Tokyo J. Math. Vol. 7, No. 1, 1984

The Grothendieck Group of a Finite Group Which is a Split Extension by a Nilpotent Group

Tadashi MITSUDA

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

Let R be a ring. Then the Grothendieck group $G_0(R)$ is the abelian group given by generators [M] where M is a finitely generated R-module, with relations [M] = [M'] + [M''] whenever $0 \to M' \to M \to M'' \to 0$ is an exact sequence of finitely generated R-modules. Let π be a finite group, and \mathcal{O} be a maximal order in $Q\pi$ containing $Z\pi$. Then Swan [4] showed that there is a natural epimorphism from $G_0(\mathcal{O})$ onto $G_0(Z\pi)$. He also gave an example of cyclic group such that $G_0(Z\pi) \not\cong G_0(\mathcal{O})$. In connection with these results of Swan, it is an interesting problem to investigate the relation between $G_0(Z\pi)$ and $G_0(\mathcal{O})$. For an abelian group π , Lenstra [1] gives the description of $G_0(Z\pi)$ which answers the above question. Recently, Miyamoto [2] generalizes Lenstra's result into nilpotent groups.

In this paper, we treat a finite group with a normal nilpotent subgroup which has a complement. For such a group π , we obtain an analogous decomposition of $G_0(\mathbb{Z}\pi)$.

THEOREM. Let π be a finite group with a normal nilpotent subgroup U which has a complement. Then we have

where Y is a set of the representatives of the π -conjugacy classes of centrally primitive idempotents of \mathbf{QU} , e^* denotes the class sum of the class containing e and $d(e) = |\mathbf{U}|/|\text{Ker}(\mathbf{U} \rightarrow \mathbf{QUe})|$.

REMARK 1. The idempotent e of the ring R is called centrally primitive, if e is a primitive idempotent of the center of the ring R.

Received April 28, 1983

TADASHI MITSUDA

REMARK 2. d(e) does not depend on the choice of a representative, because Ker $(U \rightarrow QUe)$ and Ker $(U \rightarrow QUf)$ are conjugate if e and f are conjugate.

REMARK 3. If U is cyclic, each e is also central in $Q\pi$ and $e^*=e$, but not centrally primitive in general.

REMARK 4. If π is nilpotent, applying Theorem with $\pi = U$, we get the same decomposition as in [2].

Applying the above theorem to dihedral groups, we have

COROLLARY 1. Let $\pi = \langle \sigma, \tau | \tau^2 = \sigma^t = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$ be the dihedral group of order 2t and R_d be the integer ring of the maximal real subfield of $Q(\zeta_d)$, where ζ_d is a primitive d-th root of unity. Then we have

$$G_0(\mathbf{Z}\pi) \cong egin{cases} G_0(\mathbf{Z}) \bigoplus G_0(\mathbf{Z}) \bigoplus_{1
eq d \mid t} G_0\!\left(R_d\!\left[rac{1}{d}
ight]
ight) & ext{if t is odd} \ G_0(\mathbf{Z}) \bigoplus G_0(\mathbf{Z}) \bigoplus G_0(\mathbf{Z}) \bigoplus G_0(\mathbf{Z}) \bigoplus_{1,2
eq d \mid t} G_0\!\left(R_d\!\left[rac{1}{d}
ight]
ight) & ext{if t is even} \ .$$

Another corollary is the following one.

COROLLARY 2. Let $\pi = C_m \triangleleft C_n$ be a meta-cyclic group such that (m, n) = 1 and C_n acts faithfully on each Sylow subgroup of C_m . Then we have

$$G_{\scriptscriptstyle 0}({oldsymbol Z}\pi) \cong igoplus_{k\mid n} G_{\scriptscriptstyle 0}\!\!\left({oldsymbol Z}\!\left[{oldsymbol \zeta}_k, rac{1}{k}
ight]
ight) igoplus_{1
ot=d\mid oldsymbol m} G_{\scriptscriptstyle 0}\!\!\left(R_d\!\!\left[rac{1}{d}
ight]
ight)$$
 ,

where ζ_l is a primitive *l*-th root of unity and $R_d = \mathbb{Z}[\zeta_d]^{C_n}$ is the C_n -fixed subring of $\mathbb{Z}[\zeta_d]$ when we regard C_n as an automorphism group of $\mathbb{Q}(\zeta_d)$.

§1. Proof of Theorem.

In this section, we prove the theorem. Let π be a finite group with a normal nilpotent subgroup U which has a complement H. For a $Z\pi$ -module M and a set S of prime divisors of |U|, we define N_SM to be a $Z\pi$ -module which is equal to M as a Z-module, and the actions of U_SH on N_SM and M coincide, but $U_{\pi(U)-S}$ acts trivially, where U_S is the S-part of U and $\pi(U)$ is the set of all prime divisors of |U|. Since U_T is normal in π and has a complement for any $T \subseteq \pi(U)$, this is well-defined. In other words, N_S is the exact functor from the category of $Z\pi$ -modules to itself induced from composite of the canonical group homomorphisms

216

GROTHENDIECK GROUP

 $\pi \to \pi/U_{\pi(U)-s} \xrightarrow{\sim} U_s H \hookrightarrow \pi$. For a centrally primitive idempotent e of QU and $S \subseteq \pi(U)$, e_s denotes the S-part of e, so e_s is a centrally primitive idempotent of QU_s . On the other hand, e^s denotes a centrally primitive idempotent of QU such that the S-part of e^s is e_s and the $\pi(U)-S$ part of e^s corresponds to the trivial representation. Then it is easily seen that N_sM is a $Z\pi(e^s)^*$ -module if M is a $Z\pi e^*$ -module. To prove the theorem, we construct the group homomorphisms which are inverse to each other as given in [1], [2].

LEMMA 1. Let M be a $Z\pi e^*$ -module with d(e)M=0. Then there exists a filtration $0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_t = M$ such that each M_j/M_{j-1} is annihilated by a prime number q_j dividing d(e) and $U_{(q_j)}$ acts trivially on M_j/M_{j-1} .

PROOF. We can assume that qM=0 for some prime number qdividing d(e). Then M is an $F_q\pi$ -module annihilated by Ker $(Z\pi \to Z\pi e^*)$. Since $U_{(q)}$ is a q-group, $M^{U_{(q)}} \neq 0$. So we define M_j $(1 \leq j \leq t)$ inductively by $M_j/M_{j-1} = (M/M_{j-1})^{U_{(q)}}$ where $M_1 = M^{U_{(q)}}$ and $M_t = M$ if $(M/M_{t-1})^{U_{(q)}} = M/M_{t-1}$. Since $U_{(q)}$ is normal in π , $0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_t = M$ is a filtration of $Z\pi$ -modules. And $U_{(q)}$ acts trivially on each M_j/M_{j-1} , so this is the desired filtration.

LEMMA 2. Let M be a $Z\pi$ -module. Suppose that M is both a $Z\pi e^*$ -module and a $Z\pi e'^*$ -module with $e^* \neq e'^*$. Then there exists a natural number t such that $(d(e)d(e'))^t M=0$.

PROOF. Put $\mathscr{S} = \{ \varnothing \neq S \subseteq \pi(U) | e_S \not\sim e'_S \}$, where $e_1 \sim e_2$ means that e_1 and e_2 are π -conjugate. Since $e \not\sim e'$, $\mathscr{S} \neq \varnothing$. Let S be a minimal element of \mathscr{S} with respect to the inclusion. Then it is easily seen that any p in S divides d(e)d(e'). On the other hand, M is both a $ZU_se_s^*$ -module and a $ZU_se'_s^*$ -module. Since e_s^* and e'_s^* are central idempotents of QU_s such that $e_s^*e'_s = 0$, $M[1/p_1p_2\cdots p_r]=0$ where $\{p_1, p_2, \cdots, p_r\}=S$. Thus we are done.

For a $Z\pi e^*$ -module M, $[M, \langle e^* \rangle]$ means that [M] is considered as an element in $G_0(Z\pi e^*[1/d(e)])$.

LEMMA 3. For a $Z\pi$ -module M which is both a $Z\pi e^*$ -module and a $Z\pi e'^*$ -module, we have

$$\sum_{S \subseteq \pi(e)} [N_S M, \langle (e^S)^* \rangle] = \sum_{S' \subseteq \pi(e')} [N_{S'} M, \langle (e'^{S'})^* \rangle]$$

in $\bigoplus_{e} G_{0}(\mathbb{Z}\pi e^{*}[1/d(e)])$, where $\pi(e)$ is the set of all prime divisors of d(e).

TADASHI MITSUDA

PROOF. Suppose that $[N_sM, \langle (e^s)^* \rangle] \neq 0$. If $S \not\subseteq \pi(e')$, we can find a prime number p in S which is not contained in $\pi(e')$. Then by the definition of d(e'), $e'_{(p)}$ corresponds to the trivial representation of $QU_{(p)}$. On the other hand, $e_{(p)}$ does not correspond to the trivial representation since $p \in S$. Thus M is both a $ZU_{(p)}e^*_{(p)}$ -module and a $ZU_{(p)}e'^*_{(p)}$ -module with $e_{p}^*e_{p}^{\prime*}=0$, and we have $p^tM=0$ for some natural number t. But since p divides $d(e^s)$, this contradicts the hypothesis. Hence $S \subseteq \pi(e')$, and S appears in the right hand side. Assume that $(e^s)^* \neq (e'^s)^*$. Then N_sM is both a $Z\pi(e^s)^*$ -module and a $Z\pi(e'^s)^*$ -module with $(e^s)^* \neq (e'^s)^*$. So by Lemma 2, $(d(e^s)d(e'^s))^t N_s M = 0$ for some natural number t. Noting that $\pi(e^s) = \pi(e'^s) = S$, this implies that $(d(e^s))^{t'}N_sM = 0$ with some natural number t'. But this contradicts the assumption. Hence we have $(e^s)^* =$ $(e'^{s})^{*}$. By the symmetric argument, the lemma is proved.

Now, we are ready to prove the theorem.

Define $\Phi(e): G_0(\mathbb{Z}\pi e^*[1/d(e)]) \to G_0(\mathbb{Z}\pi)$ by $\Phi(e)([M]) = \sum_{S \subseteq \pi(e)} (-1)^{*(\pi(e)-S)}$ [N_SM], where M is $\mathbb{Z}\pi e^*$ -module. Applying Lemma 1, in the same way as Lenstra's proof, we find that $\Phi(e)$ is compatible with the defining relation of $G_0(\mathbb{Z}\pi e^*[1/d(e)])$ and is a well-defined group homomorphism. Put $\Phi = \sum_e \Phi(e)$. Then Φ is the desired homomorphism.

Next, we define a map in the other direction. For a $\mathbb{Z}\pi$ -module M which is also a $\mathbb{Z}\pi e^*$ -module, we put $\Psi([M]) = \sum_{S \subseteq \pi(e)} [N_S M, \langle (e^S)^* \rangle]$. Then by Lemma 3, Ψ is a well-defined additive map. Since any $\mathbb{Z}\pi$ -module has a filtration such that each factor module is a $\mathbb{Z}\pi e^*$ -module for some e^* , by the same argument as in [1], Ψ is extended to a group homomorphism $\Psi: G_0(\mathbb{Z}\pi) \to \bigoplus_* G_0(\mathbb{Z}\pi e^*[1/d(e)])$.

Finally, by the same calculation as in [1], it is checked that Φ and Ψ are inverse to each other. This completes the proof of the theorem.

§2. Proofs of corollaries.

PROOF OF COROLLARY 1. Let $\pi = \langle \sigma, \tau | \tau^2 = \sigma^t = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$ be the dihedral group of order 2t and e_d be a centrally primitive idempotent of $Q\langle \sigma \rangle$ corresponding to the irreducible representation given by $\sigma \mapsto \zeta_d$ (d|t). Then $|\langle \sigma \rangle| / |\text{Ker} (\langle \sigma \rangle \to Q \langle \sigma \rangle e_d)| = d$. Applying Theorem with $U = \langle \sigma \rangle$, we get

$$G_0(\mathbf{Z}\pi) \cong \bigoplus_{d\mid t} G_0\left(\mathbf{Z}\pi e_d\left[\frac{1}{d}\right]\right) \cong G_0(\mathbf{Z}) \bigoplus_{1 \neq d\mid t} G_0\left(\mathbf{Z}\pi e_d\left[\frac{1}{d}\right]\right).$$

Assume that t is odd. Then each e_d $(d \neq 1)$ is also a centrally primitive idempotent of $Q\pi$ and $Z\pi e_d$ is a twisted group ring over $Z[\zeta_d]$

218

with the center R_d . Since $Z[\zeta_d, 1/d]$ is unramified over $R_d[1/d]$, $Z\pi e_d[1/d]$ is a maximal order (cf. [3], Theorem (40.14)), and $Z\pi e_d[1/d] \cong M_2(R_d[1/d])$.

Next, suppose that t is even. Then $e_2 = 1/t(1 - \sigma + \sigma^2 - \cdots - \sigma^{t-1})$ and $e_2 = e_2(1+\tau)/2 + e_2(1-\tau)/2$ is a decomposition of e_2 into centrally primitive idempotents of $Q\pi$. But since $d_2 = 2$, $Z\pi e_2[1/d_2] = Z\pi e_2(1+\tau)/2[1/2] \bigoplus Z\pi e_2(1-\tau)/2[1/2]$ as rings. So, noting that $Z\pi e_2(1+\tau)/2 \cong Z\pi e_2(1-\tau)/2 \cong Z$, we have

$$G_0\!\left(oldsymbol{Z} \pi e_2\!\!\left[rac{1}{d_2}
ight]
ight) \!=\! G_0\!\left(oldsymbol{Z}\!\!\left[rac{1}{2}
ight]
ight) \!\oplus\! G_0\!\left(oldsymbol{Z}\!\!\left[rac{1}{2}
ight]
ight) \!\cong\! G_0(oldsymbol{Z}) \!\oplus\! G_0(oldsymbol{Z}) \,.$$

Because e_d $(d \neq 1, 2)$ is a centrally primitive idempotent of $Q\pi$, by the same argument as in the odd case, we complete the proof of Corollary 1.

PROOF OF COROLLARY 2. For any d|m, let e_d be a centrally primitive idempotent of QC_m which corresponds to the irreducible representation given by $\sigma \mapsto \zeta_d$, where $\langle \sigma \rangle = C_m$. Then we have $|C_m|/|\text{Ker} (C_m \to QC_m e_d)| = d$. Applying Theorem with $U = C_m$, we have

$$egin{aligned} G_0(oldsymbol{Z}\pi) &\cong G_0(oldsymbol{Z}\pi e_1) \bigoplus_{1
eq d \mid \mathfrak{m}} G_0igg(oldsymbol{Z}\pi e_digg[rac{1}{d}igg]igg) \ &\cong G_0(oldsymbol{Z}C_n) \bigoplus_{1
eq d \mid \mathfrak{m}} G_0igg(oldsymbol{Z}\pi e_digg[rac{1}{d}igg]igg). \end{aligned}$$

By the assumption, each e_d $(d \neq 1)$ is also a centrally primitive idempotent of $Q\pi$, and $Z\pi e_d$ is a twisted group ring over $Z[\zeta_d]$ with the center R_d . Since $Z[\zeta_d, 1/d]$ is unramified over $R_d[1/d]$, in the same way as in the proof of Corollary 1, we have $G_0(Z\pi e_d[1/d]) \cong G_0(R_d[1/d])$ if $d \neq 1$.

On the other hand, $G_0(\mathbb{Z}C_n)$ is calculated in [1]. This completes the proof of Corollary 2.

References

- H. LENSTRA, Grothendieck groups of abelian group rings, J. Pure Appl. Algebra, 20 (1981), 173-193.
- [2] M. MIYAMOTO, Grothendieck groups of integral nilpotent group rings, preprint.
- [3] I. REINER, Maximal Orders, Academic Press, London, 1975.
- [4] R. SWAN, The Grothendieck ring of a finite group, Topology, 2 (1963), 85-110.

Present Address: Department of Mathematics Faculty of Science Tokyo Metropolitan University Fukazawa, Setagaya-ku, Tokyo 158