau}=\mathfrak{P}_1^{s_1+s_2}$, we have $3\mid s_1+s_2$. So we can put $s_1=1$ and $s_2=2$. Therefore $b=\mathfrak{p}_{1,1}\mathfrak{p}_{1,2}^2$ and $\sqrt[3]{b}=\mathfrak{P}_{1,1}\mathfrak{P}_{1,2}^2=\mathfrak{P}_1\mathfrak{P}_{1,2}$. Hence we have $\mathfrak{P}_{1,2}\sim 1$ in $k(\zeta_3)$ from $\mathfrak{P}_1\sim 1$ in k and $\mathfrak{P}_1\mathfrak{P}_{1,2}\sim 1$ in $k(\zeta_3)$. Therefore $\mathfrak{P}_{1,1}\sim 1$ in $k(\zeta_3)$. Since $kk'(\zeta_3)/K$ is unramified, $kk'(\zeta_3)$ is contained in the genus field Γ of K/P. Hence

$$\mathfrak{P}_{i,j} \sim 1 \quad \text{in} \quad \Gamma \ .$$

Ambiguous ideal group $A_{0,M/P}$ is generated \mathfrak{P}_i and $A_{0,K/P(\zeta_3)}$ is generated by $\mathfrak{P}_{i,j}$. Since $\mathfrak{P}_i^3 \sim 1$ in M, $A_{0,M/P}$ is an abelian group of the type $(3, 3, \dots, 3)$. Since $a_{0,M/P} = 3^{t-1}$, there exists

(3)
$$(r_1, r_2, \dots, r_t) \neq (0, 0, \dots, 0)$$
 such that $r_i = 0$ or 1 or 2, $i = 1, 2, \dots, t \ \mathfrak{P}_1^{r_1} \mathfrak{P}_2^{r_2} \dots \mathfrak{P}_t^{r_t} \sim 1$ in M .

Also we have:

 $K=P(\zeta_{\mathfrak{s}},\sqrt[3]{c}), c=\mathfrak{p}_{1,1}\mathfrak{p}_{1,2}^{2}\mathfrak{p}_{2,1}\mathfrak{p}_{2,2}^{2}\cdots\mathfrak{p}_{t,1}\mathfrak{p}_{t,2}^{2}, c\in P(\zeta_{\mathfrak{s}}) \text{ since } K/P(\zeta_{\mathfrak{s}}) \text{ is a cubic Kummer extension, } \mathfrak{p}_{i,j}\nmid 3, \text{ only } \mathfrak{p}_{i,j} \text{ ramify in } K/P(\zeta_{\mathfrak{s}}), h_{P(\zeta_{\mathfrak{s}})}=1 \text{ and } N_{K/M}\sqrt[3]{c}\in P.$ Therefore we have:

$$(4) \sqrt[3]{c} = \mathfrak{P}_{1,1} \mathfrak{P}_{1,2}^2 \mathfrak{P}_{2,1} \mathfrak{P}_{2,2}^2 \cdots \mathfrak{P}_{t,1} \mathfrak{P}_{t,2}^2$$

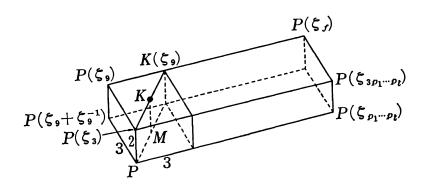
From (1), (3), (4) and $\mathfrak{P}_i = \mathfrak{P}_{i,1}\mathfrak{P}_{i,2}$, $a_{0,K/P(\zeta_3)}|3^{2t-2}$. Therefore, by the formula of the ambiguous number

$$a_{\scriptscriptstyle 0,K/P(\zeta_3)} \! = \! rac{3^{2t}}{(K\!\!:P(\zeta_3))[E_{P(\zeta_3)}\!\!:N_{K/P(\zeta_3)}\!E_K]} \! \leq \! 3^{2t-2} \; .$$

Consequently $3 \le [E_{P(\zeta_3)}: N_{K/P(\zeta_3)}E_K] = a$ power of 3. As $E_{P(\zeta_3)} = \{\pm 1, \pm \zeta_3, \pm \zeta_3^2\}$, $[E_{P(\zeta_3)}: N_{K/P(\zeta_3)}E_K] = 6$. Therefore $[E_{P(\zeta_3)}: N_{K/P(\zeta_3)}E_K] = 3$. Hence we have $a_{0,K/P(\zeta_3)} = 3^{2t-2}$ and $N_{K/P(\zeta_3)}E_K = \{\pm 1\}$.

Secondly we consider the case of s=2 and $t\ge 1$. Let M be the maximal real subfield of K. The factorization of 3 is:

 $3=\mathfrak{P}^{\scriptscriptstyle 6}$ in K, $3=\mathfrak{p}^{\scriptscriptstyle 2}$ in $P(\zeta_{\scriptscriptstyle 3})$, $\mathfrak{P}=(1-\zeta_{\scriptscriptstyle 9})$ in $P(\zeta_{\scriptscriptstyle 9})$, $\mathfrak{p}=(1-\zeta_{\scriptscriptstyle 8})$ in $P(\zeta_{\scriptscriptstyle 8})$, $\mathfrak{p}=\mathfrak{P}^{\scriptscriptstyle 3}$ in K, $3=\mathfrak{D}$ in M, $\mathfrak{D}=\mathfrak{P}^{\scriptscriptstyle 2}$ in K.



These factorizations of p_i are $p_i = \mathfrak{p}_{i,1}\mathfrak{p}_{i,2}$ in $P(\zeta_3)$, $p_i = \mathfrak{P}_i^3$ in M and $p_{i,j} = \mathfrak{P}_{i,j}^3$ in K. Hence $\mathfrak{P}_i = \mathfrak{P}_{i,1}\mathfrak{P}_{i,2}$ in K. We have $K = P(\zeta_3, \sqrt[3]{c})$, $c \in P(\zeta_3)$, we have $c \in P(\zeta_3)$. Hence we can put $c \in P(\zeta_3)$. Hence

(5)
$$\sqrt[8]{c} = \mathfrak{P}_{1,1} \mathfrak{P}_{1,2}^2 \cdots \mathfrak{P}_{t,1} \mathfrak{P}_{t,2}^2$$

Evidently

$$\mathfrak{P}^{3} \sim 1 \quad \text{in} \quad K.$$

Also, in the same way as in (1),

$$\mathfrak{P}_{i,j}^{s} \sim 1 \quad \text{in} \quad K.$$

Moreover,

(8) $\mathfrak{P}\sim 1$ and $\mathfrak{P}_{i,j}\sim 1$ in the genus field Γ of K/P in the same way as (2).

As $\mathfrak{D}^{\mathfrak{s}} \sim 1$, $\mathfrak{P}_{i}^{\mathfrak{s}} \sim 1$ in M, $A_{0,M/F}$ is an abelian group of the type $(3, 3, \dots, 3)$ and is generated by \mathfrak{D} , \mathfrak{P}_{i} . Since $a_{0,M/F} = 3^{t}$, we have:

 $A_{0,K/P(\zeta_3)}$ is generated by \mathfrak{P} , $\mathfrak{P}_{i,j}$. From (5), (6), (7), (9), $\mathfrak{D} = \mathfrak{P}^2$ and $\mathfrak{P}_i = \mathfrak{P}_{i,1}\mathfrak{P}_{i,2}$, we have $a_{0,K/P(\zeta_3)} | 3^{2t-1}$. Hence we have

$$a_{\scriptscriptstyle 0,K/P(\zeta_3)} \! = \! rac{3^{2t+1}}{(K\!\!:P(\zeta_3))[E_{P(\zeta_3)}\!\!:N_{K/P(\zeta_3)}\!E_K]} \! \le \! 3^{2t-1} \; .$$

Consequently we have $a_{0,K/P(\zeta_3)}=3^{2t-1}$, $N_{K/P(\zeta_3)}E_K=\{\pm 1\}$. When t=0, it is easy to show $a_{0,K/P(\zeta_3)}=1$, $N_{K/P(\zeta_3)}E_K=E_{P(\zeta_3)}=\{\pm 1,\,\pm \zeta_3,\,\pm \zeta_3^2\}$.

In relation to principal ideal problem in unramified abelian extensions, we have the following Corollary by (2) and (8).

COROLLARY. Let Γ be the genus field of K/P in Theorem. Γ/K is unramified and the number of these ideal classes of K which are principal in Γ is:

a multiple of $3^{2t-2} = (\Gamma: K)^2$ when s=1

a multiple of $3^{2t-1}=3^{-1}(\Gamma:K)^2$ when s=2 and $t\geq 1$.

 $(\Gamma:K)=1$ when s=2 and t=0.

REMARK. In Theorem, we have

$$a_{{\scriptscriptstyle{K/P}}(\zeta_3)} \! = \! rac{3^r}{(K\!\!:P(\zeta_3))[E_{P(\zeta_3)}\!\!:E_{P(\zeta_3)}\cap N_{{\scriptscriptstyle{K/P}}(\zeta_3)}\!\!K]}$$

where

$$r = \begin{cases} 2t & ext{(if } s = 1) \\ 2t + 1 & ext{(if } s = 2) \end{cases}$$

Therefore, we have

$$a_{\scriptscriptstyle{K/P\,(\zeta_3)}} = egin{cases} 3^{2t-2} = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 1 \quad ext{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{K/P\,(\zeta_3)}} K \ 3^{2t-1} = 3a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 1 \quad ext{and} \quad \zeta_{\scriptscriptstyle{3}} \in N_{\scriptscriptstyle{K/P\,(\zeta_3)}} K \ 3^{2t-1} = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \geqq 1 \quad ext{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{K/P\,(\zeta_3)}} K \ 3^{2t} = 3a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \quad ext{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{K/P\,(\zeta_3)}} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \quad ext{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{K/P\,(\zeta_3)}} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{K/P\,(\zeta_3)}} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{0,K/P\,(\zeta_3)}} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{1}/P\,(\zeta_3)} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{1}/P\,(\zeta_3)} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{1}/P\,(\zeta_3)} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{1}/P\,(\zeta_3)} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{1}/P\,(\zeta_3)} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}}
otin N_{\scriptscriptstyle{1}/P\,(\zeta_3)} K \ 1 = a_{\scriptscriptstyle{1}/P\,(\zeta_3)} & ext{if} \quad s = 2 \; , \quad t \trianglerighteq 1 \; \text{and} \quad \zeta_{\scriptscriptstyle{3}} \ 1 = a_{\scriptscriptstyle{1}/P\,(\zeta_3)} \$$

References

- [1] H. HASSE, Über die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.
- [2] H, W. LEOPOLDT, Zur Geschlechtertheorie in abelschen Zahlkörpern, Math. Nachr., 9 (1953), 351-362.

HISAKO FURUYA

- [3] H. Yokor, On the class number of a relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.
- [4] F. TERADA, A principal ideal theorem in the genus field, Tôhoku Math. J., 23 (1971), 697-718.
- [5] H. Furuya, Principal ideal theorems in the genus field for absolutely abelian extensions,
 J. Number Theory No. 1, 9 (1977), 4-15.

Present Address:
DEPARTMENT OF MATHEMATICS
TSURU UNIVERSITY
TSURU-SHI, YAMANASHI 402