# The Grothendieck Group of a Finite Group Which is a Split Extension by a Nilpotent Group 

Tadashi MITSUDA

Tokyo Metropolitan University<br>(Communicated by K. Ogiue)

## Introduction

Let $R$ be a ring. Then the Grothendieck group $G_{0}(R)$ is the abelian group given by generators [ $M$ ] where $M$ is a finitely generated $R$-module, with relations $[M]=\left[M^{\prime}\right]+\left[M^{\prime \prime}\right]$ whenever $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is an exact sequence of finitely generated $R$-modules. Let $\pi$ be a finite group, and $\mathcal{O}$ be a maximal order in $Q \pi$ containing $Z \pi$. Then Swan [4] showed that there is a natural epimorphism from $G_{0}(\mathcal{O})$ onto $G_{0}(\boldsymbol{Z} \pi)$. He also gave an example of cyclic group such that $G_{0}(\boldsymbol{Z} \pi) \not \approx G_{0}(\mathcal{O})$. In connection with these results of Swan, it is an interesting problem to investigate the relation between $G_{0}(Z \pi)$ and $G_{0}(\mathcal{O})$. For an abelian group $\pi$, Lenstra [1] gives the description of $G_{0}(\boldsymbol{Z} \pi)$ which answers the above question. Recently, Miyamoto [2] generalizes Lenstra's result into nilpotent groups.

In this paper, we treat a finite group with a normal nilpotent subgroup which has a complement. For such a group $\pi$, we obtain an analogous decomposition of $G_{0}(\boldsymbol{Z} \pi)$.

Theorem. Let $\pi$ be a finite group with a normal nilpotent subgroup $U$ which has a complement. Then we have

$$
G_{0}(\boldsymbol{Z} \pi) \cong \bigoplus_{e \in Y} G_{0}\left(\boldsymbol{Z} \pi e^{*}\left[\frac{1}{d(e)}\right]\right),
$$

where $Y$ is a set of the representatives of the $\pi$-conjugacy classes of centrally primitive idempotents of $\boldsymbol{Q} U, e^{*}$ denotes the class sum of the class containing $e$ and $d(e)=|U| /|\operatorname{Ker}(U \rightarrow \boldsymbol{Q} U e)|$.

Remark 1. The idempotent $e$ of the ring $R$ is called centrally primitive, if $e$ is a primitive idempotent of the center of the ring $R$.

Remark 2. $d(e)$ does not depend on the choice of a representative, because $\operatorname{Ker}(U \rightarrow \boldsymbol{Q} U e)$ and $\operatorname{Ker}(U \rightarrow \boldsymbol{Q} U f)$ are conjugate if $e$ and $f$ are conjugate.

Remark 3. If $U$ is cyclic, each $e$ is also central in $Q \pi$ and $e^{*}=e$, but not centrally primitive in general.

Remark 4. If $\pi$ is nilpotent, applying Theorem with $\pi=U$, we get the same decomposition as in [2].

Applying the above theorem to dihedral groups, we have
Corollary 1. Let $\pi=\left\langle\sigma, \tau \mid \tau^{2}=\sigma^{t}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\rangle$ be the dihedral group of order $2 t$ and $R_{d}$ be the integer ring of the maximal real subfield of $\boldsymbol{Q}\left(\zeta_{d}\right)$, where $\zeta_{d}$ is a primitive d-th root of unity. Then we have

$$
G_{0}(\boldsymbol{Z} \pi) \cong \begin{cases}G_{0}(\boldsymbol{Z}) \oplus G_{0}(\boldsymbol{Z}) \bigoplus_{1 \neq d \mid t} \bigoplus_{0}\left(R_{d}\left[\frac{1}{d}\right]\right) & \text { if } t \text { is odd } \\ G_{0}(\boldsymbol{Z}) \oplus G_{0}(\boldsymbol{Z}) \oplus G_{0}(\boldsymbol{Z}) \oplus G_{0}(\boldsymbol{Z}) \underset{1,2 \neq d \mid t}{\bigoplus} G_{0}\left(R_{d}\left[\frac{1}{d}\right]\right) & \text { if } t \text { is even }\end{cases}
$$

Another corollary is the following one.
Corollary 2. Let $\pi=C_{m} J C_{n}$ be a meta-cyclic group such that $(m, n)=1$ and $C_{n}$ acts faithfully on each Sylow subgroup of $C_{m}$. Then we have

$$
G_{0}(Z \pi) \cong \bigoplus_{k \mid n} G_{0}\left(Z\left[\zeta_{k}, \frac{1}{k}\right]\right) \bigoplus_{1 \neq d \mid m} \bigoplus_{0}\left(R_{d}\left[\frac{1}{d}\right]\right)
$$

where $\zeta_{l}$ is a primitive l-th root of unity and $R_{d}=Z\left[\zeta_{d}\right]^{\sigma_{n}}$ is the $C_{n}$-fixed subring of $\boldsymbol{Z}\left[\zeta_{d}\right]$ when we regard $C_{n}$ as an automorphism group of $\boldsymbol{Q}\left(\zeta_{d}\right)$.

## §1. Proof of Theorem.

In this section, we prove the theorem. Let $\pi$ be a finite group with a normal nilpotent subgroup $U$ which has a complement $H$. For a $Z \pi$-module $M$ and a set $S$ of prime divisors of $|U|$, we define $N_{S} M$ to be a $Z \pi$-module which is equal to $M$ as a $Z$-module, and the actions of $U_{s} H$ on $N_{S} M$ and $M$ coincide, but $U_{\pi(U)-S}$ acts trivially, where $U_{S}$ is the $S$-part of $U$ and $\pi(U)$ is the set of all prime divisors of $|U|$. Since $U_{T}$ is normal in $\pi$ and has a complement for any $T \subseteq \pi(U)$, this is well-defined. In other words, $N_{s}$ is the exact functor from the category of $\boldsymbol{Z} \pi$-modules to itself induced from composite of the canonical group homomorphisms
$\pi \rightarrow \pi / U_{\pi(U)-s} \xrightarrow{\sim} U_{s} H \hookrightarrow \pi$. For a centrally primitive idempotent $e$ of $\boldsymbol{Q U}$ and $S \subseteq \pi(U), e_{S}$ denotes the $S$-part of $e$, so $e_{S}$ is a centrally primitive idempotent of $\boldsymbol{Q} U_{s}$. On the other hand, $e^{s}$ denotes a centrally primitive idempotent of $\boldsymbol{Q} U$ such that the $S$-part of $e^{s}$ is $e_{s}$ and the $\pi(U)-S$ part of $e^{s}$ corresponds to the trivial representation. Then it is easily seen that $N_{s} M$ is a $\boldsymbol{Z} \pi\left(e^{s}\right)^{*}$-module if $M$ is a $\boldsymbol{Z} \pi e^{*}$-module. To prove the theorem, we construct the group homomorphisms which are inverse to each other as given in [1], [2]. So we need some lemmas analogous to those given in [1], [2].

Lemma 1. Let $M$ be a $Z \pi e^{*}$-module with $d(e) M=0$. Then there exists a filtration $0 \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{t}=M$ such that each $M_{j} / M_{j-1}$ is annihilated by a prime number $q_{j}$ dividing $d(e)$ and $U_{\left(q_{j}\right)}$ acts trivially on $M_{j} / M_{j-1}$.

Proof. We can assume that $q M=0$ for some prime number $q$ dividing $d(e)$. Then $M$ is an $\boldsymbol{F}_{q} \pi$-module annihilated by $\operatorname{Ker}\left(\boldsymbol{Z} \pi \rightarrow \boldsymbol{Z} \pi e^{*}\right)$. Since $U_{|q\rangle}$ is a $q$-group, $M^{U^{(q)}} \neq 0$. So we define $M_{j}(1 \leqq j \leqq t)$ inductively by $M_{j} / M_{j-1}=\left(M / M_{j-1}\right)^{U_{(q)}}$ where $M_{1}=M^{U_{(q)}}$ and $M_{t}=M$ if ( $\left.M / M_{t-1}\right)^{U^{(q)}}=$ $M / M_{t-1}$. Since $U_{(q)} \mid$ is normal in $\pi, 0 \cong M_{1} \cong M_{2} \subseteq \cdots \subseteq M_{t}=M$ is a filtration of $Z \pi$-modules. And $U_{i g\}}$ acts trivially on each $M_{j} / M_{j-1}$, so this is the desired filtration.

Lemma 2. Let $M$ be a $Z \pi$-module. Suppose that $M$ is both a $Z \pi e^{*}$ module and a $\boldsymbol{Z} \pi e^{* *}$-module with $e^{*} \neq \boldsymbol{e}^{\prime *}$. Then there exists a natural number $t$ such that $\left(d(e) d\left(e^{\prime}\right)\right)^{t} M=0$.

Proof. Put $\mathscr{S}=\left\{\varnothing \neq S \subseteq \pi(U) \mid e_{S} \not e_{\pi}^{\prime}\right\}$, where $e_{1} \sim e_{2}$ means that $e_{1}$ and $e_{2}$ are $\pi$-conjugate. Since $e \chi_{\pi} e^{\prime}, \mathscr{S} \neq \varnothing$. Let $S$ be a minimal element of $\mathscr{S}$ with respect to the inclusion. Then it is easily seen that any $p$ in $S$ divides $d(e) d\left(e^{\prime}\right)$. On the other hand, $M$ is both a $Z U_{s} e_{s}^{*}$-module and a $\boldsymbol{Z} U_{s} e_{s}^{\prime *}$-module. Since $e_{s}^{*}$ and $e_{s}^{\prime *}$ are central idempotents of $\boldsymbol{Q} U_{s}$ such that $e_{s}^{*} e_{s}^{*}=0, M\left[1 / p_{1} p_{2} \cdots p_{r}\right]=0$ where $\left\{p_{1}, p_{2}, \cdots, p_{r}\right\}=S$. Thus we are done.

For a $Z \pi e^{*}$-module $M,\left[M,\left\langle e^{*}\right\rangle\right]$ means that $[M]$ is considered as an element in $G_{0}\left(\boldsymbol{Z} \pi e^{*}[1 / d(e)]\right)$.

Lemma 3. For a $Z \pi$-module $M$ which is both a $Z \pi e^{*}$-module and a Z $\pi e^{\prime *}$-module, we have

$$
\sum_{s \leq \pi(e)}\left[N_{S} M,\left\langle\left(e^{s}\right)^{*}\right\rangle\right]={ }_{s^{\prime} \leq \pi \in\left(e^{\prime}\right)}\left[N_{S^{\prime}} M,\left\langle\left(e^{\prime s^{\prime}}\right)^{*}\right\rangle\right]
$$

in $\oplus_{0} G_{0}\left(\boldsymbol{Z} \pi e^{*}[1 / d(e)]\right)$, where $\pi(e)$ is the set of all prime divisors of $d(e)$.

Proof. Suppose that $\left[N_{s} M,\left\langle\left(e^{s}\right)^{*}\right\rangle\right] \neq 0$. If $S \nsubseteq \pi\left(e^{\prime}\right)$, we can find a prime number $p$ in $S$ which is not contained in $\pi\left(e^{\prime}\right)$. Then by the definition of $d\left(e^{\prime}\right), e_{\{p \mid}^{\prime}$ corresponds to the trivial representation of $\boldsymbol{Q} U_{(p)}$. On the other hand, $e_{i p i}$ does not correspond to the trivial representation since $p \in S$. Thus $M$ is both a $Z U_{(p)} e_{p p)}^{*}$-module and a $Z U_{i p} e_{i p \mid}^{\prime e_{p}^{*}}$-module with $e_{p, p}^{*} e_{|, p|}^{*}=0$, and we have $p^{t} M=0$ for some natural number $t$. But since $p$ divides $d\left(e^{s}\right)$, this contradicts the hypothesis. Hence $S \subseteq \pi\left(e^{\prime}\right)$, and $S$ appears in the right hand side. Assume that $\left(e^{s}\right)^{*} \neq\left(e^{\prime s}\right)^{*}$. Then $N_{s} M$ is both a $Z \pi\left(e^{s}\right)^{*}$-module and a $\boldsymbol{Z} \pi\left(e^{\prime s}\right)^{*}$-module with $\left(e^{s}\right)^{*} \neq\left(e^{\prime s}\right)^{*}$. So by Lemma 2, $\left(d\left(e^{s}\right) d\left(e^{\prime s}\right)\right)^{t} N_{s} M=0$ for some natural number $t$. Noting that $\pi\left(e^{S}\right)=\pi\left(e^{\prime s}\right)=S$, this implies that $\left(d\left(e^{S}\right)\right)^{\prime} N_{s} M=0$ with some natural number $t^{\prime}$. But this contradicts the assumption. Hence we have $\left(e^{s}\right)^{*}=$ $\left(e^{\prime s}\right)^{*}$. By the symmetric argument, the lemma is proved.

Now, we are ready to prove the theorem.
Define $\Phi(e): G_{0}\left(\boldsymbol{Z} \pi e^{*}[1 / d(e)]\right) \rightarrow G_{0}(\boldsymbol{Z} \pi)$ by $\Phi(e)([M])=\sum_{s \Sigma_{\pi(e)}}(-1)^{* i(\pi(e)-s)}$ [ $N_{s} M$ ], where $M$ is $Z \pi e^{*}$-module. Applying Lemma 1 , in the same way as Lenstra's proof, we find that $\Phi(e)$ is compatible with the defining relation of $G_{0}\left(\boldsymbol{Z} \pi e^{*}[1 / d(e)]\right)$ and is a well-defined group homomorphism. Put $\Phi=\sum_{0} \Phi(e)$. Then $\Phi$ is the desired homomorphism.

Next, we define a map in the other direction. For a $Z \pi$-module $M$ which is also a $Z \pi e^{*}$-module, we put $\Psi([M])=\sum_{s \Sigma_{\pi(e)}}\left[N_{s} M,\left\langle\left(e^{s}\right)^{*}\right\rangle\right]$. Then by Lemma 3, $\Psi$ is a well-defined additive map. Since any $\boldsymbol{Z} \pi$-module has a filtration such that each factor module is a $\boldsymbol{Z} \pi e^{*}$-module for some $e^{*}$, by the same argument as in [1], $\Psi$ is extended to a group homomorphism $\Psi: G_{0}(\boldsymbol{Z} \pi) \rightarrow \oplus_{\boldsymbol{e}} G_{0}\left(\boldsymbol{Z} \pi e^{*}[1 / d(e)]\right)$.

Finally, by the same calculation as in [1], it is checked that $\Phi$ and $\Psi$ are inverse to each other. This completes the proof of the theorem.

## §2. Proofs of corollaries.

Proof of Corollary 1. Let $\pi=\left\langle\sigma, \tau \mid \tau^{2}=\sigma^{t}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\rangle$ be the dihedral group of order $2 t$ and $e_{d}$ be a centrally primitive idempotent of $Q\langle\sigma\rangle$ corresponding to the irreducible representation given by $\sigma \mapsto$ $\zeta_{d}(d \mid t)$. Then $|\langle\sigma\rangle| /\left|\operatorname{Ker}\left(\langle\sigma\rangle \rightarrow \boldsymbol{Q}\langle\sigma\rangle e_{d}\right)\right|=d$. Applying Theorem with $U=\langle\sigma\rangle$, we get

$$
G_{0}(\boldsymbol{Z} \pi) \cong \bigoplus_{d \mid t} G_{0}\left(Z \pi e_{d}\left[\frac{1}{d}\right]\right) \cong G_{0}(\boldsymbol{Z}) \oplus G_{0}(\boldsymbol{Z}) \bigoplus_{1 \neq \| \mid t} G_{0}\left(Z \pi e_{d}\left[\frac{1}{d}\right]\right) .
$$

Assume that $t$ is odd. Then each $e_{d}(d \neq 1)$ is also a centrally primitive idempotent of $\boldsymbol{Q} \pi$ and $\boldsymbol{Z} \pi e_{d}$ is a twisted group ring over $\boldsymbol{Z}\left[\zeta_{d}\right]$
with the center $R_{d}$. Since $Z\left[\zeta_{d}, 1 / d\right]$ is unramified over $R_{d}[1 / d], Z \pi e_{d}[1 / d]$ is a maximal order (cf. [3], Theorem (40.14)), and $Z \pi e_{d}[1 / d] \cong M_{2}\left(R_{d}[1 / d]\right)$.

Next, suppose that $t$ is even. Then $e_{2}=1 / t\left(1-\sigma+\sigma^{2}-\cdots-\sigma^{t-1}\right)$ and $e_{2}=e_{2}(1+\tau) / 2+e_{2}(1-\tau) / 2$ is a decomposition of $e_{2}$ into centrally primitive idempotents of $\boldsymbol{Q} \pi$. But since $d_{2}=2, \quad \boldsymbol{Z} \pi e_{2}\left[1 / d_{2}\right]=\boldsymbol{Z} \pi e_{2}(1+\tau) / 2[1 / 2] \oplus$ $\boldsymbol{Z} \pi e_{2}(\mathbf{1}-\tau) / 2[1 / 2]$ as rings. So, noting that $\boldsymbol{Z} \pi e_{2}(1+\tau) / \mathbf{2} \cong \boldsymbol{Z} \pi e_{2}(\mathbf{1}-\tau) / \mathbf{2} \cong \boldsymbol{Z}$, we have

$$
G_{0}\left(\boldsymbol{Z} \pi e_{2}\left[\frac{1}{d_{2}}\right]\right)=G_{0}\left(\boldsymbol{Z}\left[\frac{1}{2}\right]\right) \oplus G_{0}\left(\boldsymbol{Z}\left[\frac{1}{2}\right]\right) \cong G_{0}(\boldsymbol{Z}) \oplus G_{0}(\boldsymbol{Z})
$$

Because $e_{d}(d \neq 1,2)$ is a centrally primitive idempotent of $Q \pi$, by the same argument as in the odd case, we complete the proof of Corollary 1.

Proof of Corollary 2. For any $d \mid m$, let $e_{d}$ be a centrally primitive idempotent of $Q C_{m}$ which corresponds to the irreducible representation given by $\sigma \mapsto \zeta_{d}$, where $\langle\sigma\rangle=C_{m}$. Then we have $\left|C_{m}\right| /\left|\operatorname{Ker}\left(C_{m} \rightarrow \boldsymbol{Q} C_{m} e_{d}\right)\right|=d$. Applying Theorem with $U=C_{m}$, we have

$$
\begin{aligned}
G_{0}(\boldsymbol{Z} \pi) & \cong G_{0}\left(\boldsymbol{Z} \pi e_{1}\right) \underset{1 \neq d \mid m}{\oplus} G_{0}\left(\boldsymbol{Z} \pi e_{d}\left[\frac{1}{d}\right]\right) \\
& \cong G_{0}\left(\boldsymbol{Z} C_{n}\right) \underset{1 \neq d \mid m}{\bigoplus} G_{0}\left(\boldsymbol{Z} \pi e_{d}\left[\frac{1}{d}\right]\right) .
\end{aligned}
$$

By the assumption, each $e_{d}(d \neq 1)$ is also a centrally primitive idempotent of $\boldsymbol{Q} \pi$, and $\boldsymbol{Z} \pi e_{d}$ is a twisted group ring over $\boldsymbol{Z}\left[\zeta_{d}\right]$ with the center $R_{d}$. Since $Z\left[\zeta_{d}, 1 / d\right]$ is unramified over $R_{d}[1 / d]$, in the same way as in the proof of Corollary 1 , we have $G_{0}\left(Z \pi e_{d}[1 / d]\right) \cong G_{0}\left(R_{d}[1 / d]\right)$ if $d \neq 1$.

On the other hand, $G_{0}\left(Z C_{n}\right)$ is calculated in [1]. This completes the proof of Corollary 2.

## References

[1] H. Lenstra, Grothendieck groups of abelian group rings, J. Pure Appl. Algebra, 20 (1981), 173-193.
[2] M. Miчamoto, Grothendieck groups of integral nilpotent group rings, preprint.
[3] I. Reiner, Maximal Orders, Academic Press, London, 1975.
[4] R. Swan, The Grothendieck ring of a finite group, Topology, 2 (1963), 85-110.

## Present Address:

Department of Mathematics
Faculty of Science
Tokyo Metropolitan University Fukazawa, Setagaya-ku, Tokyo 158

