## Homeomorphisms with the Pseudo Orbit Tracing Property of the Cantor Set

## Masahito DATEYAMA

Tokyo Metropolitan University
(Communicated by M. Iwano)

Let X be a compact metric space with metric d, and f be a homeomorphism from X onto itself. A sequence  $\{x_i\}_{i=-\infty}^{\infty}$  is said to be a  $\delta$ -pseudo-orbit of f if  $d(fx_i, x_{i+1}) < \delta$  holds for all  $i \in \mathbb{Z}$ . (X, f) is said to have the pseudo orbit tracing property (abbrev. P.O.T.P.) if for every  $\varepsilon > 0$  there is  $\delta > 0$  such that, for every  $\delta$ -pseudo-orbit  $\{x_i\}_{i=-\infty}^{\infty} \subset X$ , there exists an  $x \in X$  such that  $d(f^ix, x_i) < \varepsilon$  for all  $i \in \mathbb{Z}$ . Let  $C \subset [0, 1]$  be the Cantor set: i.e. C is the set of the numbers  $x \in [0, 1]$  with  $x = 3^{-1}a_1 + 3^{-2}a_2 + \cdots$   $(a_i = 0 \text{ or } 2 \text{ for } i \ge 1)$ . We denote by  $\mathcal{H}(C)$  the set of all homeomorphisms on C, and by  $\mathcal{F}(C)$  the set of all homeomorphisms with the P.O.T.P.. Define the metric  $\overline{d}$  on  $\mathcal{H}(C)$  by  $\overline{d}(f, g) = \max_{x \in C} d(fx, gx)$ ,  $f, g \in \mathcal{H}(C)$ . Then  $\mathcal{H}(C)$  is a Banach space.

In this paper we prove:

THEOREM.  $\mathscr{S}(C)$  is dense in  $\mathscr{H}(C)$ .

For  $r \ge 1$ , we call the set  $C \cap [3^{-r}i, 3^{-r}(i+1)]$   $(0 \le i \le 3^r - 1)$  a Cantor subinterval with rank r if  $C \cap (3^{-r}i, 3^{-r}(i+1)) \ne \emptyset$ . We denote by I(i, r), the i-th Cantor subinterval with the rank r from the left. Clearly  $C = \bigcup_{i=1}^{2r} I(i, r)$  and  $I(i, r) = I(2i-1, r+1) \cup I(2i, r+1)$ . We call  $g \in \mathcal{H}(C)$  a generalized permutation if there exists  $r \ge 1$  such that the following i) and ii) hold:

- i) For every  $1 \le i \le 2^r$ , there exist  $s = s(i) \ge 1$  and  $1 \le j = j(i) \le 2^s$  such that g(I(i, r)) = I(j, s), and
- ii) For every  $1 \le i \le 2^r$ , there exists  $k = k(i) \in R$  such that  $g(x) = 3^{r-s(i)}x + k$ ,  $x \in I(i, r)$ .

Denote by  $\mathscr G$  the set of all generalized permutations. Then  $\mathscr G$  is dense in  $\mathscr H(C)$ . In fact, take  $f\in\mathscr H(C)$  and  $r\ge 1$ . Choose  $s\ge 1$  such that  $d(x,y)<3^{-s}$  implies  $d(fx,fy)<3^{-r}$ . Then for every  $1\le i\le 2^{s}$  there exists

 $1 \le i_j \le 2^r$  such that  $f(I(j,s)) \subset I(i_j,r)$ . Since f is onto, for every  $1 \le i \le 2^r$  there exist  $n \ge 1$  and  $j_1, \dots, j_n > 0$  such that  $f(\bigcup_{k=1}^n I(j_k,s)) = I(i,r)$ . Since I(i,r) is a disjoint union of n Cantor subintervals (say  $I(i,r) = \bigcup_{k=1}^n I(i_k,r_k)$ ), we can construct  $g \in \mathscr{G}$  with  $g(I(j_k,s)) = I(i_k,r_k)$ ,  $1 \le k \le n$ . It is easy to check that  $\bar{d}(f,g) < 3^{-r}$ . Since r is arbitrary, our requirement is obtained.

Let S be the finite set with the discrete topology, and  $\Sigma = S^z$  be the bilateral infinite product space with metric d' defined by

$$d'(s, t) = \max_{i \in \mathbb{Z}} \delta(s_i, t_i)/2^{|i|}$$
  $(s = (s_i), t = (t_i) \in \Sigma)$ 

where  $\delta(s_i, t_i) = 1$  if  $s_i \neq t_i$ , and = 0 if  $s_i = t_i$ . Define the shift homeomorphism  $\sigma$  of  $\Sigma$  by  $(\sigma(s))_i = s_{i+1}$ ,  $i \in \mathbb{Z}$ . If X is a closed subset of  $\Sigma$  with  $\sigma X = X$ , then  $(X, \sigma)$  is called a subshift. A subshift  $(X, \sigma)$  is said to be of finite type if there exist L > 0 and  $B \subset S^L$  such that  $X = \{s = (s_i) \in \Sigma: (s_i, \dots, s_{i+L-1}) \in B \text{ for all } i \in \mathbb{Z}\}$ . L is called the order of  $(X, \sigma)$ . It is proved in P. Walters [5] that a subshift  $(X, \sigma)$  has the P.O.T.P. iff  $(X, \sigma)$  is of finite type.

PROOF OF THEOREM. Since  $\mathscr{G}$  is dense in  $\mathscr{H}(C)$ , it is enough to prove that every  $g \in \mathscr{G}$  has the P.O.T.P.. Take  $g \in \mathscr{G}$ , then there exists  $r_0 \geq 1$  such that for every  $r \geq r_0$ , g satisfies i) and ii) in the definition of generalized permutation. Let  $\varepsilon > 0$ , choose  $r \geq r_0$  such that  $3^{-r} < \varepsilon$ . For every  $x \in C$  and every  $i \in Z$ , define  $x_i \in \{1, \dots, 2^r\}$  by  $g^i(x) \in I(x_i, r)$ . By the definition of generalized permutation, it follows that  $\bigcap_{j=1}^n g^j(I(x_{-j}, r))$   $(n \geq 1)$  are Cantor subintervals for all  $x \in C$ . Put  $\Sigma = F^z$  where  $F = \{1, \dots, 2^r\}$  and let  $\sigma$  be the shift homeomorphism of  $\Sigma$ . For  $x \in X$ , define  $h(x) = (x_i)$ . Then  $h: C \to \Sigma$  is a continuous map and  $h \circ g = \sigma \circ h$  holds. Let us put

$$A = \{x \in C: \bigcap_{j=1}^{\infty} g^{j}(x_{-j}, r) \subsetneq I(x_{0}, r)\}.$$

For  $x \in A$ , denote by n(x) the minimum number such that

$$\bigcap_{i=1}^{n(x)} g^{i}(I(x_{-i}, r)) \subseteq I(x_{0}, r)$$
,

and for  $x \in C \setminus A$ , denote by n(x) the minimum number such that

$$\bigcap_{j=1}^{n(x)} g^{j}(I(x_{-j}, r)) = \bigcap_{j=1}^{\infty} g^{j}(I(x_{-j}, r)) \supset I(x_{0}, r)$$
.

Then we have

$$\max_{x \in C} \operatorname{rank} \bigcap_{j=1}^{n(x)} g^{j}(I(x_{-j}, r)) = \max_{i \in F} \operatorname{rank} g(I(i, r)) < \infty ,$$

so that  $\{\bigcap_{j=1}^{n(x)} g^j(I(x_{-j}, r)): x \in C\}$  is finite. If  $\bigcap_{j=1}^{n(x)} g^j(I(x_{-j}, r)) = \bigcap_{j=1}^{n(x')} g^j(I(x'_{-j}, r))$ 

r))  $(x, x' \in C)$ , then we get  $x_{-j} = x'_{-j}$   $(1 \le j \le \min(n(x), n(x')))$ . Since n(x) and n(x') are minimal, n(x) = n(x') holds. This implies that  $\{n(x): x \in C\}$  is finite. Put  $N = \max_{x \in C} n(x)$  and

$$B = \{(i_0, i_{-1}, \dots, i_{-N}) \in F^{N+1}: \bigcap_{i=0}^N g^i(I(i_{-i}, r)) \neq \emptyset\}$$
.

Then  $(h(C), \sigma)$  is a subshift of finite type of order N+1. To see this, set

$$\Sigma_B = \{(i_j) \in \Sigma : (i_j, i_{j-1}, \dots, i_{j-N}) \in B \text{ for all } j \in \mathbb{Z}\}$$
.

Clearly  $\sigma \Sigma_B = \Sigma_B$ ,  $(\Sigma_B, \sigma)$  is of finite type, and  $h(C) \subset \Sigma_B$ . To prove that  $h(C) \supset \Sigma_B$ , it is enough to show that

We use induction with respect to m. When m=N, (\*) is true. Assume that (\*) holds for m. Take  $(i_{-j})_{j=0}^{m+1} \in F^{m+1}$  with  $(i_{-j}, i_{-(j+1)}, \cdots, i_{-(j+N)}) \in B$  for all  $0 \le j \le (m+1)-N$ . By assumption we have  $\bigcap_{j=1}^{m+1} g^j(I(i_{-j}, r)) \ne \emptyset$ , and so  $\bigcap_{j=0}^N g^j(I(i_{-j}, r)) \ne \emptyset$ . Take  $x \in \bigcap_{j=0}^N g^j(I(i_{-j}, r))$ . If  $x \in A$ , then  $\bigcap_{j=1}^N g^j(I(i_{-j}, r)) \subsetneq I(i_0, r)$ . Therefore  $\bigcap_{j=0}^{m+1} g^j(I(i_{-j}, r)) = \bigcap_{j=1}^{m+1} g^j(I(i_{-j}, r)) \ne \emptyset$ . When  $x \notin A$ ,  $\bigcap_{j=1}^{m+1} g^j(I(i_{-j}, r)) = \bigcap_{j=1}^N g^j(I(i_{-j}, r)) \supset I(i_0, r)$ , and so  $\bigcap_{j=0}^{m+1} g^j(I(i_{-j}, r)) \supset I(i_0, r) \ne \emptyset$ . Thus  $(h(C), \sigma)$  is of finite type of order N+1. As before let d' be the metric of  $\Sigma$  and  $\varepsilon'$  be a number such that  $d'(s, t) < \varepsilon'$   $(s = (s_i), t = (t_i) \in \Sigma)$  implies  $s_0 = t_0$ . Since  $(h(C), \sigma)$  is of finite type, there exists  $\delta > 0$  such that for every  $\delta$ -pseudo-orbit  $\{s^n\} \subset h(C)$ , there is  $s \in h(C)$  such that  $d'(\sigma^n s, s^n) < \varepsilon'$ . Choose  $\eta > 0$  such that  $d(x, y) < \eta$   $(x, y \in C)$  implies  $d'(h(x), h(y)) < \delta$  and take an  $\eta$ -pseudo-orbit  $\{x^n\} \subset C$  of g. Then  $\{h(x^n)\}$  is a  $\delta$ -pseudo-orbit of  $\sigma$ . Hence there exists  $x \in C$  such that  $d'(\sigma^n h(x), h(x^n)) < \varepsilon'$ . This shows that  $h(g^n x)_0 = h(x^n)_0$   $(n \in \mathbb{Z})$ , and so  $d(g^n x, x^n) < 3^{-r} < \varepsilon$   $(n \in \mathbb{Z})$ . The proof of the theorem is completed.

## References

- [1] N. Aoki, The splitting of zero-dimensional automorphisms and its application, to appear in Colloq. Math..
- [2] R. Bowen, ω-limit set for Axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.
- [3] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math., 527, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [4] M. SEARS, Expansive self-homeomorphisms of the Cantor set, Math. Systems Theory, 6 (1972), 129-132.
- [5] P. WALTERS, On the pseudo orbit tracing property and its relationship to stability, The

## MASAHITO DATEYAMA

Structure of Attractor in Dynamical Systems, Lecture Notes in Math., 668, Springer-Velag, Berlin-Heidelberg-New York, (1978), 231-244.

Present Address:
DEPARTMENT OF MATHEMATICS
OSAKA CITY UNIVERSITY
SUGIMOTO, SUMIYOSHI-KU
OSAKA, 558