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Introduction

A non-singular rational projective surface $X$ over an algebraically
closed field $k$ is called a del Pezzo surface if the inverse of the canonical
sheaf $\omega_{X}^{-1}$ is ample. It is called a del Pezzo surface of degree $d$ if $\omega_{X}^{-1}$ .
$\omega_{X}^{-1}=d$ . It is known that the degree of a del Pezzo surface is at most
9 and the surface is isomorphic to $P^{2}$ if $d=9,$ $P^{1}\times P^{1}$ or $F_{1}$ if $d=8$ , the
image of $P^{2}$ under a monoidal transformation with center $(9-d)$-closed
points in general position (cf. Definition 1) if $1\leqq d\leqq 7$ ([2]). Let $X$ be a
del Pezzo surface of degree $d\leqq 7$ and $f:X\rightarrow P^{2}$ be a monoidal transfor-
mation of $P^{2}$ with center $(9-d)$-points in general position. We call the
sheaf $f^{*}P_{P^{2}}(1)$ a contraction sheaf on $X$.

In this article we first construct the moduli space of del Pezzo
surfaces of degree $d(1\leqq d\leqq 7)$ together with a contraction sheaf, and next
construct its compactification in the sense of Definition 7.

In \S 1, we realize the moduli space of del Pezzo surfaces of degree
$d(1\leqq d\leqq 7)$ as the geometric quotient by $PGL(2)$ of the open subspace
$U_{d}$ of $Sym^{9-d}P^{2}$ , where $U_{d}$ consists of the points which represent $(9-d)-$

points in general position in $P^{2}$ .
In \S 2, to construct a “good” compactification of our moduli space,

we take a blowing up of the subspace containing $U_{d}$ with the center
outside of $U_{d}$ and next take its universal categorical quotient. Then
we see that a point on the boundary corresponds to an irreducible reduced
surface with possible $A_{1}$-singularities, which is isomorphic to the image
of monoidal transformation of $P^{2}$ with the center $(9-d)$-points allowing
at most double points, where double point means a subscheme defined by
an maximal primary ideal $\mathcal{J}$ in $p_{P^{2}}$ such that $\dim_{k}\theta_{P^{2}}/\mathcal{J}=2$ as a k-vector
space.
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Throughout this note we fix an algebraically closed field $k$ of arbitrary
characteristic. Terminologies “stable”, “semistable” etc. will be used
according to [4].

\S 1. Construction of the moduli space of polarized del Pezzo
surfaces.

DEFINITION 1. A finite set of closed points in $P^{2}$ is said to be in
general position if no three of these points lie on one line, no six of
them lie on one conic and there are no cubics which pass through seven
of them and have a double point at the eighth point. If $X$ is a del
Pezzo surface of degree $d(1\leqq d\leqq 7)$ and $f:X\rightarrow P^{2}$ is the blowing up of
$P^{2}$ with the center $(9-d)$-points in general position, we call this morphism
a canonical contraction of $X$.

DEFINITION 2. Let $X$ be a del Pezzo surface of degree $d\leqq 7$ and
$f:X\rightarrow P^{2}$ be a canonical contraction. We call the sheaf $f^{*}P_{P^{2}}(1)$ a con-
traction sheaf on $X$.

Henceforth, we fix $1\leqq d\leqq 7$ and put $n=9-d$ .
DEFINITION 3. Let $X$ be any scheme. A geometric point of $X$ means

a morphism Spec $K\rightarrow X$ where $K$ is an algebraically closed field. For a
geometric point $x$ of $X$ and a morphism $f:Y\rightarrow X$, we denote the fiber
product Spec $(K)x_{X}Y$ by $Y_{x}$ .

DEFINITION 4. A smooth projective morphism $\mathscr{F}\rightarrow S$ with a line
bundle $\mathscr{L}$ on $\mathscr{F}$ is called a contractably polarized family of del Pezzo
surfaces of degree $d$ if it satisfies the followings;

(i) for any geometric point $s$ of $S,$ $\mathscr{F}$ is a del Pezzo surface of
degree $d$ , and

(ii) $-\mathscr{G}|_{s}$. is a contraction sheaf on 2.
Let $(\mathscr{F}^{\pi}\rightarrow S, Z),$ ( $\mathcal{Y}^{\pi}\rightarrow S$, .S24‘) be two contractably polarized families.

We say these families are isomorphic if there are an isomorphism
$ f:\mathscr{F}\rightarrow \mathcal{Y}\sim$ over $S$ and a line $bundle_{-}\mathscr{G}_{0}$ on $S$ such that $\mathscr{L}=\pi^{*}\mathscr{L}_{0}\otimes f^{*}\mathscr{L}^{\prime}$ .

If $S$ is the spectrum of a field $R$ , a contractably polarized family of
del Pezzo surfaces over $S$ is called simply a del Pezzo surface over $R$ .

DEFINITION 5. For any Noetherian k-scheme $S$ , define $\mathscr{M}_{d}(S)$ to be
the set of all isomorphism classes of contractably polarized families of
del Pezzo surfaces of degree $d$ on $S$.

Note that the collection of sets $\mathscr{M}_{d}(S)$ form a contravariant functor
from the category of Noetherian k-schemes to the category of sets;
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i.e., given any morphism $f:T\rightarrow S$ , a map $\mathscr{M}_{d}(f):\mathscr{M}_{d}(S)\rightarrow \mathscr{M}_{d}(T)$ is
defined by asvociating to a family $\mathscr{F}\rightarrow S$, the “pull-back” family
$\mathscr{F}\times_{s}T\rightarrow T$ .

DEFINITION 6. For a Noetherian k-scheme $S$ define $F_{d}(S)$ to be the
set of all isomorphism classes of commutative diagrams

$\mathscr{F}$

$S^{\backslash f}\downarrow^{1_{\backslash }}p_{2}\cup P^{2}\times S$

,

where $p_{2}|_{Z}$ is \’etale and finite of degree $n$ , such that for any geometric
point $s$ of $S$, Z. is a set of points in general position in $P^{2}$ and
$f.:\mathscr{F}\rightarrow P_{\epsilon}^{2}$ is the blowing up with the center Z.. Here we say two
such diagrams are isomorphic if each object of one diagram is isomorphic
to the corresponding object of the other and the morphisms are com-
patible.

PROPOSITION 1. $F_{d}$ is representable by an open subspace $U_{d}$ of
Hilb $P^{2}$ consisting of the points that represent $n$ points in general
position in $P^{2}$ .

PROOF. For any element of $F_{d}(S)$ , the subscheme $Z\subset P^{2}\times S$ has
Hilbert polynomial $n$ so gives an element of $Hom_{k}(S, U_{d})$ . Conversely,
for any element of $Hom_{k}(S, U_{d})$ , let $Z\rightarrow S$ be the pull-back family of the
universal family on the Hilbert scheme and $f:\mathscr{F}_{I}\rightarrow P^{2}\times S$ be the blowing
up with center $Z$. Then the diagram

$\mathscr{F}$

$|\backslash f\backslash P^{2}\times S$

$SI_{\Lambda^{p_{2}}}^{/}$
$ Z\cup$

will give an element of $F_{d}(S)$ by the following lemma. It will be easily
checked that the triple $P^{2}\times S,$ $Z,$ $S$ satisfy the condition of the lemma.

LEMMA 1. Let $f:X\rightarrow Y$ be a flat morphism of k-schemes and $Z$ be
a closed subscheme of X. Denote the ideal of $Z$ in $p_{X}$ by $\mathcal{J}$ If $p_{X}/\mathcal{J}^{n}$

is flat over $p_{Y}$ for every $n>0$ , then Proj $(\oplus \mathcal{J}^{n})$ is flat over $Y$ and for
any field $K$ and K-valued point Spec $K\rightarrow Y$, the fiber product
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Proj $(\oplus \mathcal{J}^{n})\times_{r}$ Spec $K$ is isomorphic to the blowing up of $X\times_{Y}$ Spec $K$

with center $Z\times_{r}$ Spec $K$.
THEOREM 1. If there exists the geometric quotient of $U_{d}$ by $PGL(2)$ ,

it is the coarse moduli space of the functor.$\mathscr{M}_{d}$ .
PROOF. There is a natural morphism of functors;

$\eta:F_{d}\rightarrow \mathscr{M}_{d}$ .
Let $\ovalbox{\tt\small REJECT} \mathcal{G}\mathscr{L}(2)$ be the functor represented by $PGL(2)$ . Then the action
of the algebraic group $PGL(2)$ on $U_{d}$ induces an action of the functor
$\ovalbox{\tt\small REJECT} \mathcal{G}\mathscr{L}(2)$ on the functor $F_{d}$ which we write

$\sigma:\ovalbox{\tt\small REJECT} \mathcal{G}\mathscr{L}(2)\times F_{d}\rightarrow F_{d}$ .
Then it is obvious that
(1) $\eta\circ\sigma=\eta op_{2}$ .
For a Noetherian k-scheme $S$ , let $\mathscr{M}_{d}’(S)$ be the quotient of the set
$Hom_{k}(S, U_{d})$ by the action of the group $Hom_{k}(S, PGL(2))$ . Let $\mathscr{M}_{d}^{\prime}$ be
the functor defined by this collection of sets and by the obvious maps
between them. According to (1), the morphism $\eta$ factors:

$F_{d}\rightarrow^{\eta^{\prime}}\mathscr{M}_{d}’\rightarrow^{I}\mathscr{M}_{d}$ .
If we show the following lemma, the theorem follows in just the same
way as Proposition 5.4 of [3].

LEMMA 2. I is injective and for any $\alpha e\mathscr{M}_{d}(S)$ , there is an open
covering $\{U_{l}\}$ of $S$, such that the restriction of $a$ to $\mathscr{M}_{d}(U_{i})$ , for all $i$ ,
is in the image of $I$.

PROOF OF LEMMA. To prove the first statement, let $\phi_{1}$ and $\phi_{2}$ be
morphisms of $S$ to $U_{d}$ and let

$\mathscr{F}\rightarrow P^{2}\underline{f}\times S$ and $\mathscr{F}$
‘ $\underline{f^{\prime}}\rightarrow P^{2}\times S$

$\pi\backslash _{s^{J}}$ $\pi\backslash _{s^{J}}$

be the corresponding diagrams. Suppose $\mathscr{F}$ and $\mathscr{F}$ are isomorphic
over $S$;

$\mathscr{F}\rightarrow \mathscr{F}^{\prime}\underline{l}$

$\backslash _{s}\nearrow$
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Put $\mathscr{L},$ $\mathscr{L}^{\prime}$ the line bundles on $\mathscr{F}\mathscr{F}^{\prime}$ respectively, which give polari-
zations. Then $g^{*}\mathscr{L}^{\prime}=- \mathscr{G}\otimes\pi^{*}\mathscr{L}_{0}$ for a suitable invertible sheaf $\mathscr{L}_{0}$ on
$S$. Then we get a commutative diagram

This shows us that $\phi_{1}$ and $\phi_{2}$ give the same element in $\mathscr{M}_{d}’(S)$ .
To prove the second statement, let $\alpha$ correspond to the contractably

polarized family $(\mathscr{F}\rightarrow S,- \mathscr{G})$ . Since $h^{I}(\mathscr{F}_{\epsilon}, .\mathscr{G}|_{z}.)=0$ and $h^{0}(\mathscr{F}., \mathscr{L}|_{\ovalbox{\tt\small REJECT}}.)=3$ ,
for any geometric point $s$ of $S,$ $\pi_{*}\mathscr{L}$ is a locally free sheaf of rank 3
on $S$ (see, for example, [1], Theorem 12.11. p. 290). Thus we get an
open covering $\{U_{i}\}$ such that $\pi_{*}\mathscr{L}|_{U_{i}}$ is free for all $i$ . There is a com-
mutative diagram

$\mathscr{F}|_{u_{i}}\frac{f_{i}}{\backslash U_{i}}\rightarrow P^{2}\times U_{i}\nearrow$

for every $i$ . Here $f$, is a contraction of a divisor to the subscheme $Z$

of $P^{2}\times U_{i}$ which is finite over $U_{i}$ . We can see this comes from $F_{d}(U)$ .
THEOREM 2. There exists the geometric quotient of $U_{d}$ by the action

of $PGL(2)$ .
PBOOF. Since $U_{d}$ consists of only one orbit for $d\geqq 5$ , we have only

to show the cases $1\leqq d\leqq 4$ . There is the canonical birational $PGL(2)-$

linear morphism $\Phi:$ Hilb $P^{2}\rightarrow Sym^{n}P^{2}$, which is an isomorphism on $U_{d}$ .
Let $\Psi:(P^{2})^{n}\rightarrow Sym^{n}P^{2}$ be the canonical finite morphism. We will show
that any point of $\Phi(U_{d})$ is PGL(2)-stab1e with respect to an ample
PGL(2)-1inearized invertible sheaf. To this end, we have only to show
$\mu^{p^{\dot{*}}(9_{P^{2}}(1))}(x, \lambda)>0$ for any $x\in\Psi^{-1}\cdot\Phi(U_{d})$ and any $ 1-PS\lambda$ of $SL(3)$ , where
$p_{i}:(P^{2})^{n}\rightarrow P^{2}$ is the projection to the i-th factor. Here;

(2) $\mu^{p_{i}(\mathcal{E}^{r_{P^{2}}}(1))}(x, \lambda)=\sum_{i=1}^{n}\mu^{d(1)}(x^{(i)}, \lambda)$ .

Write $x:G_{m}\rightarrow SL(3)$ by $\lambda(t)=\left\{\begin{array}{ll}t^{\alpha} & 00\\0 & t^{\beta}0\\0 & 0t^{-(a+\beta)}\end{array}\right\}$ where $\alpha\geqq\beta\geqq-(\alpha+\beta)$ by

choosing a suitable coordinates $\{z_{0}, z_{1}, z_{2}\}$ of $P^{2}$ . Let $H$ be the line on
$P^{2}$ defined by $z_{2}=0$ . Then, for a point $z\in P^{2},$ $\mu^{9(1)}(z, \lambda)=\alpha+\beta$ if $z\not\in H$,
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$\mu^{9(1)}(z, \lambda)=-\beta$ if $zeH$ and $z\neq(1,0,0)$ , and $\mu(z, x)=-\alpha$ if $z=(1,0,0)$ by
the virtue of Proposition 2.3 of [3]. Now, if we put $m=(number$ of $i$

such that $x^{()}eH$ and $x^{(i)}\neq(1,0,0))$ and $r=(number$ of $i$ such that $x^{()}=$

$(1,0,0))$ , then, by (2);

(3) $\mu^{p(d(1))}(x, \lambda)=(\alpha+\beta)(n-(m+r))-\beta m-ar$ .
Since $xe\Psi^{-1}\Phi(U_{d})$ , we have $m+r\leqq 2$ and $r\leqq 1$ . Therefore we get an
inequality $\mu(x, \lambda)\geqq 3(\alpha+\beta)-\beta m-\alpha r$ . We can easily check that the right
hand side is povitive for any possible values of $m$ and $r$ .

REMARK 1. By the equation (3) of the proof of Theorem 2, we
summerize stable (or semi-stable) points in Sym $P^{2}$ in table (4) below,
which will be used in next section. We denote “stable” (resp. “semi-
stable”, “unstable”) by $s$

’ (resp. $ss’,$ $u’$ ).

TABLE (4). Stability of the point $x=(x^{(1)}, \cdots, x^{(9-l)})$

$d$ 1 2 3 4

\S 2. A compactification of the moduli space of del Pezzo surfaces.

We denote by $\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ the moduli space of contractably polarized del
Pezzo surfaces of degree $d$ and by $D_{g}$ the del Pezzo surface corresponding
to a k-valued point $x$ . Since $\mathcal{D}\mathscr{J}_{d}$ is one point for $d=5,6,7$ we may
restrict our discussion to the cases $1\leqq d\leqq 4$ to construct a compactifica-
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tion of $\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ .
DEFINITION 7. A proper scheme $\mathcal{D}_{d}$ of finite type over $k$ is a good

compactification of the moduli space $\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ , if $\mathcal{D}_{d}$ contains $\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ as an
open dense subspace and $\mathcal{D}_{d}$ satisfies the following conditions;

(1) any k-valued point $x$ of $\mathcal{D}_{d}-\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ corresponds to a surface $D_{g}$

(2) let $X$ be any del Pezzo surface of degree $d$ over $K=k((t))$ and
$f$: Spec $K\rightarrow \mathcal{D}\mathscr{J}_{d}$ be the morphism corresponding to $X$. For any exten-
sion $\overline{f}$: Spec $k[[t]]\rightarrow \mathcal{D}_{d}$ of $f$, there exists a flat projective morphism
$\pi:\mathscr{F}\rightarrow Speck[[t]]$ and a finite morphism $\rho$ : Spec $k[[t]]\rightarrow Spec[[t]]$ such
that (i) the generic fiber of $\pi$ is isomorphic to the pull-back of $X$ by $\rho$

and (ii) the geometric fiber is $D_{x}$ , where $x$ is the image of the closed
point by $\overline{f}$.

Before proving the main theorem of this section, we prepare a
lemma.

LEMMA 3. Let $X$ be a non-singular projective surface over $k$ and
$U$ an open subspace of Hilb $X$ for $n>0$ . Assume that any closed point
of $U$ represents a zero dimensional subscheme of $X$ allowing at most
double points, where double point means a subscheme defined by a
maximal primary ideal whose codimension in $p_{X}$ is 2 as a k-vector
space.

Then the restriction $Z$ on $U$ of the universal family on Hilb $X$

satisfies the condition of Lemma 1.

PROOF OF LEMMA. Denote the ideal sheaf of $Z$ in $X\times U$ by $\mathcal{J}$

Since Hilb $X$ is non-singular, $U$ is reduced a fortiori. We have only to
show dim $(P_{XXU}/\mathcal{J}^{m})\otimes k(s)$ is constant for all closed points $s$ of $U$. If
Z. consists of $r$ double points and $(n-2r)$ non-singular points, then we
have

dim $(P_{X\times U}/\mathcal{J}^{m})\otimes k(s)=(n-2r)\cdot\dim(k[x, y]/(x, y)^{n})$

$+r\cdot\dim(k[x, y]/(x, y^{2})^{n})$

$=\frac{m(m+1)}{2}(n-2r)+m(m+1)\gamma$

$=\frac{m(m+1)}{2}n$ .

Hence the dimension is independent of $r$ .
REMARK 2. If Z. has triple or higher multiple points, the assertion

of Lemma 3 is not true.
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Henceforth we fix $d(1\leqq d\leqq 4)$ and put $n=9-d$ . To simplify notations
we will denote Sym“ $P^{2}$ by $S$. Let .S24 be an ample $SL(3)$-linearized
invertible sheaf on $S$ which we took in the proof of Theorem 2. Let
$\mathscr{M}$ be an ample $SL(3)$-linearized invertible sheaf on $\Phi^{-1}(S(Z))$ (it
exists, since Hilb $nP^{2}$ has an ample $SL(3)$-linearized invertible sheaf).

THEOREM 3. There exists a number $N>0$ such that

$\Phi^{-1}(S(\mathscr{L}))\subset(\Phi^{-1}(S(\mathscr{L})))(\mathscr{L}^{N}\otimes \mathscr{M})$ .
Moreover, for this $N$, the quotient $\mathcal{D}=(\Phi^{-1}(S\cdot\cdot(Z)))(Z^{N}\otimes,\ovalbox{\tt\small REJECT})/PGL(2)$

is a good compactification of $\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ , and the morphism from $\mathcal{D}$ to
$S( \mathscr{G})/PGL(2)$ induced by $\Phi$ is surjective.

PROOF OF THEOREM 3. We may assume $\mathscr{M}$ is relatively very ample
with respect to $\Phi$ . The first statement is shown in Proposition 2.18 of
[3]. Let $\Phi^{-1}(S(\mathscr{L}))\subset P=P(\Phi_{*}(Z^{N}\otimes_{\vee}\ovalbox{\tt\small REJECT})|_{S^{\epsilon\epsilon}(\ovalbox{\tt\small REJECT})})$ be the PGL(2)-1inear closed
immersion defined by the relatively very ample PGL(2)-1inearized line
bundle $\mathscr{L}^{N}\otimes \mathscr{M}$ There exists a rational map;

$p:P\rightarrow\overline{P}=Proj(\mathscr{L}(\Phi_{*}(\mathscr{L}^{N}\otimes \mathscr{M}))^{PGL(2)}|_{S^{0}(\ovalbox{\tt\small REJECT})})$

which is a morphism on the open subspace $P-F$, where $F$ is the set of
unstable points with respect to $P_{P}(1)$ and $\mathscr{L}(*)$ means the symmetric
algebra of $*$ . On the other hand there exists a morphism $\Phi$ : $\overline{P}\rightarrow$

$S(- \mathscr{G})/PGL(2)$ . By Nagata’s theorem (see, for example, [4]), $(\mathscr{L}(\Phi_{*}(\mathscr{L}^{N}\otimes$

$\mathscr{M})))^{PGL(2)}|_{S^{i}(\ovalbox{\tt\small REJECT})}$ is an $(P_{S^{it}(\ovalbox{\tt\small REJECT})})^{PGL(2)}$ -algebra of finite type, so $\Phi$ is projective.
Since $\mathcal{D}$ is closed in $\overline{P}$, the restriction $\Phi|_{e}:\mathcal{D}\rightarrow S(\mathscr{L})/PGL(2)$ is a
projective $morphI8m$ . By the first statement, $\Phi|_{e}$ is dominating, so $\Phi|_{e}$

is surjective to $S(- \mathscr{G})/PGL(2)$ . Now we will show that $\mathcal{D}$ is a good
compactification of $\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ . Since $\mathcal{D}$ is projective over $S^{\iota*}(\mathscr{L})/PGL(2)$ and
the latter is projective over $k,$ $\mathcal{D}$ is a projective k-scheme. It is clear
that $\mathcal{D}$ contains $\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ as an open dense subset. Now we have to de-
termine a suitable surface $D_{x}$ for a closed point $x\in \mathcal{D}-\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ . Let

$Z=P^{2}\times\Phi^{-1}(S(\mathscr{L}))$

$\backslash _{\lambda}$ $\downarrow$

$\Phi^{-1}(S(\mathscr{L}))$

be the restriction on $\Phi^{-1}(S(\Leftrightarrow \mathscr{G}))$ of the universal family on Hilb$nP^{2}$, and
$\tilde{P}$ be the blowing up of $P^{2}\times\Phi^{-1}(S(\mathscr{L}))$ with center $Z$. Then by Lemma
1, Lemma 3 and table (4), $\tilde{P}$ is flat over $\Phi^{-1}(S(\mathscr{L}))$ . For any closed point
$x$ of $\mathcal{D}-\mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ , take a closed point $\overline{x}$ of $\Phi^{-1}(S(\mathscr{L}))-F$ which corresponds
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to $x$ and belongs to the minimal orbit. Denote the fiber $\tilde{P}_{\overline{x}}$ by $D_{x}$ . This
is our desired surface corresponding to $x$ . In fact, given a del Pezzo
surface $\pi_{0}:X\rightarrow SpecK$ over $K=k((t))$ , we get the corresponding morphism
$f$: Spec $K\rightarrow \mathcal{D}\ovalbox{\tt\small REJECT}_{d}$ . Let $\overline{f}$: Spec $k[[t]]\rightarrow \mathcal{D}$ be an extension of $f$. Then,
by Shah (Proposition 2.1 of [5]), there is a finite morphism $\rho$ : Spec $ k[[t\prod\rightarrow$

Spec $k[[t]]$ and a section $g$ : Spec $k[[t]]\rightarrow\Phi^{-1}(S(- \mathscr{G}))-F$ such that $\phi\circ g=\overline{f}\circ p$

where $\phi:\Phi^{-1}(S^{\iota\epsilon}(\mathscr{L}))-F\rightarrow \mathcal{D}$ is the canonical projection. Moreover his
proposition gives us the image of the geometric point by $g$ is contained
in the minimal orbit. The base change $\tilde{P}_{s_{peck[[t]]}}$ by $g$ : Spec $ k[[t]]\rightarrow$

$\Phi^{-1}(S^{l}\cdot(\mathscr{L}))-F$ is a flat family satisfying the condition of Definition 7.

REMARK 3. $D_{x}$ is an irreducible reduced surface with at worst
singular points $A_{1}$-type. The number of singular points is at most four
if $d=1$ , three if $d=2,3$ and zero if $d=4$ . In fact, by Lemma 1 and
Lemma 3, $D_{x}$ is the blowing up of $P_{k}^{2}$ with center $Z_{\overline{x}}$ , where $\overline{x}$ is lying
over $x$ and belongs to the minimal orbit in $\Phi^{-1}(S^{l}(\Leftrightarrow \mathscr{G}))-F$. Notice that
the blowing up of non-singular rational surface with center a double
point has one singular point of $A_{1}$-type. Hence we get the above
assertion by table (4).
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