An Environment of Quasi-Valuation Domains

Michinori YAMASHITA
Sophia University
(Communicated by Y. Kawada)

Introduction

Any domain W has an ordered group $G(W)$. This group, the set of non-zero principal fractional ideals of W with $x W \leqq y W$ if and only if $x W$ contains $y W$, is called the group of divisibility of W. Let $K^{\times}=K \backslash\{0\}$ be the multiplicative group of quotient field of W and $U(W)$ the group of units of W, then $G(W)$ is order isomorphic to $K^{\times} / U(W)$, where $x U(W) \leqq$ $y U(W)$ if and only if $y / x \in W$. It is wellknown that $G(W)$ is linearly ordered if and only if W is a valuation domain.

In section 1, to define a good preordered group (2.1), we study an additive abelian group admitting two co-linear preorder relations compatible with the group operation.

In section 2, using the basic results of section 1, we discuss some facts related to a domain W under the assumption that $G(W)$ is a good preordered group. Then W is dominated by a valuation domain V. We call this domain W a quasi-valuation domain; in particular, in case V is integral over W we call W a prevaluation domain. Furthermore, there are many similarities between quasi-valuation domains and valuation domains. In fact $V \backslash U(V)=W \backslash U(W)$. Then it is only natural that a quasivaluation domain has some normalities. A quasi-valuation domain W is really seminormal, i.e., $\operatorname{Pic}(W) \rightarrow \operatorname{Pic}(W[X])$ is an isomorphism, where $\operatorname{Pic}(W)$ is the Picard group of W and X is an indeterminate. Therefore, for a domain R, it stands to reason that we should think about $\cap W_{\lambda}$, the intersection ranging over all quasivaluation domains containing R. This domain $R^{\sharp}=\cap W_{\lambda}$ is seminormal; R^{\sharp} is not always the seminormalization R^{+}of R, however.

In section 3 , we show that R^{*} is the largest subdomain R^{\prime} of \widetilde{R} containing R such that, for all $p^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$, the canonical homomorphism $k\left(p^{\prime} \cap R\right) \rightarrow k\left(p^{\prime}\right)$ is an isomorphism, where \widetilde{R} is the derived normal ring
of R and $k\left(p^{\prime}\right)$ is the residue field of $R_{p^{\prime}}^{\prime}$, and give some properties of prenormal domains. By the way, a domain R is quasinormal if and only if $\operatorname{Pic}(R) \rightarrow \operatorname{Pic}\left(R\left[X, X^{-1}\right]\right)$ is an isomorphism. To the writer's knowledge, the quasinormalization hadn't been given even in one-dimensional case. Our prenormalization provides the quasinormalization in the case.

In section 4, we define an M-prenormalization of a domain and show that an M-prenormal domain is quasinormal under the noetherian assumption. This is proved in the same way as the proof of ([3], 3.6).

All rings considered in this paper will be commutative with unit.

§ 1. Preordered groups.

In this section we turn to an information of additive abelian groups (for short, groups) admitting a preorder relation and an order relation compatible with the group operation and we give some definitions. H denotes a group.

If \leqq is a relation defined on H, we say that \leqq is a preorder on H and that H is preordered under \leqq if \leqq is reflexive and transitive. If a preorder \leqq is asymmetric, we say that \leqq is an order on H and that H is ordered under \leqq. If, for any $x, y \in H, x \leqq y$ or $y \leqq x$, then \leqq is a linear preorder on H, and H is said to be linearly preordered under \leqq.

DEFINITION 1.1. If \leqq_{1} and \leqq_{2} are preorders on H, then we say that \leqq_{1} and \leqq_{2} are co-linear on H to each other, and that \leqq_{1} is co-linear with respect to $H=\left(H, \leqq_{2}\right)$ if $x \leqq_{1} y$ or $y \leqq_{2} x$ for all $x, y \in H$.

Definition 1.2. If \leqq is a preorder on H compatible with the group operation on H, i.e., for all $x, y, z \in H, x \leqq y$ implies that $x+z \leqq y+z$, we say that H is a preordered group.

DEFINITION 1.3. Let $H=(H, \leqq)$ be a preordered group and $x \in H$. We say that x is prepositive if $x \in P=\{h \in H ; 0 \leqq h\}$, and x is prenegative if $x \in(-P) ; x$ is strictly prepositive if $x \in P^{+}=P \backslash Z$ where $Z=P \cap(-P)$, and x is strictly prenegative if $x \in\left(-P^{+}\right)$.

Hereafter the set of prepositive element of a preordered group $H=(H, \leqq)$, the set of strictly prepositive elements of H and the set of prepositive and prenegative elements of H are denoted by P, P^{+}and Z respectively.

Proposition 1.4. Let $H=(H, \leqq)$ be a preordered group. Then, the following statements hold.
(1.4.1) P is a subsemigroup.
(1.4.2) $P \ni y-x$ if and only if $x \leqq y$.
(1.4.3) Z is a subgroup of H.
(1.4.4) H / Z is an ordered group under the preordering on H / Z induced by \leqq.

Definition 1.5. Let \leqq_{1} and \leqq_{2} be preorders on H. Then we say that the preorder \leqq_{2} is finer than the preorder \leqq_{1} if the following two conditions are satisfied:
(1.5.1) $x \leqq_{1} y$ implies that $x \leqq_{2} y$ for all $x, y \in H$.
(1.5.2) If $x \in P_{1}^{+}$, then $x \in P_{2}^{+}$where $P_{j}^{+}=\left\{h \in H ; 0 \leqq_{j} h, h \$_{j} 0\right\}$.

Proposition 1.6. Let \leqq_{1} and \leqq_{2} be preorders on H. If \leqq_{1} and \leqq_{2} are co-linear and \leqq_{2} is finer than \leqq_{1}, then H is linearly preodered under \leqq_{2}.

Proof. Take any $h, h^{\prime} \in H$. Since \leqq_{1} and \leqq_{2} are co-linear, either $h \leqq{ }_{1} h^{\prime}$ or $h^{\prime} \leqq_{2} h$ must hold. If $h^{\prime} \coprod_{2} h$ then $h \leqq_{1} h^{\prime}$. Thus, by (1.5.1), $h \leqq_{2} h^{\prime}$.

Corollary 1.7. Under the assumptions as in (1.6), $H=P_{2} \cup\left(-P_{2}\right)$.
Proposition 1.8. Suppose, in addition to the circumstances that \leqq_{1} is an order. If $h \in P_{2}^{+}$then $0 \ll_{1} h$.

Proof. If $h \in P_{2}^{+}$then $h \notin\left(-P_{2}\right)$, i.e., $h \not \not_{2} 0$. Then $0 \leqq_{1} h$, since \leqq_{1} and \leqq_{2} are co-linear. Since $h \in P_{2}^{+}, h \neq 0$. Then, since \leqq_{1} is an order, $0<1$.

Proposition 1.9. Let P_{s} be a subsemigroup of H between P_{1} and P_{2}. Then,
(1.9.1) The relation \leqq_{8} on H defined by " $x \leqq_{8} y$ if and only if $y-$ $x \in P_{3}^{\prime \prime}$ is a preorder on H.
(1.9.2) There are the order \leqq_{3}^{\prime} and the preorder \leqq_{2}^{\prime} induced by P_{3} on $H^{\prime}=H / Z_{8}$ where $Z_{8}=P_{8} \cap\left(-P_{3}\right)$.
(1.9.3) \leqq_{2}^{\prime} is finer than \leqq_{3}^{\prime}.
(1.9.4) \leqq_{2}^{\prime} and \leqq_{8}^{\prime} are co-linear on H.

Proof. (1.9.1) and (1.9.2) are clear by (1.4). By (1.8), we have $P_{3}^{+}=P_{2}^{+}$, thus \leqq_{2}^{\prime} is finer than \leqq_{3}^{\prime}. (1.9.4): Since \leqq_{3} is finer than \leqq_{1} and \leqq_{1} and \leqq_{2} are co-linear, \leqq_{2} and \leqq_{3} are co-linear, hence \leqq_{2}^{\prime} and \leqq_{3}^{\prime} are co-linear on H.

Proposition 1.10. Under the assumptions as in (1.9), there is a one to one correspondence between all P_{j} 's and all Z_{j} 's.

Proof. Since $P_{j}=P_{j}^{+} \cup Z_{j}$ and $P_{j}^{+}=P_{i}^{+}$for all i, j, the statement above holds.

§ 2. Quasi-valuations and prevaluations.

In this section $H=\left(H, \leqq \leqq_{1} \leqq\right)$ always denotes a good preordered group defined as follows:

DEFINITION 2.1. Let $H=(H, \leqq)$ be a preordered group. If H is an ordered group under the order \leqq_{1} compatible with the same group operation, \leqq and \leqq are co-linear and \leqq is finer than \leqq_{1}, then we say that H is a good preordered group and we write $H=\left(H, \leqq, \leqq \varliminf_{1}\right)$.

Example 2.2. Let G be an additive abelian group and $F=(F, \leqq)$ be a linearly ordered additive abelian group. We put $H=G \times F$. Let \leqq_{1} be an order on H defined by " $(g, f) \leqq_{1}\left(g^{\prime}, f^{\prime}\right)$ if and only if $\left(g=g^{\prime}\right.$ and $f=f^{\prime}$) or ($f<f^{\prime}$)" and \leqq_{2} be a preorder on H defined by " $(g, f) \leqq_{2}\left(g^{\prime}, f^{\prime}\right)$ if and only if $f \leqq f^{\prime \prime \prime}$. Then $H=\left(H, \leqq_{1}, \leqq_{2}\right)$ is a good preordered group.

Definition 2.3. Let K be a field. A mapping w of $K^{\times}=K \backslash\{0\}$ into a suitable good preordered group $H=\left(H, \leqq, \leqq_{1}\right)$ is called a quasi-valuation on K if the following conditions are satisfied for all $x, y \in K^{\times}$;
(2.3.1) $\quad w(x y)=w(x)+w(y)$.
(2.3.2) (1) If $w(x)-w(y) \in P^{+}, w(y) \leqq{ }_{1} w(x+y)$.
(2) If $w(x)-w(y) \in\left(-P^{+}\right), w(x) \leqq{ }_{1} w(x+y)$.
(3) If $w(x)-w(y) \in Z \backslash\{0\}$, then for some $z \in H$ such that $w(x)-z \in Z$, $z \leqq{ }_{1} w(x+y)$.
(4) If $w(x)-w(y)=0, w(x) \leqq{ }_{1} w(x+y)$.
(2.3.3) $w(-1)=0$.

Proposition 2.4. Under the circumstances, the followings hold.
(2.4.1) $w\left(x^{-1}\right)=-w(x), w(1)=0$ and $w(x)=w(-x)$.
(2.4.2) If $w(y)-w(x) \in P^{+}$, then $w(x+y)=w(x)$.

Proof. We are to prove (2.4.2). By (1.8), we note that $h \in P^{+}$if and only if $0<_{1} h$.
(1) If $w(x+y)-w(-y) \in P^{+}$, then $w(x)<{ }_{1} w(y)=w(-y) \leqq{ }_{1} w(-y+$ $(x+y))=w(x)$, a contradiction.
(2) If $w(x+y)-w(-y) \in\left(-P^{+}\right)$, then $w(x) \leqq{ }_{1} w(x+y) \leqq{ }_{1} w(-y+(x+$ $y)=w(x)$ so that $w(x)=w(x+y)$.
(3) If $w(x+y)-w(-y) \in Z \backslash\{0\}$, for some $z \in H$ such that $w(-y)-z=$ $z^{\prime} \in Z$, then $z+z^{\prime}=w(y)>_{1} w(x)=w(-y+(x+y)) \geqq_{1} z$. Thus $z+z^{\prime}>_{1} z$. Hence $z^{\prime}>_{1} 0$, i.e., $z^{\prime} \in P^{+}$, a contradiction.
(4) If $w(x+y)-w(-y)=0, w(x) \leqq{ }_{1} w(x+y) \leqq{ }_{1} w(-y+(x+y))=w(x)$, so that $w(x+y)=w(x)$.

Proposition 2.5. Under the circumstances, we set $V=\left\{x \in K^{\times} ; 0 \leqq\right.$ $w(x)\} \cup\{0\}$ and $W=\left\{x \in K^{\times} ; 0 \leqq{ }_{1} w(x)\right\} \cup\{0\}$. Then V is a valuation domain of K and W is a local domain dominated by V with the quotient field K. Moreover the maximal ideal of V is equal to the maximal ideal of W.

Proof. We note that $\tilde{H}=H / Z$ is a linearly ordered group. Considering $\widetilde{w} ; K^{\times} \rightarrow H$,

$V=\left\{x \in K^{\times} ; 0 \leqq \leqq^{\prime} \tilde{w}(x)\right\} \cup\{0\}$ where \leqq^{\prime} is the order on \tilde{H} induced by P. Then the conditions of (2.3) induce the condition of a valuation of K. Hence V is a valuation domain of K.

Condition (2.3.1) implies that W is closed under multiplication. Take $x, y \in W$, so that $0 \leqq_{1} w(x)$ and $0 \leqq_{1} w(y)$.
(1) If $w(x)-w(-y) \in P^{+}$, then $0 \leqq{ }_{1} w(y) \leqq{ }_{1} w(x-y)$.
(2) If $w(x)-w(-y) \in\left(-P^{+}\right)$, then $0 \leqq{ }_{1} w(y) \leqq_{1} w(x-y)$.
(3) If $w(x)-w(-y) \in Z$, then we may assume that $w(x)=w(y)=0$ and that $0<{ }_{1} w(x), 0<{ }_{1} w(y)$.
(a) If $w(x)=w(y)=0,0=w(x) \leqq{ }_{1} w(x-y)$.
(b) If $0<{ }_{1} w(x), 0<{ }_{1} w(y)$ and $w(x)-w(-y) \in Z \backslash\{0\}$, then $z \leqq{ }_{1} w(x-y)$ for some $z \in H$ such that $w(x)-z \in Z$. Then $z=w(x)+z^{\prime}$ where $z^{\prime} \in Z$. Hence $z \in P^{+}$. By (1.8), we have $0<_{1} z \leqq{ }_{1} w(x-y)$.
(c) If $0<{ }_{1} w(x), 0<{ }_{1} w(y)$ and $w(x)-w(-y)=0$, then $0<{ }_{1} w(x) \leqq{ }_{1} w(x-y)$. Thus in all cases $0 \leqq \leqq_{1} w(x-y)$. We have proved that W is a domain with identity. Moreover the maximal ideal of $V=\left\{x \in K^{\times} ; 0<\widetilde{w}(x)\right\} \cup\{0\}=$ $\left\{x \in K^{\times} ; w(x) \in P^{+}\right\} \cup\{0\}=\left\{x \in K^{\times} ; 0<_{1} w(x)\right\} \cup\{0\} \subset W$. This shows that W is a local domain (W, n) dominated by $V=(V, m)$ with the quotient field K and that $m=n$.

Definition 2.6. Under the circumstances, we say that (V, n) is the valuation domain of \tilde{w} and that (W, n) is the quasi-valuation domain of w dominated by V. Two quasi-valuations w, w^{\prime} of a field K are equivalent to each other if the quasi-valuation domain of w coincides with the quasi-valuation domain of w^{\prime}. We call $w\left(K^{\times}\right)$the quasi-value group of w.

Then we see the following result immediately.
Theorem 2.7. Let (V, m) be a valuation domain of a quotient field K and W a subdomain of V such that $W \leqq V$ and $Q(W)=K$. Then the following statements are equivalent.
(2.7.1) W is a quasi-valuation domain of K.
(2.7.2) For any $x, y \in W$, it holds that either $x \in y W$ or $y \in x V$.
(2.7.3) The maximal ideal m of V is set-theoretically equal to the maximal ideal of W.
(2.7.4) For any prime ideal p of W, the maximal ideal of V_{p} is set-theoretically equal to p.
(2.7.5) If $x \in K$, then either $x \in W$ or $x^{-1} \in V$.
(2.7.6) There exists a subfield k of V / m such that $W=\{x \in V$; $x \bmod m \in k$.

Proof. (2.7.1) \rightarrow (2.7.5): If $x \notin V$, then $x^{-1} \in m$. By (2.4), we have $x^{-1} \in m \cong W$.
(2.7.5) $\rightarrow(2.7 .1):$ We set $H=\{x W ; x \in K \backslash\{0\}\}$. We define $x W \leqq{ }_{1} y W$ if and only if $y / x \in W$ for $x W, y W \in H$, then the relation \leqq_{1} is an order on H. Moreover we define $x W \leqq y W$ if and only if $y / x \in V$ for $x W$, $y W \in H$, then the relation \leqq is a preorder on H. Hence we have that \leqq is finer than \leqq_{1} and that \leqq and \leqq_{1} are co-linear to each other. We write the group operation on H as addition: $x W+y W=x y W$. Since, for all $z \in K \backslash\{0\}, x W \subseteq y W$ implies $x z W \subseteq y z W$, the order \leqq_{1} and \leqq are compatible with the group operation on H. Then the mapping w such that $w(x)=x W$ ($x \in K \backslash\{0\}$) is a homomorphism from K^{\times}onto H. Hence the mapping w satisfies the conditions of (2.3). Then w is a quasi-valuation of K. Hence $W=\left\{x \in K ; 0 \leqq_{1} w(x)\right\} \cup\{0\}$, i.e., W is a quasi-valuation domain of K.
(2.7.1) $\rightarrow(2.7 .3): \quad$ This is the statement of (2.5).
$(2.7 .3) \rightarrow(2.7 .1):$ We have only to show that $(2.7 .3) \rightarrow(2.7 .5)$. Take $x \in K$. If $x \notin V$, then $x^{-1} \in m \subset W$.
$(2.7 .2) \leftrightarrow(2.7 .5): \quad$ This is nothing but a restatement.
$(2.73) \rightarrow(2.7 .4): \quad$ We may assume that $(2.7 .3) \leftrightarrow(2.7 .5)$. Let m^{\prime} be the maximal ideal of a valuation domain V_{p}. Take $x=t / s \in m^{\prime} \subseteq V_{p}(s \in W \backslash p$, $t \in V$). If $t \notin s W$, then $s \in t V$, i.e., $s / t \in V \subseteq V_{p}$, hence s / t is a unit in V_{p}, a contradiction. Thus $t \in s W$, i.e., $x \in W \subseteq W_{p}$ and x is not a unit in $W_{p} \subseteq V_{p}$. Hence $x \in p W_{p}$, i.e., $x \in p=p W_{p} \cap W$.

Of course (2.7.4) implies (2.7.3).
(2.7.3) $↔(2.7 .6):$ This is nothing but a restatement.

Proposition 2.8. Let W be a quasi-valuation domain of K, W^{\prime} any
domain between W and K and $p \in \operatorname{Spec}(W)$. Then the following statement hold.
(2.8.1) W^{\prime} is a quasi-valuation domain of K.
(2.8.2) If x is an element of W which is not in p, then p is contained in $x W$.
(2.8.3) p is set-theoretically equal to $p W_{p}$.
(2.8.4) W / p is a quasi-valuation domain.
(2.8.5) If L is a subfield of $K, L \cap W$ is a quasi-valuation domain of L.

Proof. (2.8.1): Let V^{\prime} be a valuation domain between W^{\prime} and K and V a valuation domain which dominates W. Take $x \notin W^{\prime}$.
(1) If $V^{\prime} \subseteq V$, then $W \subseteq W^{\prime} \subseteq V^{\prime} \subseteq V$. Hence $V^{\prime}=V$. Thus $x^{-1} \in V=V^{\prime}$.
(2) If $V \subseteq V^{\prime}$, then $x^{-1} \in V \subseteq V^{\prime}$.
(3) If V and V^{\prime} are incomparable, then, by the theorem of independence of valuation, $R=V^{\prime} \cap V$ is a semi-local domain which is not local. On the other hand, as $W \subseteq R \subset V, R$ must be local, which is nonsense.
(2.8.2): Let y be an arbitrary element of p. Suppose y is not in $x W$. By (2.7.2), x is in $y V \cong p V=p V_{p}=p W_{p}=p$, a contradiction.
(2.8.3): Ву (2.7.4), $p \cong p W_{p} \subseteq p V_{p}=p$.
(2.8.4): Let V be a valuation domain which dominates W. Then V / p is a valuation domain which dominates W / p. The statement is therefore immediate from (2.7).
(2.7.5): Let V be a valuation domain which dominates W. Then $V \cap L$ is a valuation domain which dominates $W \cap L$. If y is an element of L which is not in $W \cap L$, then $x^{-1} \in V \cap L$.
(W, n, k) denotes a local ring (W, n) with the residue field k.
Corollary 2.9. Let (W, n, k) and ($W^{\prime}, n^{\prime}, k^{\prime}$) be quasi-valuation domains dominated by the valuation domain V. Then, $k=k^{\prime}$ if and only if $W=W^{\prime}$.

Proof. It is easy and we omit it.
Proposition 2.10. Let (W, n) be a quasi-valuation domain of a field K dominated by the valuation domain (V, n) of K and W^{*} a quasivaluation domain of the residue field V / n dominated $b y$ the valuation domain V^{*} of V / n. Then the set $W^{\prime}=\left\{x \in V ; \bmod n \in W^{*}\right\}$ is a quasivaluation domain of K dominated by the composite of V with V^{*}, i.e., $V^{\prime}=\left\{x \in V ; x \bmod n \in V^{*}\right\}$.

Proof. Take $x \in K, x \notin W^{\prime}$. If $x \notin V$, then $x^{-1} \in n \subset V, x^{-1} \bmod n \in V^{*}$
and $x^{-1} \in V^{\prime}$. Assume that $x \in V$. Since W^{*} is a quasi-valuation domain, $x^{-1} \bmod n \in V^{*}$, which shows that $x^{-1} \in V^{\prime}$. Thus W^{\prime} is a quasi-valuation domain dominated by V^{\prime}.

Remark 2.11. The domain $W^{\prime \prime}=\left\{x \in W ; x \bmod n \in W^{*}\right\}$ is not always a quasi-valuation domain dominated by V^{\prime}. Let Q be the field of rationals, C the field of complexes, X, Y indeterminates and $K=C((x))$ the quotient field of $C[[X]]$. We set $W=Q+Y K[[Y]], W^{*}=Q+X C[[X]]$ and $V^{*}=$ $C[[X]]$. We put $f=2^{1 / 2} X$. Then, $f \notin W^{\prime \prime}$ and $f^{-1} \notin V^{\prime}$, which show that $W^{\prime \prime}$ is not a quasi-valuation domain dominated by V^{\prime}.

Proposition 2.12. Let R be a subdomain of a field K and let p a prime ideal of R. Then there exists a quasi-valuation domain W of K such that W has a prime ideal n with $k(p)=k(n)$.

Proof. It is well-known that there exists a valuation domain V of K such that V has a prime ideal n lying over p. We set $W=\{x \in V ; x$ $\bmod n \in k(p)=k(n)\}$. Then W is a quasi-valuation domain dominated by V such that W has a prime ideal n lying over p with $k(p)=k(n)$.

To introduce the concept of a prevaluation domain, we define a w subgroup of (H, \leqq, \leqq_{1}).

Definition 2.13. Let w be a quasi-valuation of K with the quasivalue group (H, \leqq, \leqq_{1}), Z^{\prime} a subgroup of Z and w^{\prime} a mapping of K^{\times}to $H^{\prime}(=H / Z)$ induced by Z^{\prime} and w. If w^{\prime} satisfies the conditions of (2.3), i.e., w^{\prime} is a quasi-valuation with the quasi-value group H^{\prime}, then we say that Z^{\prime} is a w-subgroup of H.

Proposition 2.14. Let w be a quasi-valuation with the quasi-value group $\left(H, \leqq, \leqq_{1}\right)$. If Z_{2} and Z_{3} are w-subgroups of H, then $Z_{2} \cap Z_{3}$ and $Z_{2}+Z_{3}$ are w-subgroups of H.

Proof. $\quad Z_{4}=Z_{2} \cap Z_{3}$ is a w-subgroup: Let $\leqq_{j}(j=2,3,4)$ be a preorder on H induced by Z_{j}. We note that $\leqq_{j}(j=2,3,4)$ is finer than \leqq_{1} and that $P^{+}=P_{1}=P_{2}=P_{3}=P_{4}$.
(1) If $w(x)-w(y) \in P^{+}, w(y) \leqq w(x+y)$, hence $w(y) \leqq{ }_{4} w(x+y)$.
(2) If $w(x)-w(y) \in\left(-P^{+}\right), w(x) \leqq{ }_{1} w(x+y)$, hence $w(x) \leqq{ }_{4} w(x+y)$.
(3) If $w(x)-w(y) \in Z \backslash Z_{4}$, for some $z \in Z$ such that $w(x)-z \in Z, z \leqq_{1}$ $w(x+y)$ by (2.3.2), hence $z \leqq w(x+y)$.
(4) If $w(x)-w(y) \in Z_{4}=Z_{2} \cap Z_{3}$, i.e., $w(x)-w(y) \in Z_{j} \quad(j=2,3)$, then $w(x) \leqq_{j} w(x+y)(j=2,3)$, i.e., $w(x+y)-w(x) \in P_{2} \cap P_{3}=\left(P_{2}^{+} \cup Z_{2}\right) \cap\left(P_{3}^{+} \cup Z_{3}\right)=$ $\left(P_{1}^{+} \cup Z_{2}\right) \cap\left(P_{1}^{+} \cup Z_{3}\right)=P_{1}^{+} \cup\left(Z_{2} \cap Z_{8}\right)=P_{4}^{+} \cup Z_{4}=P_{4}$, hence $w(x) \leqq{ }_{4} w(x+y)$.

Thus the mapping w_{4} induced by Z_{4} and w is a quasi-valuation with the quasi-value group H / Z_{4}, i.e., $Z_{2} \cap Z_{3}$ is a w-subgroup of H.
$Z_{5}=Z_{2}+Z_{3}$ is a w-subgroup: Let \leqq_{5} be a preorder on H induced by Z_{5}. We note that $P^{+}=P_{5}^{+}$and that \leqq_{5} is finer than \leqq_{1}.
(1) If $w(x)-w(y) \in P^{+}, w(y) \leqq_{1} w(x+y)$, hence $w(x) \leqq_{5} w(x+y)$.
(2) If $w(x)-w(y) \in\left(-P^{+}\right), w(x) \leqq_{1} w(x+y)$, hence $w(x) \leqq_{5} w(x+y)$.
(3) If $w(x)-w(y) \in Z \backslash Z_{5}$, for some $z \in Z$ such that $w(x)-z \in Z, z \leqq_{1}$ $w(x+y)$, hence $z \leqq_{s} w(x+y)$.
(4) Let $w_{j}(j=1,2,3,4)$ be a quasi-valuation with the quasi-value group H / Z_{j} induced by Z_{j}. We illustrate groups in the figure, where f and f^{\prime} are cannonical homomorphism:

We note that Z_{5} / Z_{8} is isomorphic to Z_{2} / Z_{4}. Since Z_{3} is a w-subgroup of H, if $w(x)-w(y) \in Z_{2}+Z_{8}$, then $w_{3}(x)-w_{8}(y) \in Z_{2}+Z_{3} / Z_{8}$. Hence $w_{4}(x)-$ $w_{4}(y) \in Z_{2} / Z_{4}$. Since w_{4} is a quasi-valuation with the quasi-value group $H / Z_{4}, w_{4}(x+y)-w_{4}(x) \in P_{2} / Z_{4} \hookrightarrow H / Z_{4}$. Then, by the isomorphism f of Z_{2} / Z_{4} to $Z_{5} / Z_{3}, w_{3}(x+y)-w_{3}(x) \in P_{5} / Z_{3}$. It follows that $w(x+y)-w(x) \in P_{5}$.

Thus a mapping w_{5} induced by Z_{5} and w is a quasi-valuation with the quasi-value group H / Z_{5}, i.e., Z_{5} is a w-subgroup of H.

The next proposition is an immediate corollary.
Proposition 2.15. Under the circumstances, there is a one-to-one order-preserving correspondence between all the w-subgroups of H and all the quasi-valuation domains dominated by V containing W.

Proof. Let Z^{\prime} be a w-subgroup of H, w^{\prime} a quasi-valuation of K with the quasi-value group H / Z^{\prime} and \leqq^{\prime} an order on H / Z induced by Z^{\prime}. We set $W^{\prime}=\left\{x \in K^{\times} ; 0 \leqq{ }^{\prime} w(x)\right\} \cup\{0\}$. Then W^{\prime} is a quasi-valuation domain dominated by V. Conversely, let W^{\prime} is a quasi-valuation domain dominated by V and $U\left(W^{\prime}\right)$ a unit group of W. We set $Z^{\prime}=\left\{w(x) ; x \in U\left(W^{\prime}\right)\right\}$. Then Z^{\prime} is a w-subgroup of H.

Definition 2.16. We say that a chain of distinct w-subgroups $Z^{\prime}=$ $Z_{0} \supset Z_{1} \supset \cdots \supset Z_{n}$ is of length n. We say that Z^{\prime} has w-rank n if there exists a chain of length n descending from Z^{\prime} but no longer chain. We say that Z^{\prime} has w-rank ∞ if there exist arbitrarily long chains descending from Z^{\prime}. Our notation for w-rank is w-rk (Z^{\prime}).

Proposition 2.17. Under the circumstances, let Z^{\prime} be a w-subgroup of H of finite w-rank and ($W^{\prime}, n^{\prime}, k^{\prime}$) a quasi-valuation domain corresponding to Z^{\prime}. Then W^{\prime} is integral over (W, n, k).

Proof. Let \tilde{k} be the residue field of the valuation domain of w. By (2.9) and (2.15), there is a one-to-one order-preserving correspondence between all the w-subgroups of H and all the intermediate fields between k and \tilde{k}. Moreover we note that k^{\prime} is algebraic over k if and only if W^{\prime} is integral over W. Since w-rk (Z^{\prime}) is finite, the number of intermediate fields between k and k^{\prime} is finite, hence k^{\prime} is algebraic over k, i.e., W^{\prime} is integral over W.

A finiteness of w-rank of a w-subgroup motivates the next definition.
Definition 2.18. Let w be a quasi-valuation of K with the quasivalue group H. We say that w is a prevaluation of K if, for all $x \in K^{\times}$ such that $w(x) \in Z$, the w-subgroup Z_{x} of H generated by $w(x)$ is of finite w-rank. Then, we say that a quasi-valuation domain W (corresponding to w) is a prevaluation domain and that $w\left(K^{\times}\right)$is called the prevalue group of w. Two prevaluation w, w^{\prime} of K are equivalent to each other if the prevaluation domain of w coincides with the prevaluation domain of w^{\prime}.

Then we see the following results. \tilde{W} denotes the derived normal ring of a domain W.

TheOrem 2.19. Let W be a domain with a quotient field K. Then the following statement are equivalent.
(2.19.1) W is a prevaluation domain K.
(2.19.2) For any $x, y \in W$, it holds that either $x \in y W$ or $y \in x \widetilde{W}$.
(2.19.3) If $x \in K$, then either $x \in W$ or $x^{-1} \in \widetilde{W}$.
(2.19.4) W is a quasi-valuation domain (W, n, k) of K dominated by the valuation domain (V, n, \widetilde{k}) and \widetilde{k} is algebraic over k.
(2.19.5) W is a quasi-valuation domain of K dominated by the valuation domain V and V is integral over W.
(2.19.6) \tilde{W} is a valuation domain and the maximal ideal of \tilde{W} is set-theoretically equal to the maximal ideal of W.
(2.19.7) \widetilde{W} is a valuation domain and, for any prime ideal p of
w, a maximal ideal of W_{p} is set-theoretically equal to p.
Proof. First, by (2.17), we note that the valuation domain V dominating W is integral over W.
(2.19.1) $\hookleftarrow(2.19 .4) \leftrightarrow(2.19 .5): \quad$ Trivial.
$(2.19 .2) \leftrightarrow(2.19 .3): T h i s$ is nothing but a restatement.
(2.19.5) $\rightarrow(2.19 .3)$: Take any $x \in K, x \notin W$. Since W is a quasi-valuation domain of K and V is a integral over $W, x^{-1} \in V \subseteq \widetilde{W}$.
(2.19.3) $\rightarrow(2.19 .5)$: It is easy to see that \widetilde{W} is a valuation domain of K. Then W is a quasi-valuation domain of K dominated by \widetilde{W} and \widetilde{W} is integral over W.
$(2.19 .3) \rightarrow(2.19 .7): \quad$ Let p be a prime ideal of W. Since $\widetilde{W}_{p}=\left(\tilde{W}_{p}, \tilde{m}\right)$ is a valuation domain, W_{p} is a local domain (W_{p}, m) hence $m \cong \tilde{m}$. Take an element of \tilde{m}, say x. Then $x^{-1} \notin \widetilde{W}_{p}$, hence, by (2.19.3) $\leftrightarrow(2.19 .5)$ and (2.8.1), $x \in m=p W_{p}=p$ (cf. (2.8.3)), i.e., $p=\tilde{m}$.
(2.19.7) \rightarrow (2.19.6): Trivial.
(2.19.6) \rightarrow (2.19.3): Take $x \in K$. If $x^{-1} \notin W$, then $x \in \tilde{n}=n \subset W$.

Proposition 2.20. Let W be a prevaluation domain of K and p any prime ideal of W. Then, the following statements hold.
(2.20.1) If W^{\prime} is any domain between W and K, then W^{\prime} is a prevaluation domain.
(2.20.2) If $x \in W$ and $x \notin p$, then $p \subset x W$.
(2.20.3) p is set-theoretically equal to $p W_{p}$.
(2.20.4) W / p is prevaluation domain.

Proof. (2.20.1): If $x \notin W^{\prime}$, then $x \notin W$, hence $x^{-1} \in \widetilde{W} \subseteq \widetilde{W}^{\prime}$.
(2.20.2): Take any $y \in p$. If $x \notin y W$, then $y \in x \widetilde{W}$, hence $p \subseteq x W$. Let p be a prime ideal of W lying over p. Therefore $y W \subseteq \widetilde{p}=p \subset x \widetilde{W}$, i.e., $x \notin y \widetilde{W}$, thus $y \in x W$, i.e., $p \subset x W$.
(2.20.3): Take $x=y / z \in p W_{p}(y \in p, z \in W \backslash p)$. Since $z \notin p$, by (2.20.2), $p \subset z W$, hence $y=z y^{\prime}\left(y^{\prime} \in W\right)$. Thus $x \in W \cap p W_{p}=p$.
(2.20.4): By (2.8.4), W / p is a quasi-valuation domain dominated by the valuation domain \widetilde{W} / p and \widetilde{W} / p is integral over W / p. It follows that W is a prevaluation domain.

§ 3. Prenormality and seminormality.

The definition of a seminormalization which was given by Traverso [3] is as follows.

Definition 3.1. Let R be a domain, T an overdomain of R integral over R. We define

$$
R_{T}^{+}(p)=\left\{x \in T ; x \in R_{p}+J\left(T_{p}\right) \text { for all } p \in \operatorname{Spec}(R)\right\}
$$

where $J\left(T_{p}\right)$ is the Jacobson radical of T_{p} and $R_{T}^{+}=\cap R_{T}^{+}(p)$, the intersection ranging over all prime ideals of R. We say that the ring $R_{r}^{+}(p)$ is obtained by glueing T over p and that the ring R_{T}^{+}is the seminormalization of R in T. If $T=\widetilde{R}$, then we call R_{r}^{+}the seminormalization of R and denote it by R^{+}; we say that R is seminormal in T if $R=R_{T}^{+}$.

Proposition 3.2. R^{+}is the largest subring T of \tilde{R} containing R such that
(3.2.1) For any $p \in \operatorname{Spec}(R)$ there is exactly one $q \in \operatorname{Spec}(T)$ lying over p, and
(3.2.2) The canonical homomorphism $k(p) \rightarrow k(q)$ is an isomorphism.

We first begin with the next proposition.
Proposition 3.3. A prevaluation domain is seminormal.
Proof. Let R be a prevaluation domain, p any prime ideal of R. Since R_{p} is a prevaluation domain by (2.20.1), $J\left(\widetilde{R}_{p}\right)=J\left(R_{p}\right)$ by (2.19.7). Hence $R_{p} \supset J\left(\widetilde{R}_{p}\right)$. Thus $R^{+}=\cap\left(R_{p}+J\left(R_{p}\right)\right)=\cap R_{p}=R$.

Lemma 3.4. Let $k_{0} \supset k$ be fields. There is a sequence of fields

$$
k_{0} \supseteq k_{1} \supseteq k_{2} \supseteq k_{s} \supseteq \cdots \supseteq k_{n} \supseteq \cdots \supseteq k, \quad \bigcap_{n \geq 0} k_{n}=k
$$

where k_{n} is algebraic over k_{n+1}.
Corollary 3.5. A quasi-valuation domain is seminormal.
Proof. This is proved in the same way as (3.3); we give another proof which is useful for (3.10) and (3.11). Let (W, n, k) be a quasivaluation domain dominated by a valuation (V, n, k_{0}). By Lemma 3.4, we have the fields k_{n} 's between k and k_{0} such that k_{n} is algebraic over k_{n+1} with $\cap_{n \geq 0} k_{n}=k$. We set $V_{n}=\left\{x \in V ; x \bmod n \in k_{n}\right\}$. Then V_{n} is a prevaluation domain dominated by V such that V_{n} is integral over V_{n+1} with $U_{n \geq 0} V_{n}=W$. Since V_{n} is seminormal, so is W (cf. Hamman's criterion [4]).

In the normal case, the following theorem is well-known: A domain R is normal if and only if R is an intersection of valuation domains containing R. One can ask the following question: Let R be a seminormal domain with a quotient field K and the W_{2} 's prevaluation domains between R and K. Then $R=\cap W_{2}$? Proposition 3.15 shows that the above ques-
tion has really a negative answer. From now on, we discuss some facts related to this question. We start with some definitions.

Definition 3.6. Let R be a domain, T an overdomain of R integral over R. We define

$$
R_{r}^{*}(p)=\left\{x \in T ; x \in R_{p}+q T_{p} \text { for all } q(\in \operatorname{Spec}(T)) \text { lying over } p\right\}
$$

and $R_{T}^{*}=\cap R_{r}^{*}(p)$, the intersection ranging over all prime ideals of R. We say that the ring $R_{r}^{t}(p)$ is obtained by (\#)-glueing T over p and that the ring R_{T}^{*} is the prenormalization of R in T. If $T=\widetilde{R}$, then we call R_{T}^{*} the prenormalization of R and denote it by R^{*}, we say that the ring R is prenormal in T if $R=R_{T}^{*}$.

Remark 3.7. A quasi-valuation domain and a prevaluation domain are prenormal.

We give some basic results.
Proposition 3.8. R_{T}^{*} is the largest subring R^{\prime} of T containing R such that
(3.8.1) For all $p^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$, the canonical homomorphism $k\left(p^{\prime} \cap R\right) \rightarrow$ $k\left(p^{\prime}\right)$ is an isomorphism.

Proof. $\quad R_{T}$ satisfies (3.7.1): Let $q \in \operatorname{Spec}\left(R_{T}^{*}\right)$ and $p=q \cap R \in \operatorname{Spec}(R)$. As $R_{p} \subseteq R_{T}^{*} \subseteq R_{p}+q^{\prime} T_{p}$ where $q(\in \operatorname{Spec}(T))$ is lying over $q, k(p)=R_{p} / q^{\prime} T_{p} \cap$ $R_{p} \subseteq R_{T}^{*} / q^{\prime} T_{p} \cap R_{t}^{*}(=k(p)) \subseteq R_{p}+q^{\prime} T_{p} / q^{\prime} T_{p}=R_{p} / q^{\prime} T_{p} \cap R_{p}=k(p)$, hence $k(p)=$ $k(q)$.

Now we shall prove that if R satisfies (3.7.1), then $R^{\prime} \subseteq R_{r}^{*}$. Let $x \in R^{\prime}, x \notin R_{r}^{*}$. Then there are $q^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$ and $p=q^{\prime} \cap R \in \operatorname{Spec}(R)$ such that $x \notin R_{p}+q^{\prime} R_{p}^{\prime}$. Then $k(p)=R_{p} / p R_{p} \cong R_{p}+q^{\prime} R_{p}^{\prime} / q^{\prime} R_{p}^{\prime} \hookrightarrow R_{p}^{\prime} / q^{\prime} R_{p}^{\prime}=k\left(q^{\prime}\right)$. If $k(p) \rightarrow k\left(q^{\prime}\right)$ is bijective, $R_{p}+q^{\prime} R_{p}^{\prime}=R_{p}^{\prime}$, hence $x \in R^{\prime} \leqq R_{p}^{\prime}=R_{p}+q^{\prime} R_{p}^{\prime}$, a contradiction.

Corollary 3.9. R_{T}^{*} is seminormal in T.
Proposition 3.10. \quad A domain R is prenormal if and only if R is an intersection of prevaluation domains containing R.

Proof. Let $T=\cap W_{i}$ where W_{λ} 's are prevaluation domains containing R. Let $p^{\prime} \in \operatorname{Spec}(T), p=p^{\prime} \cap R \in \operatorname{Spec}(R)$ and ($\left.W, n\right) \supseteq R$ a prevaluation domain such that $n \cap T=p^{\prime}$. If $k(n)=k(p)$ all is done; and we may assume that $k(n) \supseteqq k(p)$; by (3.4), there is a sequence of fields $k(n)=k_{0} \supseteq k_{1} \supseteq \cdots \supseteq$ $k(p), \cup_{i z 0} k_{i}=k(p)$ where k_{i} is algebraic over k_{i+1}, hence there is a sequence
of prevaluation domains $W=W_{0} \supseteq\left(W_{1}, n\right) \supseteq \cdots \supseteq\left(W_{i}, n\right) \supseteq \cdots \supseteq\left(\cap_{i \geq 0} W_{i}, n\right)$ where $W_{i} / n=k_{i}, \quad\left(\cap_{i \geq 0} W_{i}\right) / n=k(p)$. As $\left(\cap_{i \geq 0} W_{i}, n\right) T$ and $n \cap T=p^{\prime}$, ($\left.\cap_{i \geq 0} W_{i}, n\right) \supseteqq k\left(p^{\prime}\right)$, i.e., $k\left(p^{\prime}\right)=k(p)$, hence $T \subseteq R^{*}=R \subseteq T$, i.e., $R=T$.

COROLLARY 3.11. A domain R is prenormal if and only if R is an intersection of quasi-valuations domains containing R.

We give some criteria of prenormality.
Proposition 3.12. Let S be a multiplicative closed set in a domain R. If R is prenormal, so is $S^{-1} R$.

Proof. By definition,

$$
\left(S^{-1} R\right)^{\ddagger}=\bigcap_{S \cap p=\varnothing}\left(S^{-1} R\right)^{\star}\left(S^{-1} p\right)=\bigcap_{s \cap p=\varnothing} R^{*}(p) \subseteq S^{-1} \tilde{R} .
$$

Take $y=x / s \in\left(S^{-1} R\right)^{*}(x \in \widetilde{R}, s \in S)$. Then we have $x \in \widetilde{R}^{\ddagger}(p)$ for all $p \in$ $\operatorname{Spec}(R)$ where $p \cap S=\varnothing$. Moreover $x \in R+\widetilde{p}$ for all $\widetilde{p}(\in \operatorname{Spec}(\widetilde{R})$) lying over all $p(\in \operatorname{Spec}(R))$ that meet S. Therefore $x \in R+\widetilde{q}$ for all $\widetilde{q}(\in \operatorname{Spec}(\widetilde{R}))$ lying over all $q(\in \operatorname{Spec}(R))$ that meet S. Hence $x \in R^{\ddagger}(q)$ for all $q(\in \operatorname{Spec}(R))$ that meet S. Therefore $x \in R^{*}(p)$ for all $p\left(\in \operatorname{Spec}(R)\right.$), i.e., $x \in R^{*}=R$. Hence $s y \in R$, i.e., $y \in S^{-1} R$.

Corollary 3.13. Under the circumstances $S^{-1}\left(R^{*}\right)=\left(S^{-1} R\right)^{*}$.
Proof. Since $S^{-1} R \subseteq S^{-1}\left(R^{4}\right)$; by (3.12), $\left(S^{-1} R\right)^{\ddagger} \subseteq\left(S^{-1}\left(R^{*}\right)\right)^{*}=S^{-1}\left(R^{t}\right)$.
Corollary 3.14. Let R be a domain. The followings are equivalent. (3.14.1) R is prenormal.
(3.14.2) R_{p} is prenormal for all $p \in \operatorname{Spec}(R)$.
(3.14.3) R_{m} is prenormal for all $m \in \operatorname{Max}(R)$.

PROOF. $\quad R^{*} \subseteq \cap\left(R^{*}\right)_{p}=\cap\left(R_{p}\right)^{*}=\cap R_{p}=R$.
We discuss a little further the properties of the prenormality.
Proposition 3.15. Let (R, m) be a local domain, $\left(T, M_{1}, \cdots, M_{s}\right)$ an overdomain of R integral over R. Then $\left|\operatorname{Max}\left(R_{T}^{\ddagger}\right)\right|=s$.

Proof. By $\bigoplus_{j=1}^{j}\left(R+M_{j}\right) / M_{j} \hookrightarrow \bigoplus_{j=1}^{j} T / M_{j}$ and $T / J(T) \cong \bigoplus_{j=1}^{j} T / M_{j}$, we have $\bigoplus_{j=1}^{j}\left(R+M_{j}\right) / M_{j} \hookrightarrow T / J(T)$. Let f be the canonical epimorphism $f: T \rightarrow T / J(T)$. Then it is easy to show that $f^{-1}\left(\oplus_{j=1}^{\prime}\left(R+M_{j}\right) / M_{j}\right)=$ $\cap_{j=1}^{j}\left(R+M_{j}\right)$. Hence, $\cup_{j=1}^{s}\left(R+M_{j}\right) \rightarrow \bigoplus_{j=1}^{j}\left(R+M_{j}\right) / M_{j}$ is surjective. Thus $M_{j}^{\prime}=\left(\cap_{j=1}^{j}\left(R+M_{j}\right)\right) \cap M_{j}$ is a maximal ideal of $\cup_{j=1}^{*}\left(R+M_{j}\right)$. Moreover $M_{i}^{\prime} \neq M_{i}^{\prime}(j \neq i)$. Therefore $\left|\operatorname{Max}\left(\cup_{j=1}^{j}\left(R+M_{j}\right)\right)\right|=s$.

The next theorem follows directly from (3.15).
Theorem 3.16. Let (R, m) be a one-dimensional noetherian local domain. If R is prenormal, then R is a prevaluation domain.

We introduce at this point some definitions.
Definition 3.17 ([2], 4.1). Let X be a free abelian group. A ring R is said to be quasi-normal if and only if the canonical homomorphism $\operatorname{Pic}(R) \rightarrow \operatorname{Pic}(R[X])$ is an isomorphism.

Definition 3.18 ([2], 4.3). A domain R is locally unibranche (LUB) if and only if R_{m} is unibranche for all $m \in \operatorname{Max}(R)$, i.e., the canonical $\operatorname{map} \operatorname{Max}(\widetilde{R}) \rightarrow \operatorname{Max}(R)$ is bijective.

Remarks 3.19 ([2], 4.2).
(3.19.1) A normal ring is quasinormal.
(3.19.2) A quasinormal ring is seminormal.

Theorem 3.20. Let R be a one-dimensional noetherian domain such that R is a finitely generated R-module. Then the followings are equivalent.
(3.20.1) R is quasinormal.
(3.20.2) R_{m} is quasinormal for all $m \in \operatorname{Max}(R)$.
(3.20.3) R_{m} is seminormal and $L U B$ for all $m \in \operatorname{Max}(R)$.
(3.20.4) R is prenormal.
(3.20.5) R_{m} is prenormal for all $m \in \operatorname{Max}(R)$.
(3.20.6) $\quad R_{m}$ is a prevaluation domain for all $m \in \operatorname{Max}(R)$.

Example 3.21. Let Q be the field of rationals, C the field of complexes, and X, Y indeterminates.
(3.21.1) $C[X, Y] /\left(X^{2}-Y^{3}\right)$ is seminormal, but it is not prenormal.
(3.21.2) $Q[[X, Y]] /\left(X^{2}+Y^{2}\right)$ is prenormal.

Remark 3.22. From (3.20), in case R is a one-dimensional noetherian domain with finite normalization, we can give actually the quasinormalization of R as the prenormalization of R.

Lemma 3.23 ([1], 5.6). Let R be a noetherian domain with finite normalization, X a free abelian group and I an invertible ideal of $R[X]$ such that $I_{0}=I \cap R$. Let p_{1}, \cdots, p_{t} be the prime divisors of I and $q_{j}=$ $p_{j} \cap R$. Then $I=I_{0} R[X]$ if and only if each $I \cdot R_{q_{j}}[X]$ is principal.

Now we have the corollary of (3.20).

Proposition 3.24. Let R be a noetherian S_{2}-domain with finite normalization. Then R is quasinormal if and only if R_{p} is a prevaluation domain for all prime ideals p with $\mathrm{ht}(p)=1$.

§ 4. M-prenormality and quasinormality.

In this section we give some properties of the M-prenormal domains and show that any M-prenormal domain is quasinormal. Our notations and terminologies are much the same as those in [1] and we assume that X is a free abelian group. All rings are assumed to be noetherian with finite normalization.

DEFINITION 4.1. Let R be a domain, T an overdomain of R integral over R. We define $R_{T}^{b}=\cap R_{T}^{*}(m)$, the intersection ranging over all maximal ideals of R. We say that the ring R_{T}^{b} is the M-prenormalization of R in T. If $T=\widetilde{R}$, then we call R_{T}^{b} the M-prenormalization of R and denote it by R^{b}; we say that R is M-prenormal in T if $R=R_{T}^{b}$.

From the definition and (3.15) we derive:
PROPOSITION 4.2. Any M-prenormal domain is prenormal and $L U B$.

Proposition 4.3. Let (R, m) be an M-prenormal local domain which is not normal and $x \in R \backslash U(R)$. Then $\widetilde{R} \backslash U(\widetilde{R})=m$ and m is a prime divisor of $x R$.

Proof. By (4.2), R is LUB, hence $R=R^{b}=R+(\widetilde{R} \backslash U(\widetilde{R}))$, i.e., $\widetilde{R} \backslash U(\widetilde{R})=$ m. Take $u \in U(\widetilde{R}) \backslash U(R)$, Then $x R: u x=m$. This means that m is a prime divisor of $x R$.

We note next that it is possible to localize to preserve the M-prenormality.

Proposition 4.4. Let (R, m) be an M-prenormal local domain. Then R_{p} is M-prenormal for all $p \in \operatorname{Spec}(R)$.

Proof. Take $y=x / s \in \widetilde{R}_{p} \backslash R_{p}$ where $x \in \widetilde{R} \backslash R$ and $s \in R \backslash p$. By (4.3) $x^{-1} \in \widetilde{R} \backslash R$, hence $y^{-1}=s x^{-1} \in \widetilde{R}_{p}$, i.e., $y \in U\left(\widetilde{R}_{p}\right)$, i.e., $\widetilde{R}_{p} \backslash R_{p} \subseteq U\left(R_{p}\right)$. Thus there is a unique prime ideal p in R lying over p, hence $\widetilde{p} \widetilde{R}_{p}=p R_{p}$. Therefore $\left(R_{p}\right)^{b}=\widetilde{R}_{p} \cap\left(R_{p}+\widetilde{p} \widetilde{R}_{p}\right)=\widetilde{R}_{p} \cap R_{p}=R_{p}$.

Corollary 4.5. Under the circumstances R_{p} is unibranche for all $p \in \operatorname{Spec}(R)$.

The next is a basic structure theorem for seminormal rings due to Traverso.

Theorem 4.6 ([3]). Let R be reduced seminornal ring.
(4.6.1) There is a sequence of rings

$$
\widetilde{R}=B_{0} \supseteqq B_{1} \supseteq \cdots \supseteq \mathcal{B}_{n}=R
$$

where B_{i+1} is obtained from B_{i} by a finite number of glueings over prime ideals of R of height $i+1$.
(4.6.2) If $x \in R$ is not a zero-divisor, then each associated prime divisor of $x R$ has height $\leqq n$.

Then we have;
Proposition 4.7. Let R be an n-dimensional domain which is not pormal.
(4.7.1) There is an element x in R such that $x R$ has a prime divisor of height n.
(4.7.2) There is a sequence of domains

$$
\widetilde{R}=C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{n}=R
$$

where C_{t+1} is obtainsd from C_{i} by a finite number of (\#)-glueing over prime ideals of R height $i+1$.

Proof. (4.7.1): Let m be a maximal ideal of height n. Take $x \in m$. Then, by (4.3), $m R_{m}$ is a prime divisor of $x R_{m}$ of height n, hence m is a prime divisor of $x R$ of height n.
(4.7.2): Since R is seminormal, then, by (4.6.1), there is a sequence of domains

$$
\tilde{R}=B_{0} \supseteq B_{1} \supseteq \cdots \supseteq B_{k}=R .
$$

Let

$$
B_{i}=R_{B_{i-1}}^{+}\left(p_{i 1}\right) \cap \cdots \cap R_{B_{i-1}}^{+}\left(p_{i t_{i}}\right)
$$

where ht $\left(p_{i j}\right)=i$. Here we define

$$
C_{0}=B_{0}, \quad C_{i}=R_{\sigma_{i-1}}^{*}\left(p_{i 1}\right) \cap \cdots \cap R_{\sigma_{i-1}}^{*}\left(p_{i t_{i}}\right) .
$$

By (4.5), $R_{C_{i-1}}^{t}\left(p_{i j}\right)=R_{C_{i-1}}^{+}\left(p_{i j}\right)$. From $C_{0}=B_{0}, B_{i}=C_{i}$ for all i. Thus $C_{k}=R$ for some k. If $k<n$, by (4.6.2) and (4.3), a contradiction, hence $k=n$.

DEFINITION 4.8 ([1], 5.3; [3], 3.1). If S be a multiplicative closed set,
we shall write $\operatorname{inv}(R, S)$ for the subgroup of the group of invertible fractionary R-ideals spanned by the integral invertible R-ideals that meet S.

Proposition 4.9 ([1], 5.5; [3], 3.4). Let R be a domain and S a multiplicative closed set in R. Assume that if $s \in S$ and p is a prime divisor of $s R$, then Pic $\left(R_{p}[X]\right)=0$. Then $\operatorname{inv}(R, S) \rightarrow \operatorname{inv}(R[X], S)$ is an isomorphism.

Proposition 4.10. Under the assumptions as in (4.9), assuming that $S^{-1} R$ is semilocal, there is an exact sequence

$$
0 \longrightarrow \operatorname{Pic}(R) \longrightarrow \operatorname{Pic}(R[X]) \longrightarrow \operatorname{Pic}\left(S^{-1} R[X)\right] .
$$

(4.9) and (4.10) are proved in the same way as [1], 5.5, 5.7 or [3], 3.3, 3.4.

Remark 4.11. We don't know whether the domain assumption in (4.9) and (4.10) can be deleted.

The next lemma is needful to prove (4.13).
Lemma 4.12 ([3], 3.5). Let T be a finite overring of a ring R and I the conductor of R in T. Let f be the inclusion of R in T and \bar{f} the inclusion of $\bar{R}=R / I$ in $\bar{T}=T / I$. Then $\operatorname{Pic}(\Phi f) \rightarrow \operatorname{Pic}(\Phi \bar{f})$ is an isomorphism.

We can now state the following theorem.
Theorem 4.13. Any M-prenormal domain is quasinormal.
Proof. By (4.7.2) we have a sequence of domains

$$
\widetilde{R}=C_{0} \supseteqq C_{1} \supseteq \cdots \supseteq C_{n}=R
$$

where C_{i} is obtained from C_{i-1} by a finite sequence of (\#)-glueings over prime ideals of R of height i and $n=\operatorname{krull}-\operatorname{dim}(R)$.

For $n=0$ the assertion is vacuous, so we assume $n>0$ and use induction on n. By induction we may assume that $\widetilde{R}=C_{n-1}, R=C_{n}$. Let $I=C_{n-1}: C_{n}$ and p_{1}, \cdots, p_{t} the prime divisors of I in R. Then, for all j, $\mathrm{ht}\left(p_{j}\right)=n$. Let $S=R \backslash\left(p_{1} \cup \cdots \cup p_{t}\right)$. Pick $s \in S$. Let p be a prime divisor of $s R$. As $p \not \equiv I, R_{p}=\left(C_{n-1}\right)_{p} . \quad$ By induction $\operatorname{Pic}\left(R_{p}[X]\right)=\operatorname{Pic}\left(\left(C_{n-1}\right)_{p}[X]\right)=0$. Therefore, by (4.10), we have an exact sequence

$$
0 \longrightarrow \operatorname{Pic}(R) \longrightarrow \operatorname{Pic}(R[X]) \longrightarrow \operatorname{Pic}\left(S^{-1} R[X]\right) .
$$

We are to prove Pic $\left(S^{-1} R[X]\right)=0$. Let $\bar{R}=S^{-1} R, \bar{T}=S^{-1}\left(C_{n-1}\right), R^{\prime}=S^{-1} R / S^{-1} I$ and $T^{\prime \prime}=S^{-1}\left(C_{n-1}\right) / S^{-1} I . f, f^{\prime}, f_{*}$ and f_{*}^{\prime} denote the inclusion $\bar{R} \rightarrow \bar{T}, R^{\prime} \rightarrow T^{\prime}$,
$\bar{R}[X] \rightarrow \bar{T}[X]$ and $R^{\prime}[X] \rightarrow T^{\prime}[X]$ respectively. Since R^{\prime} and T^{\prime} are direct sum of fields, $\operatorname{Pic}\left(R^{\prime}[X]\right)=\operatorname{Pic}\left(T^{\prime}[X]\right)=0$. By induction, $0=\operatorname{Pic}(\bar{T})=$ $\operatorname{Pic}(\bar{T}[X])$. Here we note that, for a commutative square of rings,

there is the map of exact sequences induced by (4.13.1)

Therefore we have

$$
\begin{gather*}
U(\bar{R}) \longrightarrow U(\bar{T}) \longrightarrow \operatorname{Pic}(\Phi f) \longrightarrow 0 \longrightarrow 0 \tag{4.13.3}\\
U\left(R^{\prime}\right) \longrightarrow U\left(T^{\prime}\right) \longrightarrow \operatorname{Pic}\left(\Phi f^{\prime}\right) \longrightarrow 0 \longrightarrow 0 \tag{4.13.4}
\end{gather*}
$$

(4.13.5) $\quad U(\bar{R}[X]) \longrightarrow U(\bar{T}[X]) \longrightarrow \operatorname{Pic}\left(\Phi f_{*}\right) \longrightarrow \operatorname{Pic}(\bar{R}[X]) \longrightarrow 0$
(4.13.6) $\quad U\left(R^{\prime}[X]\right) \longrightarrow U\left(T^{\prime}[X]\right) \longrightarrow \operatorname{Pic}\left(\Phi f_{*}^{\prime}\right) \longrightarrow 0 \longrightarrow 0$
and, by [1], 5.12, we have

$$
\begin{align*}
& U(\bar{R}[X])=U(\bar{R})+X \bigotimes_{Z}^{\bigotimes} H_{0}(\bar{R}) \tag{4.13.7}\\
& U(\bar{T}[X])=U(\bar{T})+X \bigotimes_{Z} H_{0}(\bar{T})
\end{align*}
$$

$$
\begin{gather*}
H_{0}(\bar{R})=H_{0}(\bar{T}) \tag{4.13.8}\\
U\left(R^{\prime}[X]\right)=U\left(R^{\prime}\right)+X \bigotimes_{Z} H_{0}\left(R^{\prime}\right) \tag{4.13.9}\\
U\left(T^{\prime}[X]\right)=U\left(T^{\prime}\right)+X \bigotimes_{Z} H_{0}\left(T^{\prime}\right) ;
\end{gather*}
$$

moreover, by the M-prenormality ((4.5) and (4.7.2)),

$$
\begin{equation*}
H_{0}\left(R^{\prime}\right)=H_{0}\left(T^{\prime}\right) \tag{4.13.10}
\end{equation*}
$$

Then, by (4.13.4) and (4.13.6), $\operatorname{Pic}\left(\Phi f^{\prime}\right) \rightarrow \operatorname{Pic}\left(\Phi f_{*}^{\prime}\right)$ is an isomorphism. On the other hand, by (4.12), $\operatorname{Pic}(\Phi f) \rightarrow \operatorname{Pic}\left(\Phi f^{\prime}\right)$ and $\operatorname{Pic}\left(\Phi f_{*}\right) \rightarrow \operatorname{Pic}\left(\Phi f_{*}^{\prime}\right)$ are isomorphism, hence Pic $(\Phi f) \rightarrow \operatorname{Pic}\left(\Phi f_{*}\right)$ is an isomorphism. Applying the five lemma to (4.13.3) and (4.13.5), we have $\operatorname{Pic}(\bar{R}[X])=0$, i.e., $\operatorname{Pic}\left(S^{-1} R[X]\right)=0$. This completes the proof.

References

[1] H. Bass and P. Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math., 86 (1967) 16-73.
[2] S. Grico, Seminormality and quasinormadity of group rings, J. Pune Appl. Algebra, 18 (1980) 129-142.
[3] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa, 24 (1970) 585-595.
[4] R. G. Swan, On Seminormality, J. Algebra, 67 (1980) 210-229.

Present Address:
Sanno Junior Collge
Department of Management Information 6-39-15, TODOROKI
Setagaya-ku, Tokyo 158

