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Introduction

Any domain W has an ordered group G(W). This group, the set of
non-zero principal fractional ideals of W with a W<y W if and only if «a W
contains y W, is called the group of divisibility of W. Let K*=K\{0} be
the multiplicative group of quotient field of W and U(W) the group of
units of W, then G(W) is order isomorphic to K*/U(W), where 2UW)=
yUW) if and only if y/xe W. It is wellknown that G(W) is linearly
ordered if and only if W is a valuation domain.

In section 1, to define a good preordered group (2.1), we study an
additive abelian group admitting two co-linear preorder relations com-
patible with the group operation.

In section 2, using the basic results of section 1, we discuss some
facts related to a domain W under the assumption that G(W) is a good
preordered group. Then W is dominated by a valuation domain V. We
call this domain W a quasi-valuation domain; in particular, in case V is
integral over W we call W a prevaluation domain. Furthermore, there
are many similarities between quasi-valuation domains and valuation do-
mains. In fact V\UV)=W\U(W). Then it is only natural that a quasi-
valuation domain has some normalities. A quasi-valuation domain W is
really seminormal, i.e., Pic(W)—Pic(W[X]) is an isomorphism, where
Pic (W) is the Picard group of W and X is an indeterminate. Therefore,
for a domain R, it stands to reason that we should think about N W,
the intersection ranging over all quasivaluation domains containing R.
This domain Rf= N W, is seminormal; Rf is not always the seminormali-
zation R* of R, however.

In section 3, we show that R is the largest subdomain R’ of R
containing R such that, for all »’ € Spec (R’), the canonical homomorphism
kE(p' NR)—k(p’) is an isomorphism, where B is the derived normal ring
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of R and k(p’) is the residue field of R).,, and give some properties of
prenormal domains. By the way, a domain R is quasinormal if and only
if Pie (R) —Pic (R[X, X]) is an isomorphism. To the writer’s knowledge,
the quasinormalization hadn’t been given even in one-dimensional case.
Our prenormalization provides the quasinormalization in the case.

In section 4, we define an M-prenormalization of a domain and show
that an M-prenormal domain is quasinormal under the noetherian assump-
tion. This is proved in the same way as the proof of ([3], 3.6).

All rings considered in this paper will be commutative with unit.

§1. Preordered groups.

In this section we turn to an information of additive abelian groups
(for short, groups) admitting a preorder relation and an order relation
compatible with the group operation and we give some definitions. H
denotes a group.

If < is a relation defined on H, we say that < is a preorder on H
and that H is preordered under < if < is reflexive and transitive. If
a preorder < is asymmetric, we say that < is an order on H and that
H is ordered under <. If, for any 2, ye€ H, <y or y<z, then < is a
linear preorder on H, and H is said to be linearly preordered under =.

DEFINITION 1.1. If <, and =, are preorders on H, then we say that
<, and =<, are co-linear on H to each other, and that <, is co-linear
with respect to H=(H, <,) if =<,y or y=<,z for all z, y € H.

DEFINITION 1.2. If < is a preorder on H compatible with the group
operation on H, i.e., for all x, y, z€ H, x<y implies that x+2=y+2, we
say that H is a preordered group.

DEFINITION 1.3. Let H=(H, £) be a preordered group and z¢ H.
We say that z is prepositive if x € P={h € H; 0<h}, and « is prenegative
if xe(—P); x is strictly prepositive if x € Pt=P\Z where Z=PnN(—P),
and z is strictly prenegative if x € (—P%).

Hereafter the set of prepositive element of a preordered group
H=(H, =), the set of strictly prepositive elements of H and the set of

prepositive and prenegative elements of H are denoted by P, P* and Z
respectively.

PROPOSITION 1.4. Let H=(H, <) be a preordered group. Then, the
Jollowing statements hold.

(1.4.1) P s a subsemigroup.



QUASI-VALUATION DOMAINS 373

1.4.2) Psy—x of and only if x=v.

(1.4.3) Z 18 a subgroup of H.

(1.4.4) H/Z 48 an ordered group wunder the preordering on H/Z
wnduced by =. '

DEFINITION 1.5. Let <, and <, be preorders on H. Then we say
that the preorder =<, is finer than the preorder <, if the following two
conditions are satisfied:

(1.5.1) z=,y implies that <,y for all z, y€ H.

(1.5.2) If xze P, then x € P;* where Pjf={hc H;0=;h, h£;0}.

PROPOSITION 1.6. Let =, and =, be preorderson H. If <,and <,
are co-linear and =, 1s finer than =,, then H is linearly preodered under
=..

PrROOF. Take any h,h’'€ H. Since <, and =, are co-linear, either

h<.h or W<,h must hold. If A'Z,h then Ah=,h'. Thus, by (1.5.1),
h=.h'.

COROLLARY 1.7. Under the assumptions as wn (1.6), H=P,U(—P,).

PROPOSITION 1.8. Suppose, in addition to the circumstances that =,
18 an order. If he P;t then 0<,h.

Proor. If he P, then he¢(—P,), i.e., h£,0. Then 0Z,h, since =,
and <, are co-linear. Since ke P,", h==0. Then, since <, is an order,
0<,h.

PROPOSITION 1.9. Let P, be a subsemigroup of H between P, and P,.
Then,

(1.9.1) The relation <, on H defined by “x<,y if and only if y—
x € P,” 18 a preorder on H.

(1.9.2) There are the order <) and the preorder =; induced by P,
on H'=H/Z, where Z,=P,N(—P,).

1.9.3) Z=; s finer than =i.

(1.9.4) =<; and =j; are co-linear on H.

Proor. (1.9.1) and (1.9.2) are clear by (1.4). By (1.8), we have
P;=P;, thus <} is finer than <!. (1.9.4): Since <, is finer than =<,
and <, and <, are co-linear, <, and <, are co-linear, hence =] and =;
are co-linear on H.

PROPOSITION 1.10. Under the assumptions as in (1.9), there 18 a one
to one correspondence between all P;’s and all Z;'s.
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PROOF. Since P;=P}UZ; and P} =P} for all ¢, j, the statement
above holds.

§2. Quasi-valuations and prevaluations.

In this section H=(H, <,, <) always denotes a good preordered group
defined as follows:

DEFINITION 2.1. Let H=(H, <) be a preordered group. If H is an
ordered group under the order <, compatible with the same group opera-
tion, = and =, are co-linear and =< is finer than <, then we say that
H is a good preordered group and we write H=(H, <, <)).

EXAMPLE 2.2. Let G be an additive abelian group and F=(F, <)
be a linearly ordered additive abelian group. We put H=GxF. Let <,
be an order on H defined by “(g, f)=<.(¢’, f") if and only if (g=g¢ and
f=f)or (f<f')’ and <, be a preorder on H defined by “(g, f)=,(¢’, f)
if and only if f<f'”. Then H=(H, <,, <,) is a good preordered group.

DEFINITION 2.3. Let K be a field. A mapping w of K*=K\{0} into
a suitable good preordered group H=(H, <, <,) is called a quasi-valuation
on K if the following conditions are satisfied for all z, y € K*;

(2.3.1) w(xy)=w()+w®).

2.3.2) (1) If wx)—w(y)e P, wy)=s,wx+y).

(2) If wx)—w(y) e(—P"), wk)=s,w@+y).

(8) If w(x)—w(y)e Z\{0}, then for some z € H such that w(x)—z¢€ Z,
z=,w(x+y).

(4) If w@)—w(y)=0, wk)=s,ww+y).

(2.3.3) w(—1)=0.

PROPOSITION 2.4. Under the circumstances, the followings hold.
(2.4.1) wE)=—w(x), wl)=0 and wx)=w(—=x).
(2.4.2) If w(y)—w(x)e P+, then w(x+y)=w(x).

PrROOF. We are to prove (2.4.2). By (1.8), we note that hec P* if
and only if 0<,h. |

(1) If wE+y)—w(—y)eP*, then w)<, wy)=w(—y)s,w(—y+
(x+y))=w(x), a contradiction.

(2) If wx+y)—w(—y)e(—P*), then w@)=s, wEx+y)<, w(—y+ @+
Y)=w(x) so that w(x)=w(x+y).

(3) If wx+y)—w(—y)e Z\{0}, for some z € H such that w(—y)—z=
2’ € Z, then z+2' =w(y) >, w@)=w(—y+(@+y))=,2. Thusz+2z'>,z. Hence
2'>,0, i.e., 2’e P*, a contradiction.
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(4) If wx+y)—w(—y) =0, wx)s,wk+y)sw(—y+(@+9) =wk),
so that w(x+y)=w(x).

PROPOSITION 2.5. Under the circumstances, we set V={xec K*;0=
w(@)}U {0} and W={xec K*; 0=, wx)}U{0}. Then V is a valuation domain
of K and W is a local domain dominated by V with the quotient field
K. Moreover the maximal ideal of V is equal to the maximal ideal

of W.

PROOF. We note that H =H/Z is a linearly ordered group. Con-
sidering w; K*—H,

w

K*x—H
RNy

~

H

V={xe K*; 0<'@w(x)} U{0} where <’ is the order on H induced by P.
Then the conditions of (2.8) induce the condition of a valuation of K.
Hence V is a valuation domain of K.

Condition (2.8.1) implies that W is closed under multiplication. Take
xz,y€ W, so that 0=, w(x) and 0=, w(y).

(1) If wi)—w(—y)eP*, then 0=, w(y)=,w@—Y).

(2) If w)—w(—y)e(—P"), then 0=, w¥)=, wx—1Y).

(8) If wa)—w(—y)eZ, then we may assume that w(x)=w(y)=0
and that 0<,w(x), 0<,w(¥y).

(a) If wx)=w(y)=0, 0=w(r)=,wx—1y).

(b) If 0<,wx), 0<,w(y) and w(x)—w(—y) <€ Z\{0}, then z=,w(x—y)
for some ze H such that w&)—ze€Z. Then z=w(x)+2 where 2’ € Z.
Hence ze P*. By (1.8), we have 0<,z=, w(x—7y).

(¢) If 0<,w(x), 0<,w(y) and w(x)—w(—y)=0, then 0 <, w(x)< ,w(x—7Y).
Thus in all cases 0=, w(x—y). We have proved that W is a domain with
identity. Moreover the maximal ideal of V={re K*;0<@(x)}U{0}=
{xe K*; wx) e PIU{0}={xre K*; 0<,w(x)}U{0}c W. This shows that W
is a local domain (W, n) dominated by V=(V, m) with the quotient field
K and that m=n.

DEFINITION 2.6. Under the circumstances, we say that (V, n) is the
valuation domain of @ and that (W, n) is the quasi-valuation domain of
w dominated by V. Two quasi-valuations w, w’ of a field K are equi-
valent to each other if the quasi-valuation domain of w coincides with
the quasi-valuation domain of w’. We call w(K*) the quasi-value group
of w.
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Then we see the following result immediately.

THEOREM 2.7. Let (V, m) be a valuation domain of a quotient field
K and W a subdomain of V such that W<V and Q(W)=K. Then the
Sollowing statements are equivalent.

(2.7.1) W 1is a quasi-valuation domain of K.

(2.7.2) For any x, yc W, it holds that either xeyW or yezV.

(2.7.8) The maximal ideal m of V 1is set-theoretically equal to the
maximal tdeal of W.

(2.7.4) For any prime ideal p of W, the maximal ideal of V, is
set-theoretically equal to p.

(2.7.5) If xe€ K, then either xe€ W or e V.

(2.7.6) There exists a subfield k of V/m such that W={ze V;
2 mod m € k}.

ProOOF. (2.7.1)—(2.7.5): If ¢ V, then z'em. By (2.4), we have
rlemS W.

(2.7.5)—(2.7.1): We set H={xW;xz € K\{0}}. We define s W=<,yW if
and only if y/xe W for W, yWe H, then the relation <, is an order
on H. Moreover we define aW=yW if and only if y/xe V for aW,
yWe H, then the relation < is a preorder on H. Hence we have that
< is finer than <, and that < and <, are co-linear to each other. We
write the group operation on H as addition: s W+yW=ayW. Since, for
all ze K\{0}, s W<y W implies xzW<yz W, the order <, and < are com-
patible with the group operation on H. Then the mapping w such that
w(x)=a2W (xe€ K\{0}) is a homomorphism from K* onto H. Hence the
mapping w satisfies the conditions of (2.83). Then w is a quasi-valuation
of K. Hence W={xe K; 0=, w(x)} U{0}, i.e., W is a quasi-valuation domain
of K.

(2.7.1)—(2.7.3): This is the statement of (2.5).

(2.7.3) > (2.7.1): We have only to show that (2.7.8)—(2.7.5). Take
xeK. If x¢V, then s'emcCW.

(2.7.2) —(2.7.5): This is nothing but a restatement.

(2.73)—(2.7.4): We may assume that (2.7.8)—(2.7.5). Let m’ be the
maximal ideal of a valuation domain V,. Take z=t/sem'SV, (s W\p,
teV). IftesW, thensetV, ie., s/te VSV, hence 8/t is a unit in V,,
a contradiction. Thus tesW, i.e., x€ WS W, and x is not a un1t in
W, V,. Hence xcpW,, i.e., xep=pW,NW.

Of course (2.7.4) implies (2.7.3).

(2.7.3)—(2.7.6): This is nothing but a restatement.

PROPOSITION 2.8. Let W be a quasi-valuation domain of K, W’ any
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domain between W and K and pecSpec(W). Then the following state-
ment hold.

2.8.1) W isa quasz-valuatwn domain of K.

(2.8.2) If x is an element of W which is mot im p, themn p is con-
tained in xW.

(2.8.3) p s set-theoretically equal to pW,.

(2.8.4) W/p is a quasi-valuation domain.

(2.8.5) If L is a subfield of K, LN W 14s a quasi-valuation domain
of L.

PROOF. (2.8.1): Let V'’ be a valuation domain between W’ and K
and V a valuation domain which dominates W. Take x¢ W'.

(1) IfV'CV,then WSW'CV'C V. HenceV'=V. Thuszte V=V".

(2) If VCV/, then e VCV'.

(8) If V and V' are incomparable, then, by the theorem of inde-
pendence of valuation, R=V’NV is a semi-local domain which is not local.
On the other hand, as WS RcCV, R must be local, which is nonsense.

(2.8.2): Let y be an arbitrary element of p. Suppose y is not in
xW. By (2.7.2), ¢ is in yV<pV=pV,=pW,=p, a contradiction.

(2.8.8): By (2.7.4), p<oW,ZpV,=np.

(2.8.4): Let V be a valuation domain which dominates W. Then
V/p is a valuation domain which dominates W/p. The statement is
therefore immediate from (2.7).

(2.7.5): Let V be a valuation domain which dominates W. Then VN L
is a valuation domain which dominates WNL. If y is an element of L
which is not in WNL, then x'eV NL.

(W, n, k) denotes a local ring (W, n) with the residue field %.

COROLLARY 2.9. Let (W,n,k) and (W',n', k') be quasi-valuation
domains dominated by the valuation domain V. Then, k=K' if and only
if W=W".

PROOF. It is easy and we omit it.

PROPOSITION 2.10. Let (W, n) be a quasi-valuation domain of a field
K dominated by the wvaluation domain (V,n) of K and W* a quasi-
valuation domain of the residue field Vin dominated by the valuation
domain V* of Vin. Then the set W' ={xe V;modneW?*} is a quasi-
valuation domain of K dominated by the composite of V with V*, i.e.,
V'={xe V; x modn eV*}.

PrROOF. Take xec K, x¢W’'. If x¢ V,thenxtencCV, s ' modneV*
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and x'eV’. Assume that x€ V. Since W* is a quasi-valuation domain,
z'mod » € V*, which shows that e V’. Thus W'’ is a quasi-valuation
domain dominated by V".

REMARK 2.11. The domain W”={xre W; x mod n € W*} is not always
a quasi-valuation domain dominated by V’. Let @ be the field of rationals,
C the field of complexes, X, Y indeterminates and K=C((x)) the quotient
field of C[[X]]. We set W=Q+ YK[[Y]], W*=Q+XC[[X]] and V*=
CI[X]]l. We put f=2"X. Then, f¢W"” and f*¢V’, which show that
W' is not a quasi-valuation domain dominated by V".

PROPOSITION 2.12. Let R be a subdomain of a field K and let p a
prime ideal of R. Then there exists a quasi-valuation domain W of K
such that W has a prime ideal n with k(p)=k(n).

Proor. It is well-known that there exists a valuation domain V of
K such that V has a prime ideal n lying over p. We set W={zxe V;x
mod n € k(p)=k(n)}. Then W is a quasi-valuation domain dominated by
V such that W has a prime ideal n lying over » with k(p)==Fk(n).

To introduce the concept of a prevaluation domain, we define a w-
subgroup of (H, <, <).

DEFINITION 2.13. Let w be a quasi-valuation of K with the quasi-
value group (H, <, <,), Z' a subgroup of Z and w’ a mapping of K* to
H' (=H/Z) induced by Z’ and w. If w’ satisfies the conditions of (2.3),
i.e., w' is a quasi-valuation with the quasi-value group H’, then we say
that Z’ is a w-subgroup of H.

PROPOSITION 2.14. Let w be a quasi-valuation with the quasi-value
group (H, =, =). If Z, and Z; are w-subgroups of H, then Z,NZ, and
Z,+Z; are w-subgroups of H.

PrOOF. Z,=2Z,NZ, is a w-subgroup: Let <, (§=2, 8, 4) be a preorder
on H induced by Z;, We note that =; (=2, 8, 4) is finer than =<, and
that Pt*=P,=P,=P,=P.,.

(1) If w@—w(y)eP*, wy=wx+y), hence w(y)=,w(x+y).

(2) If wkx)—w(y) e(—P*), wk)=,wx+7y), hence w(x)=,w(x+7y).

(3) If wx)—w(y) € Z\Z,, for some z€ Z such that w(x)—zeZ, 2=,
w(x+y) by (2.3.2), hence z=,w(x+vy).

(4) If wx)—w(y)eZ,=Z,NZ, ie., wx)—wy)eZ; (j=2,3), then
w@)=;w@+y) (=2, 3), i.e., w@+y)—wk) € PN P=(P UZ)N(PUZ)=
(PHrUZ)N(PHUZy)=P} U(Z,NZ)=P}UZ,=P,, hence w(x)=,w(x-+y).
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Thus the mapping w, induced by Z, and w is a quasi-valuation with
the quasi-value group H/Z,, i.e., Z,NZ, is a w-subgroup of H.

Zy=2,+2Z, is a w-subgroup: Let <, be a preorder on H induced by
Zs. We note that P*=P; and that <, is finer than =<.. »

(1) If w@)—w(y)eP*, wy)=,wx+y), hence w(®x)=;wx+y).

(2) If w@)—w(y)e(—P*), wx)=,w+y), hence w(x)=<;w(x+y).

(8) If wx)—w(y)e Z\Z,, for some ze Z such that w(x)—z€eZ, z<,
w(x+7Yy), hence 2z, w(x+y).

(4) Let w; (=1, 2, 3,4) be a quasi-valuation with the quasi-value
group H/Z; induced by Z,. We illustrate groups in the figure, where f
and f’ are cannonical homomorphism:

K*
/ \
\
H|Z,~ - H
7 H qz, 7
]v‘ —_ U
Zs/Zs‘ Zz/Z4

We note that Z,/Z, is isomorphic to Z,/Z,. Since Z, is a w-subgroup
of H, if w(x)—w(y) € Z,+Z,, then w,(x)—w,(y) € Z,+ Z,/Z;. Hence w,(x)—
w(y) € Z,/Z,. Since w, is a quasi-valuation with the quasi-value group
H|Z, w(x+y)—w((x)€ P,/Z,~H|Z,, Then, by the isomorphism f of Z,/Z,
to Z,/Z,, w,(x+vy)—wsx) € Py/Z;. It follows that w(x+y)—w(x) € P;.

Thus a mapping w; induced by Z; and w is a quasi-valuation with
the quasi-value group H/Z,, i.e., Z; is a w-subgroup of H.

The next proposition is an immediate corollary.

PROPOSITION 2.15. Under the circumstances, there is a one-to-one
order-preserving correspondence between all the w-subgroups of H and all
the quasi-valuation domains dominated by V containing W.

ProoF. Let Z’ be a w-subgroup of H, w' a quasi-valuation of K
with the quasi-value group H/Z’' and <’ an order on H/Z induced by Z’.
Weset W={xe K*;0="w(x)} U{0}. Then W' is a quasi-valuation domain
dominated by V. Conversely, let W’ is a quasi-valuation domain dominated
by V and U(W’) a unit group of W. We set Z'={w(x); x€ UW')}. Then
Z' is a w-subgroup of H.
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DEFINITION 2.16. We say that a chain of distinet w-subgroups Z'=
Z,0Z,>---2Z, is of length n. We say that Z’ has w-rank n if there
exists a chain of length » descending from Z’ but no longer chain. We
say that Z’ has w-rank oo if there exist arbitrarily long chains descending
from Z’. Our notation for w-rank is w-rk (Z’).

PROPOSITION 2.17. Under the circumstances, let Z' be a w-subgroup
of H of finite w-rank and (W', n', k') a quasi-valuation domain cor-
responding to Z'. Then W' is integral over (W, n, k).

PROOF. Let % be the residue field of the valuation domain of w.
By (2.9) and (2.15), there is a one-to-one order-preserving correspondence
between all the w-subgroups of H and all the intermediate fields between
k and k. Moreover we note that k' is algebraic over k if and only if
W' is integral over W. Since w-rk (Z’) is finite, the number of inter-
mediate fields between k& and k' is finite, hence k’ is algebraic over k,
i.e.,, W’ is integral over W.

A finiteness of w-rank of a w-subgroup motivates the next definition.

DEFINITION 2.18. Let w be a quasi-valuation of K with the quasi-
value group H. We say that w is a prevaluation of K if, for all x € K*
such that w(x) € Z, the w-subgroup Z, of H generated by w(x) is of finite
w-rank. Then, we say that a quasi-valuation domain W (corresponding to
w) is a prevaluation domain and that w(K*) is called the prevalue group
of w. Two prevaluation w, w’ of K are equivalent to each other if the
prevaluation domain of w coincides with the prevaluation domain of w’.

Then we see the following results. W denotes the derived normal
ring of a domain W. ‘

THEOREM 2.19. Let W be a domain with a quotient field K. Then
the following statement are equivalent.

(2.19.1) W 1is a prevaluation domain K.

(2.19.2) For any x, y€ W, it holds that either xcyW or yexzW.

(2.19.3) If x€ K, then either xc€ W or x'e W.

(2.19.4) W 1is a quasi-valuation domain (W, n, k) of K dominated
by the valuation domain (V, n, k) and k s algebraic over k.

(2.19.5) W 1is a quasi-valuation domain of K dominated by the valu-
ation domain V and V 1s integral over W.

(2.19.6) W is a valuation domain and the maximal ideal of W 1is
set-theoretically equal to the maximal ideal of W.

(2.19.7) W is a valuation domain and, for any prime ideal p of
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w, a maximal ideal of W, is set-theoretically equal to p.

ProOF. First, by (2.17), we note that the valuation domain V domi-
nating W is integral over W.

(2.19.1) «—(2.19.4) — (2.19.5): Trivial.

(2.19.2) —(2.19.3): This is nothing but a restatement.

(2.19.5)—(2.19.3): Take any xe€ K, x¢ W. Since W is a quasi-valu-
ation domain of K and V is a integral over W, eV W.

(2.19.3) > (2.19.5): It is easy to see that W is a valuation domain of
K. Then W is a quasi-valuation domain of K dominated by W and W is
integral over W.

(2.19.3)—(2.19.7): Let p be a prime ideal of W. Since W,=(W,, #)
is a valuation domain, W, is a local domain (W,, m) hence m#. Take
an element of 7, say «. Then ¢ W,, hence, by (2.19.3)—(2.19.5) and
(2.8.1), xem=pW,=p (cf. (2.8.8)), i.e., p=i.

(2.19.7) —(2.19.6): Trivial. ‘

(2.19.6)—(2.19.3): Take xe€ K. If x*¢ W, then zefi=ncC W.

PROPOSITION 2.20. Let W be a prevaluation domain of K and p any
prime ideal of W. Then, the following statements hold.

(2.20.1) If W' is any domain between W and K, then W’ is a pre-
valuation domain.

(2.20.2) If xc€ W and x¢p, then pCaxW.

(2.20.3) p s set-theoretically equal to pW,.

(2.20.4) W/p is prevaluation domain.

PROOF. (2.20.1): If x¢ W', then z¢ W, hence z~'ec W< W".

(2.20.2): Take any yep. If wxgyW, then yexW, hence pSaW.
Let p be a prime ideal of W lying over p. Therefore yWp=pcaW,
ie., x¢yW, thus yexW, i.e., pcacW.

(2.20.3): Take x=y/z epW (yep, 26 W\p). Since z¢p, by (2.20.2),
pCzW, hence y=zy' (y’e€W). Thus xe WNpW,=np.

(2.20.4): By (2.8. 4) W/p is a quasi-valuation domain dominated by
the valuation domain W/p and W/p is integral over W/p. It follows that
W is a prevaluation domain.

§ 3. Prenormality and seminormality.

The definition of a seminormalization which was given by Traverso
[3] is as follows.

DEFINITION 3.1. Let R be a domain, T an overdomain of R integral
over B. We define : ‘
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t(p)={xe T, xec R,+J(T,) for all p e Spec (R)}

where J(T,) is the Jacobson radical of 7, and Ri= N R#(p), the inter-
section ranging over all prime ideals of E. We say that the ring R}(p)
is obtained by glueing T over p and that the ring R} is the seminormali-
zation of Rin 7. If T=R, then we call R} the seminormalization of R
and denote it by R*; we say that R is seminormal in T if R=Rj.

PROPOSITION 3.2. R* is the largest subring T of R containing R
such that '

(8.2.1) For any pe€Spec(R) there ts exactly one q € Spec (T) lying
over p, and

(8.2.2) The canonical homomorphism k(p)—k(q) is an tsomorphism.

We first begin with the next proposition.
PROPOSITION 3.3. A prevaluation domain 1s seminormal.

ProOOF. Let R be a prevaluation domain, p any prime ideal of R.
Since R, is a prevaluation domain by (2.20.1), J(R,)=J(R,) by (2.19.7).
Hence R,DJ(R,). Thus Rt=nN (R, +J(R,)=N R,=R.

LEMMA 8.4. Let k,DOk be fields. There is a sequence of fields

ko;Iﬁ;kz;—ks;’ * ';kn;“ ';k ’ ﬁo k,,=k
na

where k, is algebraic over k,.,.
COROLLARY 38.5. A quasi-valuation domain is seminormal.

PrOOF. This is proved in the same way as (3.3); we give another
proof which is useful for (8.10) and (3.11). Let (W, n, k) be a quasi-
valuation domain dominated by a valuation (V, n, k,). By Lemma 3.4,
we have the fields k,’s between k and k, such that k, is algebraic over
k.., with N,z k.,=k. We set V,={xecV;z2modnek,}. Then V, is a
prevaluation domain dominated by V such that V, is integral over V.,
with U, V,=W. Since V, is seminormal, so is W (cf. Hamman's cri-
terion [4]).

In the normal case, the following theorem is well-known: A domain
R is normal if and only if R is an intersection of valuation domains con-
taining R. One can ask the following question: Let R be a seminormal
domain with a quotient field K and the W,’s prevaluation domains between
R and K. Then R=N W,? Proposition 8.15 shows that the above ques-
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tion has really a negative answer. From now on, we discuss some facts
related to this question. We start with some definitions.

DEFINITION 8.6. Let R be a domain, T an overdomain of R integral
over R. We define

Ri(p)={x e T; xc R,+qT, for all g( e Spec(T)) lying over p}

and Ri= N RY¥p), the intersection ranging over all prime ideals of R.
We say that the ring Ri(p) is obtained by (#)-glueing T over p and that
the ring R} is the prenormalization of R in T. If T=R, then we call
R} the prenormalization of R and denote it by R!, we say that the ring
R is prenormal in T if R=R}.

REMARK 8.7. A quasi-valuation domain and a prevaluation domain
are prenormal.

We give some basic results.

PROPOSITION 3.8. R is the largest subring R’ of T containing R
such. that

(3.8.1) For all p' € Spec (R'), the canonical homomorphism k(p'N E)—
k(p') is an isomorphism. '

PROOF. R, satisfies (3.7.1): Let q € Spec (R}) and p=qN R € Spec (R).
As R,CR{CR,+q' T, where g( € Spec (T)) is lying over ¢, k(p) =R,/qd'T,N
Rp;R%/q’ r.n Ri(=k(P)SR,+ ' T,/q Tp:Rp/q, T,n R,=k(p), hence k(p)=
k(q)-

Now we shall prove that if R satisfies (3.7.1), then R'CR}. Let
vrc R, x¢ Ry. Then there are ¢’ € Spec (B’) and p=¢' N R € Spec (K) such
that ¢ R,+qR,. Then k(p)=R,/pR,=R,+q¢ R;/q'R,= R;/qd'R,=k(¢'). If
k(p) — k(') is bijective, R,+q' R,=R}, hence ¢ R'CR;,=R,+¢'R;, a con-
tradiction.

COROLLARY 3.9. R% 4s seminormal in T.

PROPOSITION 3.10. A domain R is premormal if and only if R s
an intersection of prevaluation domains containing R.

ProOOF. Let T=( W, where W,’s are prevaluation domains containing
R. Let p’'eSpec(T), p=p'NRecSpec(R) and (W, n)2R a prevaluation
domain such that nN T=p'. If k(n)=k(p) all is done; and we may assume
that k(n)2k(p); by (3.4), there is a sequence of fields k(n)=k,2k,2---2
kE(p), Uiz k. =k(p) where k, is algebraic over k,,,, hence there is a sequence
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of prevaluation domains W= W,2(W, n)2---2(W, n)2- - 2(N.zo Wi, 1)
where W./n=k;, (NiW)/n=k(p). As (NazW,n) T and nNT=7p,
(Nezo Wy, n)2k(p"), i.e., k(p')=k(p), hence TS R*=RcT, i.e., R=T.

COROLLARY 8.11. A domain R is premormal if and only if R i3 an
intersection of quasi-valuations domains containing R.

We give some criteria of prenormality.

PROPOSITION 3.12. Let S be a multiplicative closed set in a domain
R. If R is prenormal, so is S™'R.

PrROOF. By definition,
(S7R}= N (S7'R¥S'p)= N RYp)<S-'R.
SNp=02 SNp=2

Take y=x/sc (SR) (xc R, seS). Then we have zc R¥p) for all pe
Spec (R) where pNS=@. Moreover z€ R+ for all (e Spec (&) lying
over all p( € Spec (R)) that meet S. Therefore x € R+ § for all d( € Spec (R))
lying over all g( € Spec (R)) that meet S. Hence « € R¥g) for all ¢( € Spec (R))
that meet S. Therefore z € Rp) for all p(cSpec(R)), i.e., xc R*=R.
Hence syeR, i.e.,, ye SR.

COROLLARY 3.13. Under the circumstances S—(R¥)=(S—'R)*.
PROOF. Since S'RCSS'(RY; by (3.12), (SR} (S™YRY)*=S(RY).

COROLLARY 3.14. Let R be a domain. The followings are equivalent.
(3.14.1) R is prenormal.

(8.14.2) R, is prenormal for all p e Spec(R).

(8.14.3) R,, is prenormal for all m € Max (R).

ProOF. Rcn (RY,=N(R,)=NR,=R.
We discuss a little further the properties of the prenormality.

PROPOSITION 3.156. Let (R, m) be a local domain, (T, M,, ---, M,) an
overdomain of R integral over R. Then |Max (R:)|=s.

PROOF. By @j-, (BR+M,)/M;=@j., T/M; and T/J(T)=P;-, T/M,, we
have @j., (R+M,)/M;=T/J(T). Let f be the canonical epimorphism
f:T—T[J(T). Then it is easy to show that fF-Y(Pi, (R+M)/M,)=
Ni=1 (BR+M;). Hence, Ui, (R+M,)—®;-, (R+M,)/M; is surjective. Thus
M;=(Nj- (R+M))NM; is a maximal ideal of Ui, (R+M;). Moreover
M;=M; (j+1). Therefore |Max (Uj., (R+ M,))|=s.
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The next theorem follows directly from (8.15).

THEOREM 3.16. Let (R, m) be a one-dimensional noetherian local
domain. If R is premormal, then R is a prevaluation domain.

We introduce at this point some definitions.

DEFINITION 3.17 ([2], 4.1). Let X be a free abelian group. A ring
R is said to be quasi-normal if and only if the canonical homomorphism
Pic (R) —Pic (R[X]) is an isomorphism.

DEFINITION 3.18 ([2], 4.83). A domain R is locally unibranche (LUB)
if and only if R, is unibranche for all m € Max (R), i.e., the canonical
map Max (B)—Max (R) is bijective.

REMARKS 3.19 ([2], 4.2).
(3.19.1) A normal ring is quasinormal.
(3.19.2) A quasinormal ring is seminormal.

THEOREM 3.20. Let R be a one-dimensional noetherian domain such
that R is a finitely gemerated R-module. Then the Jollowings are
equivalent.

(3.20.1) R is quasimormal.

(3.20.2) R, is quasinormal for all m € Max (R).

(3.20.3) R, is seminormal and LUB for all m € Max (R).

(3.20.4) R s prenormal.

(3.20.5) R, is prenormal for all m e Max (R).

(3.20.6) R, is a prevaluation domain for all m € Max (R).

EXAMPLE 8.21. Let Q be the field of rationals, C the field of com-
plexes, and X, Y indeterminates.
(38.21.1) C[X, Y]/(X*—Y?®) is seminormal, but it is not prenormal.

3.21.2) Q[[X, Y])/(X?*+Y? is prenormal.

REMARK 3.22. From (8.20), in case R is a one-dimensional noetherian
domain with finite normalization, we can give actually the quasinormali-
zation of R as the prenormalization of R.

LemmA 3.23 ([1], 5.6). Let R be a noetherian domain with finite
normalization, X a free abelian group and I an invertible ideal of R[X]
such that I,=INR. Let p, ---,p, be the prime divisors of I and q,=
v;NR. Then I=ILR[X] if and only if each I-R,[X] is principal.

Now we have the corollary of (8.20).
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PROPOSITION 3.24. Let R be a moetherian S,-domain with finite
normalization. Then R is quasinormal if and only if R, is a prevalu-
ation domain for all prime ideals p with ht (p)=1.

§4. M-prenormality and quasinermality.

In this section we give some properties of the M-prenormal domains
and show that any M-prenermal domain is quasinormal. Our notations
and terminologies are much the same as those in [1]} and we assume that

X is a free abelian group. All rings are assumed to be noetherian with
finite normalization.

DEFINITION 4.1. Let R be a domain, T an overdomain of R integral
over B. We define R:= N R¥(m), the intersection ranging over all maxi-
mal ideals of B. We say that the ring R} is the M-prenormalization of
R in T. If T=R, then we call R’ the M-prenormalization of R and
denote it by R® we say that R is M-prenormal in T if R=R?.

From the definition and (3.15) we derive:

PROPOSITION 4.2. Any M-prenormal domain is prenormal and
LUB.

PROPOSITION 4.8. Let (R, m) be an M-premormal local domain which

is not normal and xe R\UR). Then R\UR)=m and m is a prime
divisor of zR.

PROOF. By (4.2), R is LUB, hence R=R'=R+(R\U(R)), i.e., R\UR)=
m. Takewue U(ﬁ)\ U(R), Then zR:ux=m. This means that m is a prime
divisor of zR.

We note next that it is possible to localize to preserve the M-pre-
normality.

PROPOSITION 4.4. Let (R, m) be an M-prenormal local domain. Then
R, 18 M-prenormal for all p € Spee (R).

PROOF. Take y=wx/sec R\R, where xc R\R and scR\p. By (4.3)
¢~'c R\R, hence y'=ssx'c R, ie., ye UR,), ie., B\R,SUR,). Thus
there is a unique prime ideal p in R lying over p, hence BR,=pR,.
Therefore (R,’=R,N(R,+pR,)=K,NR,=R,.

COROLLARY 4.5. Under the circumstances R, is unibranche for all
p € Spec (R).
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The next is a basic structure theorem for seminormal rings due to
Traverso.

THEOREM 4.6 ([8]). Let R be reduced seminormal ring.
(4.6.1) There 1s a sequence of rings
R=B2B>2---2B,=R

where B, 13 obtqifned from B, by a finite number of glueings over prime
ideals of R of height i+1.

(4.6.2) If xe R 1s mot a zero-divisor, thenm each associated prime
divisor of xR has height <n.

Then we have;

PROPOSITION 4.7. Let R be an mn-dimensional domain which is not
wormal.

(4.7.1) There is an element x in R swch that xR has a prime divisor

of height n.
(4.7.2) There s a sequence of domains

R=C,2C2---2C,=R

where C,,., is obtained from C, by a finite number of (¥)-glueing over
prime ideals of R height ©1+1.

PROOF. (4.7.1): Let m be a maximal ideal of height n. Take x€m.
Then, by (4.8), mR,, is a prime divisor of xR, of height », hence m is
a prime divisor of R of height n.

(4.7.2): Since R is seminormal, then, by (4.6.1), there is a sequence
of domains

R=B=2B>.--2B,=R.
Let
Bi=Rj,_ (p)N - NRE,_ (Du,)
where ht (p;;)=1. Here we define
Cy=hB,, Ci=Rt,_(ps)N---NEY,_ (Do) .

By (4.5), RY,_ (p;)=Ré,_ (9,5). From Cy=B,, B,=C, for all <. Thus C,=R
for some k. If k<mn, by (4.6.2) and (4.3), a contradiction, hence k=mn.

DEFINITION 4.8 ([1], 5.8; {3], 8.1). If S be a multiplicative closed set,
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we shall write inv (R, S) for the subgroup of the group of invertible frac-
tionary R-ideals spanned by the integ_ral invertible R-ideals that meet S.

ProrosITION 4.9 ([1], 5.5; [3], 8.4). Let R be a domain and S a
multiplicative closed set in R. Assume that if s€S and p i3 a prime
divisor of sR, then Pic (R,[X])=0. Then inv (R, S)—inv (R[X], S) is an
180morphism.

PROPOSITION 4.10. Under the assumptions ds wn (4.9), assuming that
SR 18 semilocal, there is an exact sequence

0 — Pic (R) — Pic (R[X]) — Pic (S~'R[X)] .

(4.9) and (4.10) are proved in the same way as [1], 5.5, 5.7 or [3],
3.3, 8.4. |

REMARK 4.11. We don’t know whether the domain assumption in
(4.9) and (4.10) can be deleted.

The next lemma is needful to prove (4.13).

LEMMA 4.12 ([8], 8.5). Let T be a finite overring of a ring R and I
the conductor of R in _T Let f be the inclusion of R_ wm T and f the in-
clusion of R=R/I in T=T/I. Then Pic (0 f)—Pic (®f) is an isomorphism.

We can now state the following theorem.

THEOREM 4.13. Any M-prenormal domain 18 quasinormal.

Proor. By (4.7.2) we have a sequence of domains
R=C2C2---2C,=R

where C; is obtained from C,_, by a finite sequence of (¥)-glueings over
prime ideals of R of height ¢+ and n=Xkrull-dim (R).

For n=0 the assertion is vacuous, so we assume n>0 and use
induction on n. By induction we may assume that R=C,_,, R=C,. Let
I=C,_.:C, and p,, ---, p, the prime divisors of I in R. Then, for all 7,
ht (p))=n. Let S=R\(p,U---Up,). Pick s€S. Let p be a prime divisor
of sB. Asp2lI, R,=(C,_),. By induction Pic (R,[X])=Pic ((C,_),[X])=0.
Therefore, by (4.10), we have an exact sequence

0 — Pic (R) — Pic (R[X]) — Pic (S"R[X]) .

We are to prove Pic (S'R[X])=0. Let R=S"'R, T=S-*C,_,), R"'=S"'R/S'I
and T'=8"%C,_)/S'I. f, f', f« and f. denote the inclusion R— T, R’ — T",
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R[X]— T[X] and R'[X]— T'[X] respectively. Since R’ and T’ are direct
sum _of fields, Pic (R[X])=Pic(T'[X])=0. By induction, 0=Pic (T)=
Pic (T[X]). Here we note that, for a commutative square of rings,

rR-L. R,
(4.13.1) l l
R, R,
there is the map of exact sequences induced by (4.18.1)
U(R,) — U(R,) — Pic (@f) — Pic (R,) — Pic (R,)

4132 | | | | |

U(R;) — U(R,) — Pic (&#g) — Pic (R;) — Pic (R,) .
Therefore we have
(4.13.3) U(R) — U(T) — Pic (¢f) — 0 — 0
(4.13.4) UR')— U(T') —> Pic (®f) — 00— 0
(4.18.5) U(R[X]) — U(T[X]) — Pic (&f,) — Pic (R[X]) — 0
(4.13.6) UR[X]) — U(T'[X]) — Pic (@fy) — 0—0
and, by [1], 5.12, we have '
UR[X])= U(R) +X(§)H°(R)
UTIX)= U(T)+X(§)HO(T)
(4.13.8) H,(R)=H\T)
UR[X])=UR)+ X(ZX)HO(R’)

UT'[XD=UT)+XQH(T") ;

(4.13.7)

(4.13.9)

moreover, by the M-prenormality ((4.5) and (4.7.2)),
(4.18.10) H(R)Y=H/T") .

Then, by (4.13.4) and (4.13.6), Pic (#f’) —Pic (@f}) is an isomorphism.
On the other hand, by (4.12), Pic (®f)— Pic (#f’) and Pic (@f,) — Pic (Df1)
are isomorphism, hence Pic (#f)— Pic (&f,) is an isomorphism. Applying
the five lemma to (4.13.3) and (4.13.5), we have Pic(R[X])=0, i.e.,
Pic (S'R[X])=0. This completes the proof.
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