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Let (PcS") be a pair of the oriented n-sphere S” (»=3) and a finite
subpolyhedron P of S” with S*—P connected. Using Fox’s free differ-
ential caleulus ([2], [8], [4]), S. Kinoshita [11] explained that for each
non-negative integer d there is the d™ elementary ideal E; of the
fundamental group G(P)=nx,(S*— P), associated with each integral (n—2)-
cycle I on P, so that the collection {E,} forms a topological invariant of
the position of P in S*. He also examined some fundamental properties
of it in [11], [12] and [13].

In this paper we discuss the elementary ideals of finite 1-dimensional
polyhedra in the 3-sphere S® associated with the abelianizer, and give a
necessary condition for the exterior of a connected 1-dimensional poly-
hedron to be retractible and boundary-retractible [9], (Theorems 3.1 and
3.2).

§1. Preliminaries.

Throughout the paper we work in the piecewise linear category.

By P we denote a finite 1-dimensional polyhedron with ¢ components
P, ---, P, #=1. We denote by B, the l-dimensional Betti number of
P, for i=1, ---, #, and let =R, +---+Bx. We always assume that 3,>0
for i=1, ---, ¢, and we will call such a pair (PcS? of the 3-sphere S°
and its subpolyhedron P a graph in S°.

For a graph (PcS%, by the exterior M(P) of P we mean the closure
of S*—N(P; S*), where N(P; 8% is a regular neighborhood of P in S?,
and by G(P) we denote the fundamental group =,(S®— P)=x,(M(P)).

We shall consider finitely presentable groups and their finite presen-
tations. For a finite presentation {(z,, ---, ,|7, ---, 7ay of a group G,

Received January 14, 1983



234 SHIN’ICHI SUZUKI

we denote by ¢ the canonical homomorphism of the free group (@, =+,
z,) onto G. The deficiency of a presentation is the number of generators
minus the number of relators. The deficiency def (G) of a group G is
the maximum of the deficiencies of its presentations.

A graph (PcS?®) is said to be (geometrically) splittable [17], iff there
exists a 2-sphere S*CS*—P, such that both components of S*—S? contain
points of P. More precisely, we say that a graph (PcS® has ¢ factors
Q, -+, Q., iff P=Q,U .- UQ, and there exist ¢ disjoint 3-cells DU --- U D?
in S° such that Q;CInt(D}) for j=1, ---, ¢, and each pair (Q,cS? is non-
splittable graph. In this case, G(P) is a free product G(Q)x---*xG(Q,),
where G(Q;)=n(8°-Q;), j=1, ---, c.

If a graph (PcCS?®) is non-splittable, then the space S*— P is aspherical
by Papakyriakopoulos [17], and so as in Trotter [20, p. 478] it follows
that def (G(P))=8~—pu+1; see also Fox [5, (6.2)], Kinoshita [11, Theorem
7 and Corollary] and Hillman [8, Theorem 12]. Now we have:

1.1. PROPOSITION. A graph (PcS® has ¢ factors if and only if
def (G(P))=8—p+ec.

1.2. Definitions and Notation. In order to calculate elementary
ideals of G(P), we discuss how to obtain a presentation of G(P) for a
given graph (PcS?®).

(1.2.1) First we choose a maximal tree T, of each connected com-
ponent P;, and we give an orientation for each 1-simplex 4!, of P,—T.,,
where A=1, --., 8,. Then for each 4}, P,—T, there exists a unique
simple oriented loop k,,C 4}; U T,C P, such that k,;D 4!, and the orientation
of k; is coherent to that of 4!. It will be noticed that k,={k,, - - -, kis,}
forms a free abelian basis for the 1* integral homology group H,(P,; Z)
of P,. We call such a set of 1-cycles k, a fundamental cycle on P, or
an orientation on P,, and l,={k, - --, k.} a fundamental cycle on P or an
orientation on P.

Now let ~ be a regular projection of PCS® in a suitably chosen 2-
sphere S;CS° in the sense of the Knot Theory (see Crowell-Fox [2,
Chap. I]). Since T, is contractible, we can deform P=P,U---UP, in S
isotopically, so that 4(P) has no double points in A(T,U---UT,). Let m
be the number of the crossing points of 4(P)=((P,—T)U --- U (P.—T.).
Then these m crossing points divides 8=g,+---+38, ares A(P,—T)U
-+ U(Px—T,)) into B+m overpasses, and using this projection, we obtain
a presentation of G(P) as knots and links (Crowell-Fox [2, Chap. VI],
see also Suzuki [19, §4]). In fact, let m(s, ) be the number of over-
‘crossing points of 4(P) on the arc ~(4};). Then we have the following
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presentation of G(P):

(1.2‘2) ) <x%0’ xju, MY xﬁm(i,l) Ty s T > ,

~ (=1, - -, 5 N=1, -+, B) [y, =+, L/
where the generator xi, corresponds to the overpass on 4(4}), and the
relation r, corresponds to a crossing point and the relation 2, corresponds
to the A(T;). The relation 7, is the form

(@) (@) @) @) =1 (e=1 or —1)

as shown in Figure 1, and the relation 2, is obtained by running clock-
wise around the boundary of a regular neighborhood N(~+(T,); S:) as shown
in Figure 2. If (PcS® has ¢ factors @, ---, @, then we may assume

3

|1
Ls+1

xi
FIGURE 1 () (@EH @) ez ()t =1
FIGURE 2

that 4(Q;)N A#(Q.)=@ for j#k, and any one of the relations of G(Q;) is
a consequence of the others by the same reason as that of knots (see
Crowell-Fox [2, Chap. VI. (2.5)]).

(1.2.3) Shrinking the tree T, to one point o,€ T, we have a wedge
of 3; simple loops. Moreover, we stretch the wedge point o, so that
we obtain a g;-leafed rose P, which consists of an oriented link of g,
components, say L,=K,U:--UK;, and a star graph T/, as shown in
Figure 3. The orientation of each K, is, of course, coherent with that
of 4i;, and we have the canonical fundamental cycles kf={kf, ---, k% }

FiGURE 3
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on P* and I¥={kF, ---, kt} on P*=P*U---UP¥X. We call (P*CS")=
(P¥U---UP}K CS*‘) the associated rose, and the link (LcS*)=(K,U:--U
K,U:---UK,U- U Ky, cS® the associated link. Of course, the as-
soclated rose (P*CSS) is not uniquely determined, however it holds
that M(P*)=M(P) and so G(P*)=G(P).

Now let m(7, M) be the number of overcrossing points of 4(P*) on
the arc ~(K,—T¢}). Then we have the following presentation of G(P*):

Py ***y T
?
QF, -, 2F

xf’lo; xfu, Sty xim(i,l)
(t=1, Tty #;7\'=1, ) Bi)

where the relation QF corresponding to 4(T*) may be assumed of the
form

(1.2.4) <

QF: (who)(@h) 7 (@20) (@) 7"+ - - (Xh0)(@h) =1,

and some c relations of these m+u relations may be omitted provided
that (P*cS* has ¢ factors.

§2. Alexander ideals of graphs.

Let tﬂ be an unknotted simple oriented loop in S*—P for i=1, ---, JZi
and =1, ---8,, such that ¢, bounds a disk D, in S* with DaﬂP—
D, N 4%, consists of one point and the linking number lk(t,, k,)=1=
lk(t;;, k%). Then, {t;li=1, ---, #; =1, ---, B,} forms a free abelian basis -
for each H,(M(P); Z), H,(M(P*); Z) and H,(M(L); Z), free abelian groups
of rank g, which is dual to the free abelian bases {k;|i=1, ---, g; A=
1, .-, 8} for H(P; Z), and {k}|i=1, ---, s A=1, -+, 8} for H(P*; Z)
and H,(L; Z). Let

a: G(P)— H(P)=H,(M(P); Z) ,
a: G(P*) — H(P*)=H,(M(P*); Z) and a:G(L)— H(L)=H,(M(L); Z)

be the abelianizers respectively defined by

a(@)=IItEo*2, geGP);
a(g)=TItw* , geGP*) or G(L).

Using Fox’s free differential calculus ([2], [3], [4]), we have an
(m+p) <X (m+RB) Jacobian A(G(P), a)=A(G(P), l,) of G(P) associated with

the presentation (1.2.2) as follows:
ors H 082,
(et a@=[lae(Z2)]

AG(P), l)=

AW
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where i1=1, ---, p; k=1, ---, m; A=1, ---, B;; v=0,1, ---m(i, N). We call
the matrix A(G(P), l,) the Alexander matrix of (PCS® (associated with
a fundamental cycle [,).

For each nonnegative integer d, the d** elementary ideal E,(A(G(P),l,))=
E,P,1,) of the Alexander matrix A(G(P), l,) is defined as Fox [4, §4] and
Kinoshita [11, §1], and we call such the elementary ideal E, (P, l,) the
d™ Alexander ideal of (PCS®) associated with [,.

The Alexander matrices A(G(P*), I¥) and A(G(L), l5) of the (P*CS?
and (L cS®), respectively, associated with the induced fundamental cycle
l¥ are defined as the same way by using the above abelianizers, and so
we have the d*® Alexander ideals E,(P*, l¥) and E (L, l¥) of (P*cS% and
(L S?), respectively, associated with I} for each nonnegative integer d.

2.1. PROPOSITION. Let (PCS® be a graph, -and let I, be a funda-
mental cycle on P as in (1.2.1). Let (P*CS® be an associated rose with
the induced fundamental cycle 1y, and let (LCS®) be the associated link
with the 1¥. Then, for any nonnegative integer d, it holds that:

E«(P, l)=E(P*, ) CEJ(L, I5) .

PROOF. The first half of Proposition follows the construction of P*
in (1.2.1) and (1.2.3) and the above definition of the abelianizers. Now
we assume that G(P*) has a presentation of the form (1.2.4). Then G(L)
has a presentation

X0y Thiy =+ *s xﬁm(i,l) Ty * s Twm s
(2.1.1) (=1, -, 5 x=1, -+, B) | xhHh=0%
(7:21: "',#;)“zlr "',Bi)

’ ’
. ---,r,,,>,

. xfu, "y xflm(i,l)
(?::1, ey, l_‘; X:l, .. ., ﬁt)
where 7, is obtained from », by substituting xi for «i.
Under the equation «j=uxi (¢=1, ---, g; n=1, .-+, B,), the relations

QF, --+, Q% are trivial relations, so we have a homomorphism ¢ of G(P*)
onto G(L) defined by

5(3730):%3“ <7/=1’ ) /";7\’_——1’ ) Bi)
S(wfu)=903u ”:17 Tty m(?:y >") ’

which is consistent with the abelianizers. Now, Proposition follows from
Kinoshita [11, Theorem 1]. M
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2.2. THEOREM. In the motation of Proposition 2.1, it holds that:
Ed+ﬁ-#(P, lo)=Ed+p—#(P*y l:)DEd(L’ l:) .

PROOF. The Alexander matrix A(G(P*), I¥) associated with the pre-
sentation (1.2.4) is an (m+ ) X (m+B) matrix of the form

| Ayl vnene [A[vneen- 1A, ||

such that, for each 7=1, ..., g,

1 Y
” AR x:iio Xi1* " Ty " Lpat 'xfeim(t,pi)
1 a¢( a’rk > a¢( 3frk ) a¢( 5"",, )
. 0%, oxs, Te 05,

a2 0 0O || O

) 11--1|-10--0[---|-10---0
.Q.: O O eee O

Add the zj-column to the zf-column for i=1, ---, ¢ and r=1, ..., g,
and subtract the x{-column from each the xf-, x%-, - - -, ¥ o-column. Then
every entry of the Qf-row is zero except for the entry of the x‘-column
where 1 stands, for i=1, :-., ¢. Developing this new matrix at the
QF-row for i=1, ---, ¢, A(G(P*), l}) is elementary equivalent to an m x
(m+B— ) matrix

A=A ----. [A%«vvvre | A% ||

such that, for each i=1, .-, &,

30+ Lo R Timeen *°° Lhy * o v A Lhimis,8)
7, ) ?
. 7 or, \ i or or or, \i or
A= 1] » a¢(—%+—+)za¢(—f—) SR P (e L e L
oxl oxh oxi, oxp,,

{1 1 i
axho 6xh1

Tm

On the other hand, the Alexander matrix A(G(L), I¥) of G(L) as-
sociated with the presentation (2.1.1) is an m xXm matrix

”A;[ ...... ]A“ ...... |A;‘“

such that, for each i=1, .--, g,
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AT xfm(m) T xfm te x%,mu,pi)
’
r: ’ ’
A= llag _a__":’.c_ | ag ors )
’ 0x; ot
’ L1y Ly
Tm

Here, it is easy to see that:

k=1, ---,m
a?’k 3’)k a’l‘k . ___
o _ , =1, ---, ,
¢( ot > ¢< o0x, axﬁl > (;_ 1 ;; )
=Ly Ty P
0y \_ ./ 0r A=1, ..., B
“¢<ax§, >—a¢< axz,) ’ <v—_—2, e, m(i, N) )]
and so A(G(L), l¥) is a submatrix of A°. The proof of Theorem 2.2 is
now complete. D

2.3. In the notation of 1.2, we consider a set of integral 1-cycles
l={ki;|t=1, ---, p,x 1, .-+, B} on P such that ki, ---, kis, are integral
l-cycles on P, ¢=1, ---, ¢, and let *={ki;|i=1, ---, ; n=1, ---, B} be
the induced set of 1- cycles on P* and L. Then kj; and k;; can be ex-
pressed as

8 84

(2.3.1) k=23 (i, N, Wke ,  kiz=3 c(i, N, w)ki,
u=1 %=1

for some 1ntegers c(iy N, u), for 2=1, -+, 3 A=1, .-+, B,

Let H; be a mult1phcat1ve free abehan group of rank B generated
by {tult=1, ---, g3 v=1, --., B;}. Associating with the I, we define a
homomorphism 6: G(P) — H,; by

(2.3.2) 6(9)= H H (t)™*ord , ge G(P),
and we have the d* elementary ideal E,(G(P), §)=E (P, 1) of the Jacobian
AG(P), 6)=A(G(P), 1) of G(P) at # in the sense of Kinoshita [11, §1].
It should be noted that:
8
(2.3.3) 1k(g, ki) =3, o3, N, wlk(g, k) -
Let o: H(P) — H; be a canonical homomorphism defined by
5
(2~34) O'(tlz):li[ (t;u)c(i’z’u) ’ 7::1, e, M )“:1, Tty :81 .

Then, §=0a; G(P)— H,;, and as Kinoshita [11, §5] we have:
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2.4. THEOREM. In the above motation, it holds that:
Ed(P9 l)(t;u Tty t;w *t Yy t;lﬁy)
A1 B¢ Bu
=By, (I G, -, TL (e, -+, I ()0

Jor each nmonnegative integer d. Therefore, under the camonical homo-
morphism 6*: G(P*)— H,, Proposition 2.1 and Theorem 2.2 hold for
elementary ideals E,(P, 1), E,P*, 1I*) and E,(L,1*), 1.e.
Ei(P, ))=E(P*, I*)CE«L, I*),
Eirp_ (P, ))=Eyp_o(P*, I*)DEy(L, 1*) .
2.5. REMARK. Letc(i, M)=23 ¢(3, N, w) fori=1, .-, y; n=1,---, 3,

Let  be a homomorphism of H(P) onto the multiplicative infinite cyeclic
group H generated by ¢ such that

T(til):tc“'z) ’ 7:=1, Ty My 7\'=1’ ey B
Then, associated with a set of integral 1-cycles I on P, we have a homo-
morphism ¢=7a of G(P) onto H defined by
¥(g)=t*"P , ge G(P) .
Moreover, let H, be a free abelian group of rank g generated by
{t,, -+, t}, and let o be a homomorphism of H(P) onto H, defined by
p(ta)=tg(t'” ’ 7'=1’ Ty M 7“=13 cee B
Then we have an onto homomorphism +,=pa: G(P) — H, defined by

W@=IL % , geG(P),

where ki={ki, ---, kis,}, the set of integral 1-cycles on P, i=1, ..., p.

Kinoshita [11, §§2, 3] discussed mainly the elementary ideals E,;(G(P), )
and E,(G(P), v,) of Jacobians A(G(P), ) and A(G(P), +»,), respectively,
and Suzuki [19, §§4, 5] E,(G(P), v) alone.

4

N

G(P)——HP)———=H
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2.6. ExAMPLE (Alford [1]). Alford [1] showed that the knot in
Figure 4 has two minimal spanning surfaces S, and S, such that S*—S,
and S®*—S, are not homeomorphic. We will show this by using the
Alexander ideals. The spine of S, [1, Figure 2] is a graph P, as shown
in Figure 5, and the spine of S, [1, Figure 6] is a graph P, as shown
in Figure 6. As shown in Figure 5 and Figure 6, we choose maximal
trees T,C P, and T,C P,, respectively, and let l;={kl}, ki} and U;={k} Kki} be
fundamental cycles on P, and P,. Then

: ‘,ﬁ Ii_l__/ - \*k;
e s

—
a

: FIGURE 4 FIGURE 5

G(P,)=<a, b, c|bcb=cbc) ,
G(P,)={A, B, 0, Q|ABA=BAB, 0O*=QBAB'ABA'QBAB'AB),

where A, B, O and Q are given in Figure 7 (see [1, Theorem]).

k3
FIGURE 6 FIGURE 7

Let {s, t} be the free abelian basis for H(P, and H(P,), which is
dual to free abelian bases {ki, ki} for H,(P,; Z) and {k%, ki} for H,(P,; Z),
respectively. We have:

A(G(Pl)’ (1))"’”t2_t+1 0 OH ’

therefore

il

0 d
E, P, ) =1{(t*—t+1) d
@) -3

A 1l
ST I
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Since ag¢(A)=ag¢(B)=t*, ag(0)=st" and ags(Q)=s,
AG(P), B)~|lt*—t*+1 0 0],

therefore
0) d=0,1,
Ey(P, I5)=4{t'—t*+1) d=2,
1) 35d .

This implies that for any set of integral l-cycles | on P,, E,(P, 1)
can not be equal to (t*—t+1) by Theorem 2.4, and so we conclude that
G(Pl)iG(Pz) and Sa_SIESS_P1$S3_P2§SS_S2.

§3. Retractible and boundary-retractible cubes-with-holes.

For a connected graph (PcS®), the exterior M(P) is called a cube-
with-holes of genus @ (Lambert [14], Jaco-McMillan [9]). We call a cube-
with-holes M(P) of genus @ retractible iff M(P) can be retracted onto a
wedge W, of B simple loops in M(P). If such a wedge W; can be chosen
in oM(P), then M(P) is boundary-retractible (Jaco-McMillan [9]).

3.1. THEOREM. Let (PcS®% be a conmected graph. If M(P) is
retractible, them for any set of integral l-cycles 1 on P, E (P, 1)=0
Jor 0=5d=pB—1, and EiP,l) is a principal ideal (4(t,, :--,t,)) with
42, ---, 1)=1.

PrOOF. By Theorem 2.4, it suffices to prove that E;(P, [,)=(0) for
0<d=<pB—1, and EyP, !, is principal for a fundamental cycle [, on P.
Now, Theorem follows from Proposition 1.1, Jaco-McMillan [9, Corollary
to Theorem 2] and Hillman [8, Theorem VI and p. 42]. O

The following theorem responds partially to Question 1 of McMillan
[16]. '

3.2. THEOREM. Let (PCS® be a conmected graph. If M(P) s
boundary-retractible, then there exists a boundary link K=K, U--- UK,
in oM(P)CS® satisfying the following: for any fundamental 1l-cycle ks
on K, there exists a set of imtegral l-cycles | on P such that E P, )=
E(K, k¥)=(0) for 0=d=pB—1, and EiP, l)=Ey K, k&) 18 principal (4(t,,
) tﬂ)) with (1) 441, ---,1)=1, (ii) 4@, ---, tg) =4, - - -, tﬂ_l)o

PRrROOF. Since M(P) is boundary-retractible, there is a wedge of g
simple loops, say W,=J,V:--VJ; on aM(P)=oN(P; S*) so that M(P)
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retracts on W;. An intermediate step in the proof of Jaco-McMillan [9,
Theorem 3] asserts that there exist mutually disjoint connected orientable
surfaces F, ---, F; properly embedded in M(P), each with connected
boundary o0F,=K,, so that K;NJ; consists of one crossing point and
K:NJ,=@ for An+#y (see also Lambert [14, Theorem 2]). We will show
that K=K, U---UK, is a required link.

Let r: M(P)— W, be a retraction. Then the homomorphism 7»,: G(P)—
m,(W;) induced by 7 induces an isomorphism of H(P) onto the free abelian
group H,(W,; Z) and so oriented {J, ---, J;} forms a free abelian basis
for H(P). Let k;, be a fundamental l-cycle on K;, A=1, -+, 8, so that
the intersection number of %k, with J, is 1, and let kf={k, ---, k;}. Since
N(P; S°) collapses to P, we have the set of integral 1-cycles [={k], - - -, k}}
on P such that k; is induced from k;, A =1, ---, 8.

We define Y to be the space obtained from M(P) by cutting along
the F\U--- UF, (see Levine [15], Gutiérrez [6], etc.). Then Y is a com-
pact 3-manifold with boundary F,UF,U --- UF;,UF,U(@MP)—K),
where F,=F,=F, for »=1, ..., 8. For each ge H(P), let Y(g) be a
copy of Y.

Let I be the universal abelian covering space of M(P) associated
to the commutator subgroup G(P)' of G(P). Since the sequence

3.2.1) 11— G(PY >»G(P) >H(P)=H, (W Z)— 0

is exact, it follows that M is obtained from Ugene Y(9) by identifying
Fy(g+J;) to Fy(g). Now Theorem 8.2 follows from the same argument
as that of boundary links by Gutiérrez [7, §§1, 2], (see also Smythe
[18]). | l:l

3.3. REMARK. In the proof of Theorem 3.2, each J, of W, is not
always contractible in N(P; S%). If every J, is contractible in N(P; S?),
then we can take a fundamental cycle I, on P, so that the associated
link is of the same type as the boundary link K.

3.4. PROPOSITION. Let A(t,, ---, ts) be an integral polynomial in B
variables satisfying (i) and (ii) in Theorem 3.2. Then, there exists a
connected graph (PcCS® and a fundamental cycle 1, on P such that
Ey P, 1)=(0) for 0=d<pB—1, and EP, )=, ---, ts).

Proor. By Gutiérrez [7, Theorem 4], there exists a boundary link
(LcS®) with B components K, ---, K; such that E (L, 1)=(0) for 0=
d=p—1, and Ey (L, l,)=(4(t, ---, ts)) for a fundamental cycle I, on L.
Let F,, ---, F; be mutually disjoint connected oriented surfaces in S
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with 0F,=K;, v=1, ---, 8. We connect K, ---, K; by mutually disjoint
simple ares e, ---, e;_; With (e,U---Uesp )NAnt (FYU --- UInt (F,))=0Q.
Now it is easily seen that P=LUe, U---Ues_, is a desired graph with
a desired fundamental cycle [,. (See Example 4.4 below.) O

§4. Examples.

In the remainder of the paper, we shall calculate Alexander ideals
of some examples of graphs, which may be of interest to some readers.

4.1. ExaMpPLE (Figure 8, Jaco-McMillan [9]). Let (PcS® be the
graph of 3=3 as shown in Figure 8 used in Theorem 6 of Jaco-McMillan
[9]. G(P) has a presentation

(a, 0,060 | s grys G0 b=deidemd™ )

x, Y, v, W r=v"w™, y=wowv'w™
={a, b, z, y|a’b*=x"*) .

Choose a fundamental cycle l,={k, k,, k;} as shown in the figure.
Then we have ag(a)=s8u™", as(b)=s8u, ag(x)=t*u" and as(y)=t*«, where
{s, t, u} is the free abelian basis for H(P) with lk(s, k,) =1k(t, k,)=1k(u, k;) =
1. Hence, we have;

AP, l)~| 8—8+1 t*—t+1 u—1 0,
Ey(P, l)=(8*—s8+1, t*—t+1, u—1) (not principal) .

ks

~ € Pl

S ~

d | | ¢ w

‘/u ‘ Il \
i c v )
kl kl
FIGURE 8

This implies that for any set of integral l-cycles I (except for some
trivial cases) on P the 3 elementary ideal Ey (P, l) is not principal by
Theorem 2.4, therefore Theorem 3.1 gives an alternate proof that M(P)
is not retractible.

Figure 9 shows the associated oriented link L=K,UK,UK,. G(L)
has a presentation

<031, Loy Xg

Xylly =Xy, Loy ==L, Xs, LoRET ' =2XT s >
yly '.Uz, ys; z

YiYs =YYz YY1 =YsVsy VY2 ' =Y,2'Ys
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and so
8*—s+1 0 0 0
A(L, I¥)~ 0 t*—t+1 0 of .
0 0 w—1 0

4.2. ExXAMPLE (Figure 10; Lambert [14]): Let (PcCS® be the graph
as shown in Figure 10, whose exterior M(P) is not boundary-retractible
by Lambert [14, Theorem 1] and Jaco-McMillan [9, p. 155 Example], and
Jaco-McMillan showed that M(P) is retractible. For the fundamental
cycle [, shown in Figure 10, G(P) has a presentation {ec, g, z|[c, [g, x]]=2)
with ag(c)=s, as(g)=t and as¢(x)=1. Thus, we have:

FI1GURE 10
A(P, 1,)=]|0 0 s+t—1] ,

therefore E,(P, l,)=(s+t—1) (principal). This implies that for any set
of integral 1-cycles I on P, the 2™ elementary ideal E,(P, ) is principal,
but it can not satisfy the condition (ii) in Theorem 8.2 (except for some
trivial cases) by Theorem 2.4. Hence, Theorem 3.2 gives an alternate
proof that M(P) is not boundary-retractible.

4.3. ExaAMpLE (Figure 11; Kinoshita [11]): Let (PcS®) be the graph
as shown in Figure 11, which was examined in Kinoshita [12] and [13].
G(P) has the following presentation:

kz kl

Xy Y2
Figure 11

{21y Y1y Yol Yo Yo Y3 'Y Y Y X7 Y Y T Y 0 ys e =1) .
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For the fundamental cycle l,={k, k,} shown in the figure, we have:
AP, l)~|st+t+1 2 0],

therefore E,(P, l,)=(st+t+1, 2), (not principal). This means that for any
set of integral 1l-cycles I (except for some trivial cases) on P, the 2%
elementary ideal E,(P, l) is not principal, and we conclude that M(P) is
not retractible by Theorem 3.1. (We refer to Jaco [10] for a graph
(PcS® of s=2 with M(P) non-retractible.)

4.4. EXAMPLE (Figure 13): The link (L < S®) shown in Figure 12 is a
well-known boundary link. We give an orientation (i.e. a fundamental
cycle I3 ={k, k,}) on L as shown in the figure, and let (P<S®) be a graph
obtained from (L cS®) as shown in Figure 13 with the fundamental cycle
l, induced from If, so that M(P) is boundary-retractible. Then, G(P)

has a presentation
Y. j Ye
———————

——
kz t+ l I l I x>

k

[
U
D:
l
|

FIGURE 12 FIGURE 13

Loy L1y L2 |Ye®eYs Ys= Yoy YsTiY5 Yo =Yo>
Yor Y1y Yoy Ys|V:YsYz Vs =YsYsy YiZo="LcYs, LY =Ys%: ),
Yy Ysy Ye Y5 =Yooy Yi%2=T:Ys, YW1 X7 =1
with ag(z,)=s (=0, 1, 2) and as(y;)=t (=0,1, ..., 6). Thus,
st—s+1 0 0 0
0 st—t+1 0 O

therefore E,(P, l))=E,L, l¥)=((st—s-+1)(st—t+1)) (principal). It should
be noticed that:

’

A(P, lo)"‘"

(st—s+1)(st—-t+1)=s"’t2(-;1%— —.§+1)(-81t— -—-tl-+1) :
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