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Introduction

Any domain $W$ has an ordered group $G(W)$ . This group, the set of
non-zero principal fractional ideals of $W$ with $xW\leqq yW$ if and only if $xW$

contains $yW$, is called the group of divisibility of $W$. Let $K^{\times}=K\backslash \{0\}$ be
the multiplicative group of quotient field of $W$ and $U(W)$ the group of
units of $W$, then $G(W)$ is order isomorphic to $K^{\times}/U(W)$ , where $ xU(W)\leqq$

$yU(W)$ if and only if $y/x\in W$. It is wellknown that $G(W)$ is linearly
ordered if and only if $W$ is a valuation domain.

In section 1, to define a good preordered group (2.1), we study an
additive abelian group admitting two co-linear preorder relations com-
patible with the group operation.

In section 2, using the basic results of section 1, we discuss some
facts related to a domain $W$ under the assumption that $G(W)$ is a good
preordered group. Then $W$ is dominated by a valuation domain $V$. We
call this domain $W$ a quasi-valuation domain; in particular, in case $V$ is
integral over $W$ we call $W$ a prevaluation domain. Furthermore, there
are many similarities between quasi-valuation domains and valuation do-
mains. In fact $V\backslash U(V)=W\backslash U(W)$ . Then it is only natural that a quasi-
valuation domain has some normalities. A quasi-valuation domain $W$ is
really seminormal, $i.e.$ , Pic $(W)\rightarrow Pic(W[X])$ is an isomorphism, where
Pic $(W)$ is the Picard group of $W$ and $X$ is an indeterminate. Therefore,
for a domain $R$ , it stands to reason that we should think about $\cap W_{\lambda}$ ,
the intersection ranging over all quasivaluation domains containing $R$ .
This domain $H=\cap W_{\lambda}$ is seminormal; $R^{8}$ is not always the seminormali-
zation $R^{+}$ of $R$ , however.

In section 3, we show that $R^{1}$ is the largest subdomain $R$’ of $R$

containing $R$ such that, for all $ p^{\prime}\in$ Spec $(R’)$ , the canonical homomorphism
$k(p’\cap R)\rightarrow k(p’)$ is an isomorphism, where $\tilde{R}$ is the derived normal ring
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of $R$ and $k(p^{\prime})$ is the residue field of $R_{p}^{\prime},$ , and give some properties of
prenormal domains. By the way, a domain $R$ is quasinormal if and only
if Pic $(R)\rightarrow Pic(R[X, X^{-1}])$ is an isomorphism. To the writer’s knowledge,
the quasinormalization hadn’t been given even in one-dimensional case.
Our prenormalization provides the quasinormalization in the case.

In section 4, we define an M-prenormalization of a domain and show
that an M-prenormal domain is quasinormal under the noetherian assump-
tion. This is proved in the same way as the proof of ([3], 3.6).

All rings considered in this paper will be commutative with unit.

\S 1. Preordered groups.

In this section we turn to an information of additive abelian groups
(for short, groups) admitting a preorder relation and an order relation
compatible with the group operation and we give some definitions. $B$

denotes a group.
If $\leqq$ is a relation defined on $H$, we say that $\leqq$ is a preorder on $B$

and that $H$ is preordered under $\leqq$ if $\leqq$ is reflexive and transitive. If
a preorder $\leqq$ is asymmetric, we say that $\leqq$ is an order on $H$ and that
$H$ is ordered under $\leqq$ . If, for any $x,$ $yeH,$ $x\leqq y$ or $y\leqq x$ , then $\leqq$ is a
linear preorder on $H$, and $H$ is said to be linearly preordered under $\leqq$ .

DEFINITION 1.1. If $\leqq_{1}$ and $\leqq_{2}$ are preorders on $H$, then we say that
$\leqq_{1}$ and $\leqq_{2}$ are co-linear on $H$ to each other, and that $\leqq_{1}$ is co-linear
with respect to $H=(H, \leqq_{2})$ if $x\leqq 1y$ or $y\leqq 2x$ for all $x,$ $yeH$.

DEFINITION 1.2. If $\leqq$ is a preorder on $H$ compatible with the group
operation on $H$, i.e., for all $x,$ $y,$ $zeH,$ $x\leqq y$ implies that $x+z\leqq y+z$ , we
say that $H$ is a preordered group.

DEFINITION 1.3. Let $H=(H, \leqq)$ be a preordered group and $xeH$,

We say that $x$ is prepositive if $x\in P=\{heH;0\leqq h\}$ , and $x$ is prenegativt
if $xe(-P);x$ is strictly prepositive if $xeP^{+}=P\backslash Z$ where $Z=P\cap(-P)$

and $x$ is strictly prenegative if $xe(-P^{+})$ .
Hereafter the set of prepositive element of a preordered grouI

$H=(H, \leqq)$ , the set of strictly prepositive elements of $H$ and the set 01
prepositive and prenegative elements of $H$ are denoted by $P,$ $P^{+}$ and $\angle^{\prime}$

respectively.

PROPOSITION 1.4. Let $H=(H, \leqq)$ be a preordered group. Then, $th_{t}$

following statements hold.
(1.4.1) $P$ is a subsemigroup.
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(1.4.2) $P\ni y-x$ if and only if $x\leqq y$ .
(1.4.3) $Z$ is a subgroup of $H$.
(1.4.4) $H/Z$ is an ordered group under the preordering on $H/Z$

induced by $\leqq$ .
DEFINITION 1.5. Let $\leqq_{1}$ and $\leqq_{2}$ be preorders on $H$. Then we say

that the preorder $\leqq_{2}$ is finer than the preorder $\leqq_{1}$ if the following two
conditions are satisfied:

(1.5.1) $x\leqq 1y$ implies that $x\leqq 2y$ for all $x,$ $y\in H$.
(1.5.2) If $x\in P_{1}^{+}$ , then $x\in P_{2}^{+}$ where $P_{\dot{f}}^{+}=\{heH;0\leqq\dot{f}h, h\not\leqq j0\}$ .
PROPOSITION 1.6. $Let\leqq_{1}$ $and\leqq_{2}$ be preorders on H. $If\leqq_{1}$ $and\leqq_{2}$

are co-linear $and\leqq_{2}$ is finer $than\leqq_{1}$ , then $H$ is linearly preodered under
$\leqq_{2}$ .

PROOF. Take any $h,$ $h^{\prime}\in H$. Since $\leqq_{1}$ and $\leqq_{2}$ are co-linear, either
$h\leqq 1h$

’ or $h’\leqq 2h$ must hold. If $h^{\prime}\not\leqq 2h$ then $h\leqq 1h^{\prime}$ . Thus, by (1.5.1),
$h\leqq 2h^{\prime}$ .

COROLLARY 1.7. Under the assumptions as in (1.6), $H=P_{2}\cup(-P_{2})$ .
PROPOSITION 1.8. Suppose, in addition to the circumstanees $that\leqq_{1}$

is an order. If $heP_{2}^{+}$ then $0<1h$ .
PROOF. If $h\in P_{2}^{+}$ then $h\not\in(-P_{2})$ , i.e., $h\not\leqq 20$ . Then $0\leqq 1h$ , since $\leqq_{1}$

and $\leqq_{2}$ are co-linear. Since $h\in P_{2}^{+},$ $h\neq 0$ . Then, since $\leqq_{1}$ is an order,
$0<1h$ .

PROPOSITION 1.9. Let $P_{s}$ be a subsemigroup of $H$ between $P_{1}$ and $P_{2}$ .
Then,

(1.9.1) The relation $\leqq_{8}$ on $H$ defined by $x\leqq\S y$ if and only if $y-$

$x\in P_{8}$
’ is a preorder on $H$.

(1.9.2) There are the order $\leqq_{3}$ and the preorder $\leqq_{2}^{\prime}$ induced by $P_{8}$

on $H’=H/Z_{8}$ where $Z_{8}=P_{S}\cap(-P_{8})$ .
(1.9.3) $\leqq_{2}^{\prime}$ is finer than $\leqq_{3}^{\prime}$ .
(1.9.4) $\leqq_{2}^{\prime}$ $and\leqq_{\epsilon}$ are co-linear on $H$.
PROOF. (1.9.1) and (1.9.2) are clear by (1.4). By (1.8), we have

$P_{\epsilon}^{+}=P_{2}^{+}$ , thus $\leqq_{2}$ is finer than $\leqq_{3}$ . (1.9.4): Since $\leqq_{8}$ is finer than $\leqq_{1}$

and $\leqq_{1}$ and $\leqq_{2}$ are co-linear, $\leqq_{2}$ and $\leqq_{s}$ are co-linear, hence $\leqq_{2}^{\prime}$ and $\leqq_{l}^{\prime}$

are co-linear on $H$.
PROPOSITION 1.10. Under the assumptions as in (1.9), there is $a$ one

to one correspondence between all $P_{j}’ s$ and all $Z_{j}’ s$ .
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PROOF. Since $P_{\dot{f}}=P_{\dot{f}}^{+}\cup Z_{j}$ and $P_{j}^{+}=P^{+}$ for all $i,$ $j$ , the statement
above holds.

\S 2. Quasi-valuations and prevaluations.

In this section $H=(H, \leqq_{1}, \leqq)$ always denotes a good preordered group
defined as follows:

DEFINITION 2.1. Let $H=(H, \leqq)$ be a preordered group. If $H$ is an
ordered group under the order $\leqq_{1}$ compatible with the same group opera-
tion, $\leqq$ and $\leqq_{1}$ are co-linear and $\leqq$ is finer than $\leqq_{1}$ , then we say that
$H$ is a good preordered group and we write $H=(H, \leqq, \leqq_{1})$ .

EXAMPLE 2.2. Let $G$ be an additive abelian group and $F=(F, \leqq)$

be a linearly ordered additive abelian group. We put $H=G\times F$. Let $\leqq_{1}$

be an order on $H$ defined by $(g, f)\leqq 1(g^{\prime}, f’)$ if and only if ($g=g^{\prime}$ and
$f=f^{\prime})$ or $(f<f^{\prime})$ and $\leqq_{2}$ be a preorder on $H$ defined by $(g, f)\leqq 2(g^{\prime}, f^{\prime})$

if and only if $f\leqq f^{j}’$ . Then $H=(H, \leqq_{1}, \leqq_{2})$ is a good preordered group.

DEFINITION 2.3. Let $K$ be a field. $A$ mapping $w$ of $K^{\times}=K\backslash \{0\}$ into
a suitable good preordered group $H=(H, \leqq, \leqq_{1})$ is called a quasi-valuation
on $K$ if the following conditions are satisfied for all $x,$ $y\in K^{\times};$

(2.3.1) $w(xy)=w(x)+w(y)$ .
(2.3.2) (1) If $w(x)-w(y)\in P^{+},$ $w(y)\leqq 1w(x+y)$ .
(2) If $w(x)-w(y)e(-P^{+}),$ $w(x)\leqq 1w(x+y)$ .
(3) If $w(x)-w(y)eZ\backslash \{0\}$ , then for some zeHsuch that $w(x)-z\in Z$,

$z\leqq 1w(x+y)$ .
(4) If $w(x)-w(y)=0,$ $w(x)\leqq 1w(x+y)$ .
(2.3.3) $w(-1)=0$ .
PROPOSITION 2.4. Under the circumstances, the fouowings hold.
(2.4.1) $w(x^{-1})=-w(x),$ $w(1)=0$ and $w(x)=w(-x)$ .
(2.4.2) If $w(y)-w(x)\in P^{+}$ , then $w(x+y)=w(x)$ .
PROOF. We are to prove (2.4.2). By (1.8), we note that $heP^{+}$ if

and only if $0<1h$ .
(1) If $w(x+y)-w(-y)\in P^{+}$ , then $w(x)<1w(y)=w(-y)\leqq 1w(-y+$

$(x+y))=w(x)$ , a contradiction.
(2) If $w(x+y)-w(-y)e(-P^{+})$ , then $w(x)\leqq 1w(x+y)\leqq 1w(-y+(x+$

$y))=w(x)$ so that $w(x)=w(x+y)$ .
(3) If $w(x+y)-w(-y)\in Z\backslash \{0\}$ , for some $z\in H$ such that $w(-y)-z=$

$z^{\prime}\in Z$, then $z+z’=w(y)>1w(x)=w(-y+(x+y))\geqq 1z$ . Thus $z+z^{\prime}>1z$ . Hence
$z^{\prime}>10,$ $\ddagger.e.,$ $z^{\prime}\in p+$ a contradiction.



QUASI-VALUATION DOMAINS 375

(4) If $w(x+y)-w(-y)=0,$ $w(x)\leqq 1w(x+y)\leqq 1w(-y+(x+y))=w(x)$ ,
so that $w(x+y)=w(x)$ .

PROPOSITION 2.5. Under the circumstances, we set $V=\{x\in K^{x}$ ; $ 0\leqq$

$w(x)\}\cup\{0\}$ and $W=\{x\in K^{\times}; 0\leqq 1w(x)\}\cup\{0\}$ . Then $V$ is a vatuation domain
of $K$ and $W$ is a local domain dominated by $V$ with the quotient field
K. Moreover the maximal ideal of $V$ is equal to the maximal ideal
of $W$.

PROOF. We note that $\tilde{H}=H/Z$ is a linearly ordered group. Con-
sidering $\tilde{w};K^{\times}\rightarrow H$,

$ K^{\times}\rightarrow H\backslash _{\tilde{w}}w_{\lambda}\tilde{H}\downarrow$

$V=\{x\in K^{\times}; 0\leqq\tilde{w}(x)\}\cup\{0\}$ where $\leqq$ is the order on $\tilde{H}$ induced by $P$.
Then the conditions of (2.3) induce the condition of a valuation of $K$.
Hence $V$ is a valuation domain of $K$.

Condition (2.3.1) implies that $W$ is closed under multiplication. Take
$x,$ $y\in W$, so that $0\leqq 1w(x)$ and $0\leqq 1w(y)$ .

(1) If $w(x)-w(-y)\in P^{+}$ , then $0\leqq 1w(y)\leqq 1w(x-y)$ .
(2) If $w(x)-w(-y)e(-P^{+})$ , then $0\leqq 1w(y)\leqq 1w(x-y)$ .
(3) If $w(x)-w(-y)\in Z$, then we may assume that $w(x)=w(y)=0$

and that $0<1w(x),$ $0<1w(y)$ .
(a) If $w(x)=w(y)=0,0=w(x)\leqq 1w(x-y)$ .
(b) If $0<1w(x),$ $0<1w(y)$ and $w(x)-w(-y)\in Z\backslash \{0\}$ , then $z\leqq 1w(x-y)$

for some zeH such that $w(x)-z\in Z$. Then $z=w(x)+z^{\prime}$ where $z^{\prime}\in Z$.
Hence $z\in P^{+}$ . By (1.8), we have $0<z\leqq w(x-y)$ .

(c) If $0<1w(x),$ $0<1w(y)$ and $w(x)-w(-y)=0$ , then $0<1w(x)\leqq 1w(x-y)$ .
Thus in all cases $0\leqq 1w(x-y)$ . We have proved that $W$ is a domain with
identity. Moreover the maximal ideal of $V=\{x\in K^{\times}; 0<\tilde{w}(x)\}\cup\{0\}=$

$\{x\in K^{\times} ; w(x)\in P^{+}\}\cup\{0\}=\{x\in K^{\times}; 0<1w(x)\}\cup\{0\}\subset W$. This shows that $W$

is a local domain $(W, n)$ dominated by $V=(V, m)$ with the quotient field
$K$ and that $m=n$ .

DEFINITION 2.6. Under the circumstances, we say that (V, n) is the
valuation domain of $\tilde{w}$ and that $(W, n)$ is the quasi-valuation domain of
$w$ dominated by $V$. Two quasi-valuations $w,$

$w^{\prime}$ of a field $K$ are equi-
valent to each other if the quasi-valuation domain of $w$ coincides with
the quasi-valuation domain of $w’$ . We call $w(K^{\times})$ the quasi-value group
of $w$ .
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Then we see the following result immediately.

THEOREM 2.7. Let (V, $m$) be a valuation domain of a quotient field
$K$ and $W$ a subdomain of $V$ such that $W\leqq V$ and $Q(W)=K$. Then the
following statements are equivalent.

(2.7.1) $W$ is a quasi-valuation domain of $K$.
(2.7.2) For any $x,$ $yeW$, it holds that either $xeyW$ or $yexV$.
(2.7.3) The maximal ideal $m$ of $V$ is set-theoretically equal to the

maximal ideal of $W$.
(2.7.4) For any prime ideal $p$ of $W$, the maximal ideal of $V_{p}$ is

set-theoretically equal to $p$ .
(2.7.5) If $xeK$, then either $xeW$ or $x^{-1}\in V$.
(2.7.6) There exists a subfield $k$ of $V/m$ such that $W=\{xeV$;

$x$ mod $mek$}.

PROOF. $(2.7.1)\rightarrow(2.7.5)$ : If $x\not\in V$, then $x^{-1}\in m$ . By (2.4), we have
$x^{-1}\in m\subseteqq W$.

$(2.7.5)\rightarrow(2.7.1)$ : We set $H=\{xW;xeK\backslash \{0\}\}$ . We define $xW\leqq 1yW$ if
and only if $y/xeW$ for $xW,$ $yWeH$, then the relation $\leqq_{1}$ is an order
on $H$. Moreover we define $xW\leqq yW$ if and only if $y/xeV$ for $xW$,
yWe $H$, then the relation $\leqq$ is a preorder on $H$. Hence we have that
$\leqq$ is finer than $\leqq_{1}$ and that $\leqq$ and $\leqq_{1}$ are co-linear to each other. We
write the group operation on $H$ as addition: $xW+yW=xyW$. Since, for
all $z\in K\backslash \{0\},$ $xW\subseteqq yW$ implies $xzW\subseteqq yzW$, the order $\leqq_{1}$ and $\leqq$ are com-
patible with the group operation on $H$. Then the mapping $w$ such that
$w(x)=xW(x\in K\backslash \{0\})$ is a homomorphism from $K^{\times}$ onto $H$. Hence the
mapping $w$ satisfies the conditions of (2.3). Then $w$ is a quasi-valuation
of $K$. Hence $W=\{xeK;0\leqq 1w(x)\}\cup\{0\},$ $i.e.,$ $W$ is a quasi-valuation domain
of $K$.

$(2.7.1)\rightarrow(2.7.3)$ : This is the statement of (2.5).
$(2.7.3)\rightarrow(2.7.1)$ : We have only to show that $(2.7.3)\rightarrow(2.7.5)$ . Take

$x\in K$. If $x\not\in V$, then $x^{-1}em\subset W$.
$(2.7.2)\leftrightarrow(2.7.5)$ : This is nothing but a restatement.
$(2.73)\rightarrow(2.7.4)$ : We may assume that $(2.7.3)\leftrightarrow(2.7.5)$ . Let $m^{\prime}$ be the

maximal ideal of a valuation domain $V_{p}$ . Take $x=t/sem^{\prime}\subseteqq V_{p}(seW\backslash p$ ,
$t\in V)$ . If $t\not\in sW,$ $thens\in tV$, i.e., $s/t\in V\subseteqq V_{p}$ , hence $\epsilon/t$ is a unit in $V_{p}$ ,
a contradiction. Thus $t\in sW$, i.e., $xeW\subseteqq W_{p}$ and $x$ is not a unit in
$W_{p}\subseteqq V_{p}$ . Hence $xepW_{p}$ , i.e., $xep=pW_{p}\cap W$.

Of course (2.7.4) implies (2.7.3).
$(2.7.3)\leftrightarrow(2.7.6)$ : This is nothing but a restatement.
PROPOSITION 2.8. Let $W$ be a quasi-valuation domain of $K,$ $W$’ any
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domain between $W$ and $K$ and $pe$ Spec $(W)$ . Then the following state-
ment hold.

(2.8.1) $W^{\prime}$ is a quasi-valuation domain of $K$.
(2.8.2) If $x$ is an element of $W$ which is not in $p$ , then $p$ is con-

tained in $xW$.
(2.8.3) $p$ is set-theoretically equal to $pW_{p}$ .
(2.8.4) $W/p$ is a quasi-valuation domain.
(2.8.5) If $L$ is a subfield of $K,$ $L\cap W$ is a quasi-valuation domain

of $L$ .
PROOF. (2.8.1): Let $V$’ be a valuation domain between $W^{\prime}$ and $K$

and $V$ a valuation domain which dominates $W$. Take $x\not\in W^{\prime}$ .
(1) If $V^{\prime}\subseteqq V$, then $W\subseteqq W’\subseteqq V^{\prime}\subseteqq V$. Hence $V^{\prime}=V$. Thus $x^{-1}eV=V’$ .
(2) If $V\subseteqq V’$ , then $x^{-1}\in V\subseteqq V’$ .
(3) If $V$ and $V^{\prime}$ are incomparable, then, by the theorem of inde-

pendence of valuation, $R=V’\cap V$ is a semi-local domain which is not local.
On the other hand, as $W\subseteqq R\subset V,$ $R$ must be local, which is nonsense.

(2.8.2): Let $y$ be an arbitrary element of $p$ . Suppose $y$ is not in
$xW$. By (2.7.2), $x$ is in $yV\subseteqq pV=pV_{p}=pW_{p}=p$ , a contradiction.

(2.8.3): By (2.7.4), $p\subseteqq pW_{p}\subseteqq pV_{p}=p$ .
(2.8.4): Let $V$ be a valuation domain which dominates $W$. Then

$V/p$ is a valuation domain which dominates $W/p$ . The statement is
therefore immediate from (2.7).

(2.7.5): Let $V$ be a valuation domain which dominates $W$. Then $V\cap L$

is a valuation domain which dominates $W\cap L$ . If $y$ is an element of $L$

which is not in $W\cap L$ , then $x^{-1}\in V\cap L$ .
$(W, n, k)$ denotes a local ring $(W, n)$ with the residue field $k$ .
COROLLARY 2.9. Let $(W, n, k)$ and $(W’, n^{\prime}, k’)$ be quasi-valuation

domains dominated by the valuation domain V. Then, $k=k^{\prime}$ if and only
if $W=W’$ .

PROOF. It is easy and we omit it.

PROPOSITION 2.10. Let $(W, n)$ be a quasi-valuation domain of a field
$K$ dominated by the valuation domain (V, n) of $K$ and $W^{*}$ a quasi-
valuation domain of the residue field $V/n$ dominated by the valuation
domain $V^{*}$ of $V/n$ . Then the set $W=$ {$xeV$; mod $neW^{*}$ } is a quasi-
valuation domain of $K$ dominated by the composite of $V$ with $V^{*}$ , i.e.,
$V’=$ {$xeV;x$ mod $n\in V^{*}$ }.

PROOF. Take $x\in K,$ $x\not\in W^{\prime}$ . If $x\not\in V$, then $x^{-1}en\subset V,$ $x^{-1}$ mod $neV^{*}$
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and $x^{-1}\in V’$ . Assume that $xeV$. Since $W^{*}$ is a quasi-valuation domain,
$x^{-1}$ mod $neV^{*}$ , which shows that $x^{-1}\in V$‘. Thus $W^{\prime}$ is a quasi-valuation
domain dominated by $V^{\prime}$ .

REMARK 2.11. The domain $W^{\prime}=$ {$xeW;x$ mod $neW^{*}$ } is not always
a quasi-valuation domain dominated by $V^{\prime}$ . Let $Q$ be the field of rationals,
$C$ the field of complexes, $X,$ $Y$ indeterminates and $K=C((x))$ the quotient
field of $C[[X]]$ . We set $W=Q+YK[[Y]],$ $W^{*}=Q+XC[[X]]$ and $V^{*}=$

$C[[X]]$ . We put $f=2^{1/2}X$. Then, $f\not\in W$
’ and $f^{-1}\not\in V$‘, which show that

$W$’ is not a quasi-valuation domain dominated by $V’$ .
PROPOSITION 2.12. Let $R$ be a subdomain of a field $K$ and let $p$ a

prime ideal of R. Then there exists a quasi-valuation domain $W$ of $K$

such that $W$ has a prime ideal $n$ with $k(p)=k(n)$ .
PROOF. It is well-known that there exists a valuation domain $V$ of

$K$ such that $V$ has a prime ideal $n$ lying over $p$ . We set $W=\{xeV;x$
mod $n\in k(p)=k(n)$}. Then $W$ is a quasi-valuation domain dominated by
$V$ such that $W$ has a prime ideal $n$ lying over $p$ with $k(p)=k(n)$ .

To introduce the concept of a prevaluation domain, we define a w-
subgroup of $(H, \leqq, \leqq_{1})$ .

DEFINITION 2.13. Let $w$ be a quasi-valuation of $K$ with the quasi-
value group $(H, \leqq, \leqq_{1}),$ $Z$ a subgroup of $Z$ and $w$

’ a mapping of $K^{\times}$ to
$H’(=H/Z)$ induced by $Z$ and $w$ . If $w$ satisfies the conditions of (2.3),
I.e., $w$

’ is a quasi-valuation with the quasi-value group $H’$ , then we say
that $Z$ is a w-subgroup of $H$.

PROPOSITION 2.14. Let $w$ be a quasi-valuation with the quasi-value
group $(H, \leqq, \leqq_{1})$ . If $Z_{2}$ and $Z_{8}$ are w-subgroups of $H$, then $Z_{2}\cap Z_{8}$ and
$Z_{2}+Z_{s}$ are w-subgroups of $H$.

PROOF. $Z_{4}=Z_{2}\cap Z_{8}$ is a w-subgroup: Let $\leqq_{j}(j=2,3,4)$ be a preorder
on $H$ induced by $Z_{\dot{f}}$ . We note that $\leqq_{j}(j=2,3,4)$ is finer than $\leqq_{1}$ and
that $P^{+}=P_{1}=P_{2}=P_{8}=P_{4}$ .

(1) If $w(x)-w(y)eP^{+},$ $w(y)\leqq w(x+y)$ , hence $w(y)\leqq 4w(x+y)$ .
(2) If $w(x)-w(y)\in(-P^{+}),$ $w(x)\leqq 1w(x+y)$ , hence $w(x)\leqq 4w(x+y)$ .
(3) If $w(x)-w(y)eZ\backslash Z_{4}$ , for some zeZ such that $w(x)-zeZ,$ $z\leqq 1$

$w(x+y)$ by (2.3.2), hence $z\leqq 4w(x+y)$ .
(4) If $w(x)-w(y)\in Z_{4}=Z_{2}\cap Z_{s}$ , i.e., $w(x)-w(y)eZ_{j}(j=2,3)$ , then

$w(x)\leqq jw(x+y)(j=2,3)$ , i.e., $w(x+y)-w(x)eP_{2}\cap P_{8}=(P_{2}^{+}\cup Z_{2})\cap(P_{s}^{+}\cup Z_{8})=$

$(P_{1}^{+}\cup Z_{2})\cap(P_{1}^{+}\cup Z_{S})=P_{1}^{+}\cup(Z_{2}\cap Z_{8})=P_{4}^{+}\cup Z_{4}=P_{4}$ , hence $w(x)\leqq 4w(x+y)$ .
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Thus the mapping $w_{4}$ induced by $Z_{4}$ and $w$ is a quasi-valuation with
the quasi-value group $H/Z_{4}$ , i.e., $Z_{2}\cap Z_{s}$ is a w-subgroup of $H$.

$Z_{f}=Z_{2}+Z_{\epsilon}$ is a w-subgroup: Let $\leqq_{f}$ be a preorder on $H$ induced by
$Z_{f}$ . We note that $P^{+}=P_{f}^{+}$ and that $\leqq_{f}$ is finer than $\leqq_{1}$ .

(1) If $w(x)-w(y)\in P^{+},$ $w(y)\leqq 1w(x+y)$ , hence $w(x)\leqq fw(x+y)$ .
(2) If $w(x)-w(y)\in(-P^{+}),$ $w(x)\leqq 1w(x+y)$ , hence $w(x)\leqq bw(x+y)$ .
(3) If $w(x)-w(y)\in Z\backslash Z_{f}$ , for some $zeZ$ such that $w(x)-zeZ,$ $z\leqq 1$

$w(x+y)$ , hence $z\leqq fw(x+y)$ .
(4) Let $w_{j}(j=1,2,3,4)$ be a quasi-valuation with the quasi-value

group $H/Z_{j}$ induced by $Z_{j}$ . We illustrate groups in the figure, where $f$

and $f^{\prime}$ are cannonical homomorphism:

We note that $Z_{f}/Z_{8}$ is isomorphic to $Z_{2}/Z_{4}$ . Since $Z_{s}$ is a w-subgroup
of $H$, if $w(x)-w(y)eZ_{2}+Z_{\epsilon}$ , then $w_{s}(x)-w_{8}(y)eZ_{2}+Z_{8}/Z_{8}$ . Hence $w_{4}(x)-$

$w_{4}(y)eZ_{2}/Z_{4}$ . Since $w_{4}$ is a quasi-valuation with the quasi-value group
$H/Z_{4},$ $w_{4}(x+y)-w_{4}(x)eP_{2}/Z_{4}\subset\cdot H/Z_{4}$ . Then, by the isomorphism $f$ of $Z_{2}/Z_{4}$

to $Z_{f}/Z_{s},$ $w_{s}(x+y)-w_{8}(x)\in P_{f}/Z_{s}$ . It follows that $w(x+y)-w(x)\in P_{f}$ .
Thus a mapping $w_{f}$ induced by $Z_{f}$ and $w$ is a quasi-valuation with

the quasi-value group $H/Z_{f}$ , i.e., $Z_{f}$ is a w-subgroup of $H$.
The next proposition is an immediate corollary.

PROPOSITION 2.15. Under the circumstances, there is $a$ one-to-one
order-preserving correspondence between all the w-subgroups of $H$ and all
the quasi-valuation domains dominated by $V$ containing $W$.

PROOF. Let $Z^{\prime}$ be a w-subgroup of $H,$ $w^{\prime}$ a quasi-valuation of $K$

with the quasi-value group $H/Z^{\prime}$ and $\leqq^{\prime}$ an order on $H/Z$ induced by $Z^{\prime}$ .
We set $W’=\{x\in K^{\times’}; 0\leqq w(x)\}U\{0\}$ . Then $W$ ’ is a quasi-valuation domain
dominated by $V$ . Conversely, let $W$ ’ is a quasi-valuation domain dominated
by $V$ and $U(W^{\prime})$ a unit group of $W$. We set $Z’=\{w(x);x\in U(W^{\prime})\}$ . Then
$Z$’ is a w-subgroup of $H$.
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DEFINITION 2.16. We say that a chain of distinct w-subgroups $Z^{\prime}=$

$Z_{0}\supset Z_{1}\supset\cdots\supset Z_{n}$ is of length $n$ . We say that $Z$‘ has w-rank $n$ if there
exists a chain of length $n$ descending from $Z^{\prime}$ but no longer chain. We
say that $Z^{\prime}$ has w-rank $\infty$ if there exist arbitrarily long chains descending
from $Z^{\prime}$ . Our notation for w-rank is w-rk $(Z)$ .

PROPOSITION 2.17. Under the circumstances, let $Z^{\prime}$ be a w-subgroup
of $H$ of finite w-rank and $(W^{\prime}, n^{\prime}, k^{\prime})$ a quasi-valuation domain cor-
responding to Z. Then $W$’ is integral over $(W, n, k)$ .

PROOF. Let $ k\sim$ be the residue field of the valuation domain of $w$ .
By (2.9) and (2.15), there is a one-to-one order-preserving correspondence
between all the w-subgroups of $H$ and all the intermediate fields between
$k$ and $ k\sim$. Moreover we note that $k$

’ is algebraic over $k$ if and only if
$W$’ is integral over $W$. Since w-rk $(Z’)$ is finite, the number of inter-
mediate fields between $k$ and $k$‘ is finite, hence $k^{\prime}$ is algebraic over $k$ ,
I.e., $W^{\prime}$ is integral over $W$.

A $finite\eta ess$ of w-rank of a w-subgroup motivates the next definition.

DEFINITION 2.18. Let $w$ be a quasi-valuation of $K$ with the quasi-
value group $H$. We say that $w$ is a prevaluation of $K$ if, for all $xeK^{\times}$

such that $w(x)eZ$, the w-subgroup $Z_{x}$ of $H$ generated by $w(x)$ is of finite
w-rank. Then, we say that a quasi-valuation domain $W$ (corresponding to
w) is a prevaluation domain and that $w(K^{\times})$ is called the prevalue group
of $w$ . Two prevaluation $w,$ $w$ of $K$ are equivalent to each other if the
prevaluation domain of $w$ coincides with the prevaluation domain of $w^{\prime}$ .

Then we see the following results. $\tilde{W}$ denotes the derived normal
ring of a domain $W$.

THEOREM 2.19. Let $W$ be a domain with a quotient field K. Then
the following statement are equivalent.

(2.19.1) $W$ is a prevaluation domain $K$.
(2.19.2) For any $x,$ $yeW$, it holds that either xeyW or $yex\tilde{W}$.
(2.19.3) If $xeK$, then either $xeW$ or $x^{-1}e\tilde{W}$.
(2.19.4) $W$ is a quasi-valuation domain $(W, n, k)$ of $K$ dominated

by the valuation domain (V, $n,$
$k$)
$\sim$

and $\tilde{k}$ is algebraie over $k$ .
(2.19.5) $W$ is a quasi-valuation domain of $K$ dominated by the valu-

ation domain $V$ and $V$ is integral over $W$.
(2.19.6) $\tilde{W}$ is a valuation domain and the maximal ideal of $W$ is

set-theoretically equal to the maximal ideal of $W$.
(2.19.7) $\tilde{W}$ is a valuation domain and, for any prime ideal $p$ of
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$w$ , a maximal ideal of $W_{p}$ is set-theoretically equal to $p$ .
PROOF. First, by (2.17), we note that the valuation domain $V$ domi-

nating $W$ is integral over $W$.
$(2.19.1)\leftrightarrow(2.19.4)\leftrightarrow(2.19.5)$ : Trivial.
$(2.19.2)\leftrightarrow(2.19.3)$ : This is nothing but a restatement.
$(2.19.5)\rightarrow(2.19.3)$ : Take any $x\in K,$ $x\not\in W$. Since $W$ is a quasi-valu-

ation domain of $K$ and $V$ is a integral over $W,$ $ x^{-1}\in V\$ $ $\tilde{W}$.
$(2.19.3)\rightarrow(2.19.5)$ : It is easy to see that $\tilde{W}$ is a valuation domain of

$K$. Then $W$ is a quasi-valuation domain of $K$ dominated by $\tilde{W}$ and $\tilde{W}$ is
integral over $W$.

$(2.19.3)\rightarrow(2.19.7)$ : Let $p$ be a prime ideal of $W$. Since $\tilde{W}_{p}=(\tilde{W}_{p},\tilde{m})$

is a valuation domain, $W_{p}$ is a local domain $(W_{p}, m)$ hence $m\subseteqq\tilde{m}$ . Take
an element of $\tilde{m}$ , say $x$ . Then $x^{-1}\not\in\tilde{W}_{p}$ , hence, by $(2.19.3)\leftrightarrow(2.19.5)$ and
(2.8.1), $xem=pW_{p}=p$ (cf. (2.8.3)), $i.e.,$ $p=\tilde{m}$ .

$(2.19.7)\rightarrow(2.19.6)$ : Trivial.
$(2.19.6)\rightarrow(2.19.3)$ : Take $x\in K$. If $x^{-1}\not\in W$, then $xe\tilde{n}=n\subset W$.
PROPOSITION 2.20. Let $W$ be a prevaluation domain of $K$ and $p$ any

prime ideal of W. Then, the following statements hold.
(2.20.1) If $W^{\prime}$ is any domain between $W$ and $K$, then $W$’ is a pre-

valuation domain.
(2.20.2) If $xeW$ and $x\not\in p$ , then $p\subset xW$.
(2.20.3) $p$ is set-theoretically equal to $pW_{p}$ .
(2.20.4) $W/p$ is prevaluation domain.

PROOF. (2.20.1): If $x\not\in W’$ , then $x\not\in W$, hence $x^{-1}e\tilde{W}\subseteqq\tilde{W}’$ .
(2.20.2): Take any $yep$ . If $x\not\in yW$, then $yex\tilde{W}$, hence $p\subseteqq xW$.

Let $p$ be a prime ideal of $W$ lying over $p$ . Therefore $yW\subseteqq\tilde{p}=p\subset x\tilde{W}$,
i.e., $x\not\in y\tilde{W}$, thus $y\in xW$, i.e., $p\subset xW$.

(2.20.3): Take $x=y/zepW_{p}(yep, zeW\backslash p)$ . Since $z\not\in p$ , by (2.20.2),
$p\subset zW$, hence $y=zy(y^{\prime}\in W)$ . Thus $xeW\cap pW_{p}=p$ .

(2.20.4): By (2.8.4), $W/p$ is a quasi-valuation domain dominated by
the valuation domain $\tilde{W}/p$ and $\tilde{W}/p$ is integral over $W/p$ . It follows that
$W$ is a prevaluation domain.

\S 3. Prenormality and seminormality.

The definition of a seminormalization which was given by Traverso
[3] is as follows.

DEFINITION 3.1. Let $R$ be a domain, $T$ an overdomain of $R$ integral
over $R$ . We define



382 MICHINORI YAMASHITA

$R_{T}^{+}(p)=$ {$xeT;xeR_{p}+J(T_{p})$ for all $pe$ Spec $(R)$}

where $J(T_{p})$ is the Jacobson radical of $T_{p}$ and $R_{T}^{+}=\cap R_{T}^{+}(p)$ , the inter-
section ranging over all prime ideals of $R$ . We say that the ring $R_{r}^{+}(p)$

is obtained by glueing $T$ over $p$ and that the ring $R_{T}^{+}$ is the seminormali-
zation of $R$ in $T$. If $T=\tilde{R}$ , then we call $R_{T}^{+}$ the seminormalization of $R$

and denote it by $R^{+}$ ; we say that $R$ is seminormal in $T$ if $R=R_{T}^{+}$ .
PROPOSITION 3.2. $R^{+}$ is the largest subring $T$ of $\tilde{R}$ containing $R$

such that
(3.2.1) For any $ p\in$ Spec $(R)$ there is exactly one $qe$ Spec $(T)$ lying

over $p$ , and
(3.2.2) The canonical homomorphism $k(p)\rightarrow k(q)$ is an isomorphism.

We first begin with the next proposition.

PROPOSITION 3.3. A prevaluation domain is seminormal.

PROOF. Let $R$ be a prevaluation domain, $p$ any prime ideal of $R$ .
Since $R_{p}$ is a prevaluation domain by (2.20.1), $J(fi_{p})=J(R_{p})$ by (2.19.7).
Hence $R_{p}\supset J(\tilde{R}_{p})$ . Thus $R^{+}=\cap(R_{p}+J(R_{p}))=\cap R_{p}=R$ .

LEMMA 3.4. Let $k_{0}\supset k$ be fields. There is a sequence of fields
$k_{0}\supseteqq k_{1}\supseteqq k_{2}\supseteqq k_{8}\supseteqq\cdots\supseteqq k_{n}\supseteqq\cdots\supseteqq k$ , $\bigcap_{n\geq 0}k_{n}=k$

where $k_{n}$ is algebraic over $k_{n+1}$ .
COROLLARY 3.5. A quasi-valuation domain is seminormal.

PROOF. This is proved in the same way as (3.3); we give another
proof which is useful for (3.10) and (3.11). Let $(W, n, k)$ be a quasi.
valuation domain dominated by a valuation (V, $n,$ $k_{0}$). By Lemma 3.4,
we have the fields $k_{n}’ s$ between $k$ and $k_{0}$ such that $k_{*}$ is algebraic over
$k_{n+1}$ with $\bigcap_{n\geq 0}k_{n}=k$ . We set $V_{n}=$ {$xeV;x$ mod $nek.$}. Then $V_{*}$ is a
prevaluation domain dominated by $V$ such that $V_{n}$ is integral over $V_{n+J}$

with $\bigcup_{n\geq 0}V_{n}=W$. Since $V_{n}$ is seminormal, so is $W$ (cf. Hamman’s cri.
terion [4]).

In the normal case, the following theorem is well-known: A $domai\iota l$

$R$ is normal if and only if $R$ is an intersection of valuation domains con.
taining $R$ . One can ask the following question: Let $R$ be a seminormal
domain with a quotient field $K$ and the $W_{\lambda}’ s$ prevaluation domains between
$R$ and $K$. Then $R=\cap W_{\lambda}$? Proposition 3.15 shows that the above ques.
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tion has realIy a negative answer. From now on, we discuss some facts
related to this question. We start with some definitions.

DEFINITION 3.6. Let $R$ be a domain, $T$ an overdomain of $R$ integral

over $R$. We define

$H_{T}(p)=$ {$xeT;x\in R_{p}+qT_{p}$ for all $ q(\in$ Spec $(T))$ lying over $p$}

and $R_{T}^{1}=\cap H_{T}(p)$ , the intersection ranging over all prime ideals of $R$ .
We say that the ring $H_{T}(p)$ is obtained by (#)-glueing $T$ over $p$ and that
the ring $R_{T}$ is the prenormalization of $R$ in $T$. If $T=\tilde{R}$ , then we $ca\mathbb{I}$

$H_{T}$ the prenormalization of $R$ and denote it by $H$ , we say that the ring
$R$ is prenormal in $T$ if $R=R_{T}^{l}$ .

REMARK 3.7. A quasi-valuation domain and a prevaluation domain
are prenormal.

We give gome basic results.

$PR1\rangle POSITION3_{-}8$ . $p_{T}$ is the largest subring $R$‘ of $T$ containing $R$

such that
(3.8.1) For all $p’ e$ Spec $(R^{\prime})$ , the canonical homomorphism $ k(p^{\prime}\cap R)\rightarrow$

$k(p^{\prime})$ is an isomorphism.

PROOF. $R_{T}$ satisfies (3.7.1): Let $ q\in$ Spec $(H_{T})$ and $p=q\cap Re$ Spec $(R)$ .
As $R_{p}\subseteqq H_{T}\subseteqq R_{p}+q^{\prime}T_{p}$ where $q$ ( $e$ Spec $(T)$ ) is lying over $q,$ $ k(p)=R_{p}[q^{\prime}T_{p}\cap$

$R_{p}\subseteqq H_{T}/q^{\prime}T_{p}\cap H_{T}(=k(p))\subseteqq R_{p}+q^{\prime}T_{p}/q’ T_{p}=R_{p}/q’ T_{p}\cap R_{p}=k(p)$ , hence $k(p)=$

$k(q)$ .
Now we shall prove that if $R$ satisfies (3.7.1), then $R^{\prime}\subseteqq H_{r}$ . Let

$x\in R^{\prime},$ $x\not\in H_{T}$ . Then there are $ q^{\prime}\in$ Spec $(R$
‘

$)$ and $p=q^{\prime}\cap Re$ Spec $(R)$ such
that $x\not\in R_{p}+q^{\prime}R_{p}$ . Then $k(p)=R_{p}/pR_{p}\cong R_{p}+q^{\prime}R_{p}/q=R_{p}/q^{\prime}R_{p}=k(q^{\prime})$ . If
$k(p)\rightarrow k(q^{\prime})$ is bijective, $R_{p}+q^{\prime}R_{p}^{\prime}=R_{p}^{\prime}$ , hence $xeR^{\prime}\subseteqq R_{p}^{\prime}=R_{p}+q^{\prime}R_{p}^{\prime}$ , a con-
tradiction.

COROLLABy 3.9. $H_{T}$ is seminormal in $T$.
PROPOSITION 3.10. A domain $R$ is prenormal if and only if $R$ is

an intersect,ion of prevaluation domains containing $R$ .
PROOF. Let $T=\cap W_{\lambda}$ where $W_{\lambda}’ s$ are prevaluation domains coffiaining

$R$ . Let $ p’\in$ Spec $(T),$ $p=p^{r}\cap Re$ Spec $(R)$ and $(W, n)\supseteqq R$ a prevaluation
domain such that $n\cap T=p^{\prime}$ . If $k(n)=k(p)$ all is done; and we may assume
that $k(n)\supseteqq k(p)$ ; by (3.4), there is a sequence of fields $ k(n)=k_{0}\supseteqq k_{1}\supseteqq\nu\cdot\cdot\supseteqq$

$k(p),$ $\bigcup_{i\geq 0}k_{i}=k(p)$ where $k_{i}$ is algebraic over $k_{i+1}$ , hence there is a sequence
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of prevaluation domains $W=W_{0}\supseteqq(W_{1}, n)\supseteqq\cdots\supseteqq(W, n)\underline{\supseteq}\cdots\underline{\supseteq}(\bigcap_{i\geq 0}W, n)$

where $W\sqrt n=k$ , $(\bigcap_{i\geq 0}W)/n=k(p)$ . As $(\bigcap_{c\geq 0}W, n)$ $T$ and $n\cap T=p’$ ,
$(\bigcap_{i\geq 0}W, n)\supseteqq k(p^{\prime})$ , i.e., $k(p’)=k(p)$ , hence $T\subseteqq P=R\subseteqq T$, i.e., $R=T$.

COROLLARY 3.11. A domain $R$ is prenormal if and only if $R$ is an
intersection of quasi-valuations domains containing $R$ .

We give some criteria of prenormality.

PROPOSITION 3.12. Let $S$ be a multiplicative closed set in a domain
R. If $R$ is prenormal, so is $S^{-1}R$ .

PROOF. By definition,

$(S^{-1}R)^{\iota}=\bigcap_{S\cap p=\emptyset}(S^{-1}R)^{8}(S^{-1}p)=\bigcap_{S\cap p=\emptyset}P(p)\underline{\subseteq}S^{-1}\tilde{R}$ .
Take $y=x/8\in(S^{-1}R)^{0}$ ($xe\tilde{R},$ seS). Then we have $xe\tilde{H}(p)$ for all $pe$

Spec $(R)$ where $ p\cap S=\emptyset$ . Moreover $x\in R+\tilde{p}$ for all $\tilde{p}$( $e$ Spec $(R)$) lying
over all $p$( $e$ Spec $(R)$) that meet $S$. Therefore $ xeR+q\sim$ for all $ q\sim$( $e$ Spec $(\tilde{R})$)
lying over all $q$( $e$ Spec $(R)$) that meet $S$. Hence $xeH(q)$ for all $q$( $e$ Spec $(R)$)
that meet $S$. Therefore $xeR(p)$ for all $p$( $\in$ Spec $(R)$), i.e., $xeH=R$ .
Hence $sy\in R$ , i.e., $yeS^{-1}R$ .

COROLLARY 3.13. Under the circumstances $S^{-1}(H)=(S^{-1}R)^{8}$ .
PROOF. Since $S^{-1}R\underline{\subseteq}S^{-1}(R)$ ; by (3.12), $(S^{-1}R)^{8}\underline{\subseteq}(S^{-1}(H))^{8}=S^{-1}(R)$ .
COROLLARY 3.14. Let $R$ be a domain. The followings are equivalent.
(3.14.1) $R$ is prenormal.
(3.14.2) $R_{p}$ is prenormal for all $pe$ Spec $(R)$ .
(3.14.3) $R_{f}$. is prenormal for all $ m\in$ Max $(R)$ .
PROOF. $H\underline{\subseteq}\cap(H)_{p}=\cap(R_{p})^{8}=\cap R_{p}=R$ .
We discuss a little further the properties of the prenormality.

PROPOSITION 3.15. Let $(R, m)$ be a local domain, $(T, M_{1}, \cdots, M_{l})$ an
overdomain of $R$ integral over R. Then $|{\rm Max}(R_{T})|=s$ .

PROOF. By $\oplus_{g=1}^{:}(R+M_{j})/M_{\dot{f}}\subset\oplus_{\dot{j}=1}T/M_{j}$ and $T/J(T)\cong\oplus_{j=1}^{l}T/M_{j}$ , we
have $\oplus_{g=1}^{:}(R+M_{\dot{f}})/M_{\dot{f}}\subset T/J(T)$ . Let $f$ be the canonical epimorphism
$f:T\rightarrow T/J(T)$ . Then it is easy to show that $f^{-1}(\oplus_{\dot{j}=1}(R+M_{\dot{f}})/M_{\dot{f}})=$

$\bigcap_{j=1}^{l}(R+M_{\dot{f}})$ . Hence, $\bigcup_{j=1}^{l}(R+M_{\dot{f}})\rightarrow\oplus_{j=1}^{l}(R+M_{\dot{f}})/M_{j}$ is surjective. Thus
$M_{j}^{\prime}=(\bigcap_{\dot{j}=1}(R+M_{\dot{f}}))\cap M_{j}$ is a maximal ideal of $\bigcup_{j\Rightarrow 1}^{l}(R+M_{j})$ . Moreover
$M_{j}\neq M’(j\neq i)$ . Therefore $|{\rm Max}(\bigcup_{\dot{j}=1}(R+M_{\dot{f}}))|=s$ .
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The next theorem follows directly from (3.15).

THEOREM 3.16. Let $(R, m)$ be $a$ one-dimensional noetherian local
domain. If $R$ is prenormal, then $R$ is a prevaluation domain.

We introduce at this point some definitions.

DEFINITION 3.17 ([2], 4.1). Let $X$ be a free abelian group. A ring
$R$ is said to be quasi-normal if and only if the canonical homomorphism
Pic $(R)\rightarrow Pic(R[X])$ is an isomorphism.

DEFINITION 3.18 ([2], 4.3). A domain $R$ is locally unibranche (LUB)
if and only if $R_{m}$ is unibranche for all $ m\in$ Max $(R)$ , I.e., the canonical
map Max $(R)\rightarrow{\rm Max}(R)$ is bijective.

REMARKS 3.19 ([2], 4.2).
(3.19.1) A normal ring is quasinormal.
(3.19.2) A quasinormal ring is seminormal.

THEOREM 3.20. Let $R$ be $a$ one-dimensional noetherian domain such
that $R$ is a finitely generated R-module. Then the followings are
equivalent.

(3.20.1) $R$ is quasinormal.
(3.20.2) $R_{m}$ is quasinormal for all me Max $(R)$ .
(3.20.3) $R_{m}$ is seminormal and LUB for all me Max $(R)$ .
(3.20.4) $R$ is prenormal.
(3.20.5) $R_{r}$ is prenormal for all $ m\in$ Max $(R)$ .
(3.20.6) $R_{n}$ is a prevaluation domain for all me Max $(R)$ .
EXAMPLE 3.21. Let $Q$ be the field of rationals, $C$ the field of com-

plexes, and $X,$ $Y$ indeterminates.
(3.21.1) $C[X, Y]/(X^{2}-Y^{8})$ is seminormal, but it is not prenormal.
(3.21.2) $Q[[X, Y]]/(X^{2}+Y^{2})$ is prenormal.

REMARK 3.22. From (3.20), in case $R$ is a one-dimensional noetherian
domain with finite normalization, we can give actually the quasinormali-
zation of $R$ as the prenormalization of $R$ .

LEMMA 3.23 ([1], 5.6). Let $R$ be a noetherian domain with finite
normalization, $X$ a free abelian group and I an invertible ideal of $R[X]$

such that $I_{0}=I\cap R$ . Let $p_{1},$ $\cdots,$ $p_{t}$ be the prime divisors of I and $q_{j}=$

$p_{j}\cap R$ . Then $I=I_{0}R[X]$ if and only if each $I\cdot R_{q_{j}}[X]$ is principal.

Now we have the corollary of (3.20).
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PROPOSITION 3.24. Let $R$ be a noetherian $S_{2}$-domain with finite
normalization. Then $R$ is quasinormal if and only if $R_{p}$ is a prevalu-
ation domain for all prime ideals $p$ with ht $(p)=1$ .

\S 4. M-prenormality and quasinormality.

In this sectiort we give some $pr$operties of the M-prenormal domains
and show that any M-prenormal domain is quasinormal. Our notations
and terminologies are much the same as those in [1] and we assume that
$X$ is a free abelian group. All rings are assumed to be noetherian with
finite normalization.

DEFINITION 4.1. Let $R$ be a domain, $T$ an overdomain of $R$ integral
over $R$ . We define $R_{T}^{b}=\cap H_{T}(m)$ , the intersection ranging over all maxi-
mal ideals of $R$ . We say that the ring $R_{T}^{b}$ is the M-prenormalization of
$R$ in $T$. If $T=\tilde{R}$ , then we call $R_{T}^{b}$ the M-prenormalization of $R$ and
denote it by $R^{b}$ ; we say that $R$ is M-prenormal in $T$ if $R=R_{T}^{b}$ .

From the definition and (3.15) we derive:

PROPOSITION 4.2. Any M-prenormal aomain is prenormal and
L $UB$.

PROPOSITION 4.3. Let $(R, m)$ be an M-prenormal local domain which
is not normal and $xeR\backslash U(R)$ . Then $B\backslash U(\tilde{R})=m$ and $m$ is a prime
divisor of $xR$ .

PROOF. By (4.2), $R$ is LUB, hence $R=R^{b}=R+(\tilde{R}\backslash U(\tilde{R}))$ , i.e., $\tilde{R}\backslash U(\tilde{R})=$

$m$ . Take $u\in U(\tilde{R})\backslash U(R)$ , Then $xR:ux=m$ . This means that $m$ is a prime
divisor of $xR$ .

We note next that it is possible to looalize to preserve the $M$-pre-
normality.

PROPOSITION 4.4. Let $(R, m)$ be an M-prenormal local domain. Then
$R_{p}$ is M-prenormal for. all $ p\in$ Spec $(R)$ .

PROOF. Take $y=x/s\in\tilde{R}_{p}\backslash R_{p}$ where $xeR\backslash R$ and $s\in R\backslash p$ . By (4.3)
$x^{-1}e\tilde{R}\backslash R$ , hence $y^{-1}=sx^{-1}e\tilde{R}_{p}$ , i.e., $yeU(\tilde{R}_{p}),$ $i.e.,\tilde{R},\backslash R_{p}\subseteqq U(R_{p})$ . Thus
there is a unique prime ideal $p$ in $R$ lying over $p$ , hence $\tilde{p}\tilde{R}_{p}=pR_{p}$ .
Therefore $(R_{p})^{b}=\tilde{R},$ $\cap(R_{p}+\tilde{p}\tilde{R}_{p})=\tilde{R}_{p}\cap R_{p}=R_{p}$ .

COROLLARY 4.5. Under the circumstances $R_{p}$ is unibranche for $ali$

$pe$ Spec $(R)$ .
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The next is a basic structure theorem for seminormal rings due to
Traverso.

THEOREM 4.6 ([3]). Let $R$ be reduced seminormal ring.
(4.6.1) There is a sequence of rings

$R=B_{0}\supseteqq B_{1}\supseteqq\cdots\supseteqq B_{n}=R$

where $B_{i+1}$ is obtained from $B_{i}$ by a finite number of gluevngs over prime
ideals of $R$ of height $i+1$ .

(4.6.2) If $x\in R$ is not a zero-divisor, then each associated prime
divisor of $xR$ has height $\leqq n$ .

Then we have;

PROPOSITION 4.7. Let $R$ be an n-dimensional domain which is not
normal.

(4.7.1) There is an element $x$ in $R$ such that $xR$ has a pr’ime divisor
of height $n$ .

(4.7.2) There is a sequence of domains
$R=C_{0}\supseteqq C_{1}\supseteqq\cdots\supseteqq C_{n}=R$

where $C_{i+1}$ is obtained from $C_{s}$ by a finite number of $\langle*$)-gtueing omer
prime ideals of $R$ height $i+1$ .

PROOF. (4.7.1): Let $m$ be a maximal ideal of height $n$ . Take $xem$ .
Then, by (4.3), $mR$. is a prime divisor of $xR$. of height $n$ , hence $m$ is
a prime divisor of ffl of height $n$ .

(4.7.2): Since $R$ is seminormal, then, by (4.6.1), there is a sequence
of domains

$R=B_{0}\supseteqq B_{1}\supseteqq\cdots\supseteqq B_{k}=R$ .
Let

$B_{i}=R_{B_{i-1}}^{+}(p_{i1})\cap\cdots\cap R_{B_{i-1}}^{+}(p,c)$

where ht $(p_{tj})=i$ . Here we define

$C_{0}=B_{0}$ , $C=R_{c-1}^{1}(p_{1})\cap\cdots\cap Rb_{t-1}(p_{u})$ .
By (4.5), $H_{c_{i-1}}(p_{\dot{f}})=R_{c_{i-1}}^{+}(p_{ij})$ . From $C_{0}=B_{0},$ $B_{i}=C_{l}$ for all $i$ . Thus $C_{k}=R$

for some $k$ . If $k<n$ , by (4.6.2) and (4.3), a contradiction, hence $k=n$ .
DEFINITION 4.8 ([1], 5.8; [3], 3.1). If $S$ be a multiplicative closed set,
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we shall write inv $(R, S)$ for the subgroup of the group of invertible frac-
tionary R-ideals spanned by the integral invertible R-ideals that meet $S$.

PROPOSITION 4.9 ([1], 5.5; [3], 3.4). Let $R$ be a domain and $S$ a
multiplicative closed set in R. Assume that if $s\in S$ and $p$ is a prime
divisor of $sR$ , then Pic $(R_{p}[X])=0$ . Then inv $(R, S)\rightarrow inv(R[X], S)$ is an
isomorphism.

PROPOSITION 4.10. Under the assumptions as in (4.9), assuming that
$S^{-1}R$ is semilocal, there is an exact sequence

$0\rightarrow PIc(R)\rightarrow Pic(R[X])\rightarrow Pic(S^{-1}R[X)]$ .
(4.9) and (4.10) are proved in the same way as [1], 5.5, 5.7 or [3],

3.3, 3.4.

REMARK 4.11. We don’t know whether the domain assumption in
(4.9) and (4.10) can be deleted.

The next lemma is needful to prove (4.13).

LEMMA 4.12 ([3], 3.5). Let $T$ be a finite overring of a ring $R$ and $I$

the conductor of $R$ in T. Let $f$ be the inclusion of $R$ in $T$ and $\overline{f}$ the in-
clusion of $\overline{R}=R/I$ in $\overline{T}=T/I$. Then PIc $(\Phi f)\rightarrow Pic(\Phi\overline{f})$ is an isomorphism.

We can now state the following theorem.

THEOREM 4.13. Any M-prenormal domain is quasinormal.

PROOF. By (4.7.2) we have a sequence of domains
$\tilde{R}=C_{0}\supseteqq C_{1}\supseteqq\cdots\supseteqq C_{n}=R$

where $C_{i}$ is obtained from $C_{-1}$ by a finite sequence of (#)-glueings over
prime ideals of $R$ of height $i$ and $n=krull$-dim $(R)$ .

For $n=0$ the assertion is vacuous, so we assume $n>0$ and use
induction on $n$ . By induction we may assume that $\tilde{R}=C_{n-1},$ $R=C_{n}$ . Let
$I=C_{n-1}:C_{n}$ and $p_{1},$ $\cdots,$ $p$ the prime divisors of $I$ in $R$ . Then, for all $j$ ,
ht $(p_{j})=n$ . Let $S=R\backslash (p_{1}\cup\cdots\cup p)$ . Pick seS. Let $p$ be a prime divisor
of $sR$ . As $p\not\geqq I,$ $R_{p}=(C_{n-1})_{p}$ . By induction Pic $(R_{p}[X])=Pic((C_{n-1})_{p}[X])=0$ .
Therefore, by (4.10), we have an exact sequence

$0\rightarrow Pic(R)\rightarrow Pic(R[X])\rightarrow Pic(S^{-1}R[X])$ .
We are to prove Pic $(S^{-1}R[X])=0$ . Let $\overline{R}=S^{-1}R,\overline{T}=S^{-1}(C_{n-1}),$ $R=S^{-1}R/S^{-1}I$

and $T’=S^{-1}(C_{n-1})/S^{-1}I$. $f,$ $f^{\prime},$ $f_{*}$ and $f_{*}^{\prime}$ denote the inclusion $\overline{R}\rightarrow\overline{T},$ $R^{\prime}\rightarrow T^{\prime}$ ,
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$\overline{R}[X]\rightarrow\overline{T}[X]$ and $R’[X]\rightarrow T’[X]$ respectively. Since $R$’ and $T$’ are direct
sum of fields, Pic $(R’[X])=Pic(T^{\prime}[X])=0$ . By induction, $0=Pic(\overline{T})=$

Pic $(\overline{T}[X])$ . Here we note that, for a commutative square of rings,
$R_{1}\rightarrow^{f}R_{2}$

(4.13.1)
$\downarrow$

$g$

$\downarrow$

$R_{a}\rightarrow R_{4}$

there is the map of exact sequences induced by (4.13.1)

$U(R_{1})\rightarrow U(R_{2})\rightarrow Pic(\Phi f)\rightarrow Pic(R_{1})\rightarrow Pic(R_{2})$

(4.13.2)
$ U(R_{3})\downarrow\rightarrow U(R_{4})\downarrow\rightarrow Pic(\Phi g)\downarrow\rightarrow Pic(R_{8})\downarrow\rightarrow Pic(R_{4})\downarrow$

.
Therefore we have
(4.13.3) $U(\overline{R})\rightarrow U(\overline{T})\rightarrow Pic(\Phi f)\rightarrow 0\rightarrow 0$

(4.13.4) $ U(R^{\prime})\rightarrow U(T^{\prime})\rightarrow$ Pic $(\Phi f’)\rightarrow 0\rightarrow 0$

(4.13.5) $U(\overline{R}[X])\rightarrow U(\overline{T}[X])\rightarrow Pic(\Phi f_{*})\rightarrow Pic(\overline{R}[X])\rightarrow 0$

(4.13.6) $U(R’[X])\leftrightarrow U(T’[X])\rightarrow Pic(\Phi f_{*})\rightarrow 0\rightarrow 0$

and, by [1], 5.12, we have
$U(\overline{R}[X])=U(\overline{R})+X\bigotimes_{Z}H_{0}(\overline{R})$

(4.13.7)
$U(\overline{T}[X])=U(\overline{T})+X\bigotimes_{\prime Z}H_{0}(\overline{T})$

(4.13.8) $H_{0}(\overline{R})=H_{0}(\overline{T})$

$U(R’[X])=U(R^{\prime})+X\bigotimes_{z}H_{0}(R’)$

(4.13.9)
$U(T’[X])=U(T^{j})+X\bigotimes_{Z}H_{0}(T’)$ ;

moreover, by the M-prenormality ((4.5) and (4.7.2)),

(4.13.10) $H_{0}(R’)=H_{0}(T$‘ $)$ .
Then, by (4.13.4) and (4.13.6), Pic $(\Phi f’)\rightarrow Pic(\Phi f_{*}^{\prime})$ is an isomorphism.

On the other hand, by (4.12), Pic $(\Phi f)\rightarrow Pic(\Phi f’)$ and Pic $(\Phi f_{*})\rightarrow Pic(\Phi f_{*}^{\prime})$

are isomorphism, hence Pic $(\Phi f)\rightarrow Pic(\Phi f_{*})$ is an isomorphism. Applying
the five lemma to (4.13.3) and (4.13.5), we have Pic $(\overline{R}[X])=0$ , i.e.,
Pic $(S^{-1}R[X])=0$ . This completes the proof.
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