Токуо Ј. Матн. Vol. 7, No. 2, 1984

An Environment of Quasi-Valuation Domains

Michinori YAMASHITA

Sophia University (Communicated by Y. Kawada)

Introduction

Any domain W has an ordered group G(W). This group, the set of non-zero principal fractional ideals of W with $xW \leq yW$ if and only if xWcontains yW, is called the group of divisibility of W. Let $K^{\times} = K \setminus \{0\}$ be the multiplicative group of quotient field of W and U(W) the group of units of W, then G(W) is order isomorphic to $K^{\times}/U(W)$, where $xU(W) \leq$ yU(W) if and only if $y/x \in W$. It is wellknown that G(W) is linearly ordered if and only if W is a valuation domain.

In section 1, to define a good preordered group (2.1), we study an additive abelian group admitting two co-linear preorder relations compatible with the group operation.

In section 2, using the basic results of section 1, we discuss some facts related to a domain W under the assumption that G(W) is a good preordered group. Then W is dominated by a valuation domain V. We call this domain W a quasi-valuation domain; in particular, in case V is integral over W we call W a prevaluation domain. Furthermore, there are many similarities between quasi-valuation domains and valuation domains. In fact $V \setminus U(V) = W \setminus U(W)$. Then it is only natural that a quasivaluation domain has some normalities. A quasi-valuation domain W is really seminormal, i.e., $Pic(W) \rightarrow Pic(W[X])$ is an isomorphism, where Pic(W) is the Picard group of W and X is an indeterminate. Therefore, for a domain R, it stands to reason that we should think about $\cap W_{\lambda}$, the intersection ranging over all quasivaluation domains containing R. This domain $R^{\ddagger} = \cap W_{\lambda}$ is seminormal; R^{\ddagger} is not always the seminormalization R^+ of R, however.

In section 3, we show that R^* is the largest subdomain R' of \tilde{R} containing R such that, for all $p' \in \text{Spec}(R')$, the canonical homomorphism $k(p' \cap R) \rightarrow k(p')$ is an isomorphism, where \tilde{R} is the derived normal ring

Received March 15, 1982 Revised April 3, 1984

of R and k(p') is the residue field of $R'_{p'}$, and give some properties of prenormal domains. By the way, a domain R is quasinormal if and only if $\operatorname{Pic}(R) \to \operatorname{Pic}(R[X, X^{-1}])$ is an isomorphism. To the writer's knowledge, the quasinormalization hadn't been given even in one-dimensional case. Our prenormalization provides the quasinormalization in the case.

In section 4, we define an M-prenormalization of a domain and show that an M-prenormal domain is quasinormal under the noetherian assumption. This is proved in the same way as the proof of ([3], 3.6).

All rings considered in this paper will be commutative with unit.

§1. Preordered groups.

In this section we turn to an information of additive abelian groups (for short, groups) admitting a preorder relation and an order relation compatible with the group operation and we give some definitions. H denotes a group.

If \leq is a relation defined on H, we say that \leq is a preorder on Hand that H is preordered under \leq if \leq is reflexive and transitive. If a preorder \leq is asymmetric, we say that \leq is an order on H and that H is ordered under \leq . If, for any $x, y \in H$, $x \leq y$ or $y \leq x$, then \leq is a linear preorder on H, and H is said to be linearly preordered under \leq .

DEFINITION 1.1. If \leq_1 and \leq_2 are preorders on H, then we say that \leq_1 and \leq_2 are co-linear on H to each other, and that \leq_1 is co-linear with respect to $H=(H, \leq_2)$ if $x \leq_1 y$ or $y \leq_2 x$ for all $x, y \in H$.

DEFINITION 1.2. If \leq is a preorder on *H* compatible with the group operation on *H*, i.e., for all $x, y, z \in H$, $x \leq y$ implies that $x+z \leq y+z$, we say that *H* is a preordered group.

DEFINITION 1.3. Let $H=(H, \leq)$ be a preordered group and $x \in H$. We say that x is prepositive if $x \in P = \{h \in H; 0 \leq h\}$, and x is prenegative if $x \in (-P)$; x is strictly prepositive if $x \in P^+ = P \setminus Z$ where $Z=P \cap (-P)$, and x is strictly prenegative if $x \in (-P^+)$.

Hereafter the set of prepositive element of a preordered group $H=(H, \leq)$, the set of strictly prepositive elements of H and the set of prepositive and prenegative elements of H are denoted by P, P^+ and Z respectively.

PROPOSITION 1.4. Let $H=(H, \leq)$ be a preordered group. Then, the following statements hold.

(1.4.1) P is a subsemigroup.

(1.4.2) $P \ni y - x$ if and only if $x \leq y$.

(1.4.3) Z is a subgroup of H.

(1.4.4) H/Z is an ordered group under the preordering on H/Z induced by \leq .

DEFINITION 1.5. Let \leq_1 and \leq_2 be preorders on H. Then we say that the preorder \leq_2 is finer than the preorder \leq_1 if the following two conditions are satisfied:

(1.5.1) $x \leq y$ implies that $x \leq y$ for all $x, y \in H$.

(1.5.2) If $x \in P_1^+$, then $x \in P_2^+$ where $P_j^+ = \{h \in H; 0 \leq ih, h \leq i0\}$.

PROPOSITION 1.6. Let \leq_1 and \leq_2 be preorders on H. If \leq_1 and \leq_2 are co-linear and \leq_2 is finer than \leq_1 , then H is linearly preodered under \leq_2 .

PROOF. Take any $h, h' \in H$. Since \leq_1 and \leq_2 are co-linear, either $h \leq_1 h'$ or $h' \leq_2 h$ must hold. If $h' \leq_2 h$ then $h \leq_1 h'$. Thus, by (1.5.1), $h \leq_2 h'$.

COROLLARY 1.7. Under the assumptions as in (1.6), $H=P_2\cup(-P_2)$.

PROPOSITION 1.8. Suppose, in addition to the circumstances that \leq_1 is an order. If $h \in P_2^+$ then $0 <_1 h$.

PROOF. If $h \in P_2^+$ then $h \notin (-P_2)$, i.e., $h \not\leq _2 0$. Then $0 \leq _1 h$, since \leq_1 and \leq_2 are co-linear. Since $h \in P_2^+$, $h \neq 0$. Then, since \leq_1 is an order, $0 <_1 h$.

PROPOSITION 1.9. Let P_3 be a subsemigroup of H between P_1 and P_2 . Then,

(1.9.1) The relation $\leq_{\mathfrak{s}}$ on H defined by " $x \leq_{\mathfrak{s}} y$ if and only if $y - x \in P_{\mathfrak{s}}$ " is a preorder on H.

(1.9.2) There are the order \leq'_{3} and the preorder \leq'_{2} induced by P_{3} on $H' = H/Z_{3}$ where $Z_{3} = P_{3} \cap (-P_{3})$.

(1.9.3) \leq_2' is finer than \leq_3' .

(1.9.4) \leq_2' and \leq_3' are co-linear on H.

PROOF. (1.9.1) and (1.9.2) are clear by (1.4). By (1.8), we have $P_3^+ = P_2^+$, thus \leq_2' is finer than \leq_3' . (1.9.4): Since \leq_3 is finer than \leq_1 and \leq_1 and \leq_2 are co-linear, \leq_2 and \leq_3 are co-linear, hence \leq_2' and \leq_3' are co-linear on H.

PROPOSITION 1.10. Under the assumptions as in (1.9), there is a one to one correspondence between all P_j 's and all Z_j 's.

PROOF. Since $P_j = P_j^+ \cup Z_j$ and $P_j^+ = P_i^+$ for all *i*, *j*, the statement above holds.

§2. Quasi-valuations and prevaluations.

In this section $H=(H, \leq_1, \leq)$ always denotes a good preordered group defined as follows:

DEFINITION 2.1. Let $H=(H, \leq)$ be a preordered group. If H is an ordered group under the order \leq_1 compatible with the same group operation, \leq and \leq_1 are co-linear and \leq is finer than \leq_1 , then we say that H is a good preordered group and we write $H=(H, \leq_1, \leq_1)$.

EXAMPLE 2.2. Let G be an additive abelian group and $F=(F, \leq)$ be a linearly ordered additive abelian group. We put $H=G\times F$. Let \leq_1 be an order on H defined by " $(g, f) \leq_1 (g', f')$ if and only if (g=g' and f=f') or (f < f')" and \leq_2 be a preorder on H defined by " $(g, f) \leq_2 (g', f')$ if and only if $f \leq f''$ ". Then $H=(H, \leq_1, \leq_2)$ is a good preordered group.

DEFINITION 2.3. Let K be a field. A mapping w of $K^{\times} = K \setminus \{0\}$ into a suitable good preordered group $H = (H, \leq , \leq_1)$ is called a quasi-valuation on K if the following conditions are satisfied for all $x, y \in K^{\times}$;

 $(2.3.1) \quad w(xy) = w(x) + w(y).$

(2.3.2) (1) If $w(x) - w(y) \in P^+$, $w(y) \leq w(x+y)$.

(2) If $w(x) - w(y) \in (-P^+)$, $w(x) \leq w(x+y)$.

(3) If $w(x) - w(y) \in Z \setminus \{0\}$, then for some $z \in H$ such that $w(x) - z \in Z$, $z \leq w(x+y)$.

(4) If w(x)-w(y)=0, $w(x)\leq_1 w(x+y)$. (2.3.3) w(-1)=0.

PROPOSITION 2.4. Under the circumstances, the followings hold. (2.4.1) $w(x^{-1}) = -w(x)$, w(1) = 0 and w(x) = w(-x). (2.4.2) If $w(y) - w(x) \in P^+$, then w(x+y) = w(x).

PROOF. We are to prove (2.4.2). By (1.8), we note that $h \in P^+$ if and only if 0 < h.

(1) If $w(x+y) - w(-y) \in P^+$, then $w(x) <_1 w(y) = w(-y) \le_1 w(-y + (x+y)) = w(x)$, a contradiction.

(2) If $w(x+y) - w(-y) \in (-P^+)$, then $w(x) \leq w(x+y) \leq w(-y+(x+y)) = w(x)$ so that w(x) = w(x+y).

(3) If $w(x+y)-w(-y) \in Z \setminus \{0\}$, for some $z \in H$ such that $w(-y)-z = z' \in Z$, then $z+z'=w(y)>_1w(x)=w(-y+(x+y))\ge_1 z$. Thus $z+z'>_1 z$. Hence $z'>_1 0$, i.e., $z' \in P^+$, a contradiction.

(4) If w(x+y) - w(-y) = 0, $w(x) \leq w(x+y) \leq w(-y+(x+y)) = w(x)$, so that w(x+y) = w(x).

PROPOSITION 2.5. Under the circumstances, we set $V = \{x \in K^{\times}; 0 \leq w(x)\} \cup \{0\}$ and $W = \{x \in K^{\times}; 0 \leq w(x)\} \cup \{0\}$. Then V is a valuation domain of K and W is a local domain dominated by V with the quotient field K. Moreover the maximal ideal of V is equal to the maximal ideal of W.

PROOF. We note that $\tilde{H}=H/Z$ is a linearly ordered group. Considering \tilde{w} ; $K^{\times} \rightarrow H$,

 $V = \{x \in K^{\times}; 0 \leq \widetilde{w}(x)\} \cup \{0\}$ where $\leq i$ is the order on \widetilde{H} induced by P. Then the conditions of (2.3) induce the condition of a valuation of K. Hence V is a valuation domain of K.

Condition (2.3.1) implies that W is closed under multiplication. Take $x, y \in W$, so that $0 \leq w(x)$ and $0 \leq w(y)$.

(1) If $w(x) - w(-y) \in P^+$, then $0 \leq w(y) \leq w(x-y)$.

(2) If $w(x) - w(-y) \in (-P^+)$, then $0 \leq w(y) \leq w(x-y)$.

(3) If $w(x)-w(-y) \in Z$, then we may assume that w(x)=w(y)=0and that $0<_1w(x)$, $0<_1w(y)$.

(a) If w(x) = w(y) = 0, $0 = w(x) \leq w(x-y)$.

(b) If $0 <_1 w(x)$, $0 <_1 w(y)$ and $w(x) - w(-y) \in Z \setminus \{0\}$, then $z \leq_1 w(x-y)$ for some $z \in H$ such that $w(x) - z \in Z$. Then z = w(x) + z' where $z' \in Z$. Hence $z \in P^+$. By (1.8), we have $0 <_1 z \leq_1 w(x-y)$.

(c) If $0 <_1 w(x)$, $0 <_1 w(y)$ and w(x) - w(-y) = 0, then $0 <_1 w(x) \le_1 w(x-y)$. Thus in all cases $0 \le_1 w(x-y)$. We have proved that W is a domain with identity. Moreover the maximal ideal of $V = \{x \in K^{\times}; 0 < \tilde{w}(x)\} \cup \{0\} = \{x \in K^{\times}; w(x) \in P^+\} \cup \{0\} = \{x \in K^{\times}; 0 <_1 w(x)\} \cup \{0\} \subset W$. This shows that W is a local domain (W, n) dominated by V = (V, m) with the quotient field K and that m = n.

DEFINITION 2.6. Under the circumstances, we say that (V, n) is the valuation domain of \tilde{w} and that (W, n) is the quasi-valuation domain of w dominated by V. Two quasi-valuations w, w' of a field K are equivalent to each other if the quasi-valuation domain of w coincides with the quasi-valuation domain of w'. We call $w(K^{\times})$ the quasi-value group of w.

Then we see the following result immediately.

THEOREM 2.7. Let (V, m) be a valuation domain of a quotient field K and W a subdomain of V such that $W \leq V$ and Q(W) = K. Then the following statements are equivalent.

(2.7.1) W is a quasi-valuation domain of K.

(2.7.2) For any $x, y \in W$, it holds that either $x \in yW$ or $y \in xV$.

(2.7.3) The maximal ideal m of V is set-theoretically equal to the maximal ideal of W.

(2.7.4) For any prime ideal p of W, the maximal ideal of V_p is set-theoretically equal to p.

(2.7.5) If $x \in K$, then either $x \in W$ or $x^{-1} \in V$.

(2.7.6) There exists a subfield k of V/m such that $W = \{x \in V; x \mod m \in k\}$.

PROOF. $(2.7.1) \rightarrow (2.7.5)$: If $x \notin V$, then $x^{-1} \in m$. By (2.4), we have $x^{-1} \in m \subseteq W$.

 $(2.7.5) \rightarrow (2.7.1)$: We set $H = \{xW; x \in K \setminus \{0\}\}$. We define $xW \leq_1 yW$ if and only if $y/x \in W$ for xW, $yW \in H$, then the relation \leq_1 is an order on H. Moreover we define $xW \leq yW$ if and only if $y/x \in V$ for xW, $yW \in H$, then the relation \leq is a preorder on H. Hence we have that \leq is finer than \leq_1 and that \leq and \leq_1 are co-linear to each other. We write the group operation on H as addition: xW + yW = xyW. Since, for all $z \in K \setminus \{0\}$, $xW \subseteq yW$ implies $xzW \subseteq yzW$, the order \leq_1 and \leq are compatible with the group operation on H. Then the mapping w such that w(x) = xW ($x \in K \setminus \{0\}$) is a homomorphism from K^{\times} onto H. Hence the mapping w satisfies the conditions of (2.3). Then w is a quasi-valuation of K. Hence $W = \{x \in K; 0 \leq_1 w(x)\} \cup \{0\}$, i.e., W is a quasi-valuation domain of K.

 $(2.7.1) \rightarrow (2.7.3)$: This is the statement of (2.5).

 $(2.7.3) \rightarrow (2.7.1)$: We have only to show that $(2.7.3) \rightarrow (2.7.5)$. Take $x \in K$. If $x \notin V$, then $x^{-1} \in m \subset W$.

 $(2.7.2) \leftrightarrow (2.7.5)$: This is nothing but a restatement.

 $(2.73) \rightarrow (2.7.4)$: We may assume that $(2.7.3) \leftrightarrow (2.7.5)$. Let m' be the maximal ideal of a valuation domain V_p . Take $x = t/s \in m' \subseteq V_p$, $(s \in W \setminus p, t \in V)$. If $t \notin sW$, then $s \in tV$, i.e., $s/t \in V \subseteq V_p$, hence s/t is a unit in V_p , a contradiction. Thus $t \in sW$, i.e., $x \in W \subseteq W_p$ and x is not a unit in $W_p \subseteq V_p$. Hence $x \in pW_p$, i.e., $x \in p = pW_p \cap W$.

Of course (2.7.4) implies (2.7.3).

 $(2.7.3) \leftrightarrow (2.7.6)$: This is nothing but a restatement.

PROPOSITION 2.8. Let W be a quasi-valuation domain of K, W' any

domain between W and K and $p \in \text{Spec}(W)$. Then the following statement hold.

(2.8.1) W' is a quasi-valuation domain of K.

(2.8.2) If x is an element of W which is not in p, then p is contained in xW.

(2.8.3) p is set-theoretically equal to pW_p .

(2.8.4) W/p is a quasi-valuation domain.

(2.8.5) If L is a subfield of K, $L \cap W$ is a quasi-valuation domain of L.

PROOF. (2.8.1): Let V' be a valuation domain between W' and K and V a valuation domain which dominates W. Take $x \notin W'$.

(1) If $V' \subseteq V$, then $W \subseteq W' \subseteq V' \subseteq V$. Hence V' = V. Thus $x^{-1} \in V = V'$. (2) If $V \subseteq V'$, then $x^{-1} \in V \subseteq V'$.

(3) If V and V' are incomparable, then, by the theorem of independence of valuation, $R = V' \cap V$ is a semi-local domain which is not local. On the other hand, as $W \subseteq R \subset V$, R must be local, which is nonsense.

(2.8.2): Let y be an arbitrary element of p. Suppose y is not in xW. By (2.7.2), x is in $yV \subseteq pV = pV_p = pW_p = p$, a contradiction.

(2.8.3): By (2.7.4), $p \subseteq p W_p \subseteq p V_p = p$.

(2.8.4): Let V be a valuation domain which dominates W. Then V/p is a valuation domain which dominates W/p. The statement is therefore immediate from (2.7).

(2.7.5): Let V be a valuation domain which dominates W. Then $V \cap L$ is a valuation domain which dominates $W \cap L$. If y is an element of L which is not in $W \cap L$, then $x^{-1} \in V \cap L$.

(W, n, k) denotes a local ring (W, n) with the residue field k.

COROLLARY 2.9. Let (W, n, k) and (W', n', k') be quasi-valuation domains dominated by the valuation domain V. Then, k=k' if and only if W=W'.

PROOF. It is easy and we omit it.

PROPOSITION 2.10. Let (W, n) be a quasi-valuation domain of a field K dominated by the valuation domain (V, n) of K and W^* a quasivaluation domain of the residue field V/n dominated by the valuation domain V^* of V/n. Then the set $W' = \{x \in V; \text{mod } n \in W^*\}$ is a quasivaluation domain of K dominated by the composite of V with V^* , i.e., $V' = \{x \in V; x \text{ mod } n \in V^*\}.$

PROOF. Take $x \in K$, $x \notin W'$. If $x \notin V$, then $x^{-1} \in n \subset V$, $x^{-1} \mod n \in V^*$

and $x^{-1} \in V'$. Assume that $x \in V$. Since W^* is a quasi-valuation domain, $x^{-1} \mod n \in V^*$, which shows that $x^{-1} \in V'$. Thus W' is a quasi-valuation domain dominated by V'.

REMARK 2.11. The domain $W'' = \{x \in W; x \mod n \in W^*\}$ is not always a quasi-valuation domain dominated by V'. Let Q be the field of rationals, C the field of complexes, X, Y indeterminates and K=C((x)) the quotient field of C[[X]]. We set W=Q+YK[[Y]], $W^*=Q+XC[[X]]$ and $V^*=$ C[[X]]. We put $f=2^{1/2}X$. Then, $f \notin W''$ and $f^{-1} \notin V'$, which show that W'' is not a quasi-valuation domain dominated by V'.

PROPOSITION 2.12. Let R be a subdomain of a field K and let p a prime ideal of R. Then there exists a quasi-valuation domain W of K such that W has a prime ideal n with k(p)=k(n).

PROOF. It is well-known that there exists a valuation domain V of K such that V has a prime ideal n lying over p. We set $W = \{x \in V; x \mod n \in k(p) = k(n)\}$. Then W is a quasi-valuation domain dominated by V such that W has a prime ideal n lying over p with k(p) = k(n).

To introduce the concept of a prevaluation domain, we define a w-subgroup of (H, \leq , \leq_1) .

DEFINITION 2.13. Let w be a quasi-valuation of K with the quasivalue group $(H, \leq \leq_1)$, Z' a subgroup of Z and w' a mapping of K^{\times} to H' (=H/Z) induced by Z' and w. If w' satisfies the conditions of (2.3), i.e., w' is a quasi-valuation with the quasi-value group H', then we say that Z' is a w-subgroup of H.

PROPOSITION 2.14. Let w be a quasi-valuation with the quasi-value group (H, \leq , \leq_1) . If Z_2 and Z_3 are w-subgroups of H, then $Z_2 \cap Z_3$ and $Z_2 + Z_3$ are w-subgroups of H.

PROOF. $Z_4 = Z_2 \cap Z_3$ is a *w*-subgroup: Let $\leq_j (j=2, 3, 4)$ be a preorder on *H* induced by Z_j . We note that $\leq_j (j=2, 3, 4)$ is finer than \leq_1 and that $P^+ = P_1 = P_2 = P_3 = P_4$.

(1) If $w(x) - w(y) \in P^+$, $w(y) \le w(x+y)$, hence $w(y) \le w(x+y)$.

(2) If $w(x) - w(y) \in (-P^+)$, $w(x) \leq w(x+y)$, hence $w(x) \leq w(x+y)$.

(3) If $w(x) - w(y) \in Z \setminus Z_4$, for some $z \in Z$ such that $w(x) - z \in Z$, $z \leq w(x+y)$ by (2.3.2), hence $z \leq w(x+y)$.

(4) If $w(x) - w(y) \in Z_4 = Z_2 \cap Z_3$, i.e., $w(x) - w(y) \in Z_j$ (j=2, 3), then $w(x) \leq_j w(x+y)$ (j=2, 3), i.e., $w(x+y) - w(x) \in P_2 \cap P_3 = (P_2^+ \cup Z_2) \cap (P_3^+ \cup Z_3) = (P_1^+ \cup Z_2) \cap (P_1^+ \cup Z_3) = P_1^+ \cup (Z_2 \cap Z_3) = P_4^+ \cup Z_4 = P_4$, hence $w(x) \leq_4 w(x+y)$.

QUASI-VALUATION DOMAINS

Thus the mapping w_4 induced by Z_4 and w is a quasi-valuation with the quasi-value group H/Z_4 , i.e., $Z_2 \cap Z_3$ is a w-subgroup of H.

 $Z_5 = Z_2 + Z_3$ is a *w*-subgroup: Let \leq_5 be a preorder on *H* induced by Z_5 . We note that $P^+ = P_5^+$ and that \leq_5 is finer than \leq_1 .

(1) If $w(x) - w(y) \in P^+$, $w(y) \leq w(x+y)$, hence $w(x) \leq w(x+y)$.

(2) If $w(x) - w(y) \in (-P^+)$, $w(x) \leq w(x+y)$, hence $w(x) \leq w(x+y)$.

(3) If $w(x) - w(y) \in Z \setminus Z_5$, for some $z \in Z$ such that $w(x) - z \in Z$, $z \leq w(x+y)$, hence $z \leq w(x+y)$.

(4) Let w_j (j=1, 2, 3, 4) be a quasi-valuation with the quasi-value group H/Z_j induced by Z_j . We illustrate groups in the figure, where f and f' are cannonical homomorphism:

We note that Z_5/Z_3 is isomorphic to Z_2/Z_4 . Since Z_3 is a *w*-subgroup of *H*, if $w(x) - w(y) \in Z_2 + Z_3$, then $w_s(x) - w_s(y) \in Z_2 + Z_s/Z_3$. Hence $w_4(x) - w_4(y) \in Z_2/Z_4$. Since w_4 is a quasi-valuation with the quasi-value group H/Z_4 , $w_4(x+y) - w_4(x) \in P_2/Z_4 \hookrightarrow H/Z_4$. Then, by the isomorphism *f* of Z_2/Z_4 to Z_5/Z_3 , $w_3(x+y) - w_8(x) \in P_5/Z_5$. It follows that $w(x+y) - w(x) \in P_5$.

Thus a mapping $w_{\mathfrak{s}}$ induced by $Z_{\mathfrak{s}}$ and w is a quasi-valuation with the quasi-value group $H/Z_{\mathfrak{s}}$, i.e., $Z_{\mathfrak{s}}$ is a w-subgroup of H.

The next proposition is an immediate corollary.

PROPOSITION 2.15. Under the circumstances, there is a one-to-one order-preserving correspondence between all the w-subgroups of H and all the quasi-valuation domains dominated by V containing W.

PROOF. Let Z' be a w-subgroup of H, w' a quasi-valuation of K with the quasi-value group H/Z' and \leq' an order on H/Z induced by Z'. We set $W' = \{x \in K^{\times}; 0 \leq 'w(x)\} \cup \{0\}$. Then W' is a quasi-valuation domain dominated by V. Conversely, let W' is a quasi-valuation domain dominated by V and U(W') a unit group of W. We set $Z' = \{w(x); x \in U(W')\}$. Then Z' is a w-subgroup of H.

DEFINITION 2.16. We say that a chain of distinct w-subgroups $Z' = Z_0 \supset Z_1 \supset \cdots \supset Z_n$ is of length *n*. We say that Z' has w-rank *n* if there exists a chain of length *n* descending from Z' but no longer chain. We say that Z' has w-rank ∞ if there exist arbitrarily long chains descending from Z'. Our notation for w-rank is w-rk (Z').

PROPOSITION 2.17. Under the circumstances, let Z' be a w-subgroup of H of finite w-rank and (W', n', k') a quasi-valuation domain corresponding to Z'. Then W' is integral over (W, n, k).

PROOF. Let \tilde{k} be the residue field of the valuation domain of w. By (2.9) and (2.15), there is a one-to-one order-preserving correspondence between all the *w*-subgroups of H and all the intermediate fields between k and \tilde{k} . Moreover we note that k' is algebraic over k if and only if W' is integral over W. Since w-rk (Z') is finite, the number of intermediate fields between k and k' is finite, hence k' is algebraic over k, i.e., W' is integral over W.

A finiteness of w-rank of a w-subgroup motivates the next definition.

DEFINITION 2.18. Let w be a quasi-valuation of K with the quasivalue group H. We say that w is a prevaluation of K if, for all $x \in K^{\times}$ such that $w(x) \in Z$, the w-subgroup Z_x of H generated by w(x) is of finite w-rank. Then, we say that a quasi-valuation domain W (corresponding to w) is a prevaluation domain and that $w(K^{\times})$ is called the prevalue group of w. Two prevaluation w, w' of K are equivalent to each other if the prevaluation domain of w coincides with the prevaluation domain of w'.

Then we see the following results. \tilde{W} denotes the derived normal ring of a domain W.

THEOREM 2.19. Let W be a domain with a quotient field K. Then the following statement are equivalent.

(2.19.1) W is a prevaluation domain K.

(2.19.2) For any $x, y \in W$, it holds that either $x \in yW$ or $y \in x\widetilde{W}$.

(2.19.3) If $x \in K$, then either $x \in W$ or $x^{-1} \in W$.

(2.19.4) W is a quasi-valuation domain (W, n, k) of K dominated by the valuation domain (V, n, \tilde{k}) and \tilde{k} is algebraic over k.

(2.19.5) W is a quasi-valuation domain of K dominated by the valuation domain V and V is integral over W.

(2.19.6) \tilde{W} is a valuation domain and the maximal ideal of \tilde{W} is set-theoretically equal to the maximal ideal of W.

(2.19.7) W is a valuation domain and, for any prime ideal p of

w, a maximal ideal of W_p is set-theoretically equal to p.

PROOF. First, by (2.17), we note that the valuation domain V dominating W is integral over W.

 $(2.19.1) \leftrightarrow (2.19.4) \leftrightarrow (2.19.5)$: Trivial.

 $(2.19.2) \leftrightarrow (2.19.3)$: This is nothing but a restatement.

 $(2.19.5) \rightarrow (2.19.3)$: Take any $x \in K$, $x \notin W$. Since W is a quasi-valuation domain of K and V is a integral over W, $x^{-1} \in V \subseteq \widetilde{W}$.

 $(2.19.3) \rightarrow (2.19.5)$: It is easy to see that \tilde{W} is a valuation domain of K. Then W is a quasi-valuation domain of K dominated by \tilde{W} and \tilde{W} is integral over W.

 $(2.19.3) \rightarrow (2.19.7)$: Let p be a prime ideal of W. Since $\widetilde{W}_p = (\widetilde{W}_p, \widetilde{m})$ is a valuation domain, W_p is a local domain (W_p, m) hence $m \subseteq \widetilde{m}$. Take an element of \widetilde{m} , say x. Then $x^{-1} \notin \widetilde{W}_p$, hence, by $(2.19.3) \leftrightarrow (2.19.5)$ and $(2.8.1), x \in m = p W_p = p$ (cf. (2.8.3)), i.e., $p = \widetilde{m}$.

 $(2.19.7) \rightarrow (2.19.6)$: Trivial.

 $(2.19.6) \rightarrow (2.19.3)$: Take $x \in K$. If $x^{-1} \notin W$, then $x \in \tilde{n} = n \subset W$.

PROPOSITION 2.20. Let W be a prevaluation domain of K and p any prime ideal of W. Then, the following statements hold.

(2.20.1) If W' is any domain between W and K, then W' is a prevaluation domain.

(2.20.2) If $x \in W$ and $x \notin p$, then $p \subset xW$.

(2.20.3) p is set-theoretically equal to pW_{p} .

(2.20.4) W/p is prevaluation domain.

PROOF. (2.20.1): If $x \notin W'$, then $x \notin W$, hence $x^{-1} \in \widetilde{W} \subseteq \widetilde{W}'$.

(2.20.2): Take any $y \in p$. If $x \notin yW$, then $y \in x\widetilde{W}$, hence $p \subseteq xW$. Let p be a prime ideal of W lying over p. Therefore $yW \subseteq \widetilde{p} = p \subset x\widetilde{W}$, i.e., $x \notin y\widetilde{W}$, thus $y \in xW$, i.e., $p \subset xW$.

(2.20.3): Take $x=y/z \in pW_p$ $(y \in p, z \in W \setminus p)$. Since $z \notin p$, by (2.20.2), $p \subset zW$, hence y=zy' $(y' \in W)$. Thus $x \in W \cap pW_p = p$.

(2.20.4): By (2.8.4), W/p is a quasi-valuation domain dominated by the valuation domain \widetilde{W}/p and \widetilde{W}/p is integral over W/p. It follows that W is a prevaluation domain.

§3. Prenormality and seminormality.

The definition of a seminormalization which was given by Traverso [3] is as follows.

DEFINITION 3.1. Let R be a domain, T an overdomain of R integral over R. We define

$$R_T^+(p) = \{x \in T; x \in R_p + J(T_p) \text{ for all } p \in \text{Spec}(R)\}$$

where $J(T_p)$ is the Jacobson radical of T_p and $R_T^+ = \cap R_T^+(p)$, the intersection ranging over all prime ideals of R. We say that the ring $R_T^+(p)$ is obtained by glueing T over p and that the ring R_T^+ is the seminormalization of R in T. If $T = \tilde{R}$, then we call R_T^+ the seminormalization of Rand denote it by R^+ ; we say that R is seminormal in T if $R = R_T^+$.

PROPOSITION 3.2. R^+ is the largest subring T of \tilde{R} containing R such that

(3.2.1) For any $p \in \text{Spec}(R)$ there is exactly one $q \in \text{Spec}(T)$ lying over p, and

(3.2.2) The canonical homomorphism $k(p) \rightarrow k(q)$ is an isomorphism.

We first begin with the next proposition.

PROPOSITION 3.3. A prevaluation domain is seminormal.

PROOF. Let R be a prevaluation domain, p any prime ideal of R. Since R_p is a prevaluation domain by (2.20.1), $J(\tilde{R}_p) = J(R_p)$ by (2.19.7). Hence $R_p \supset J(\tilde{R}_p)$. Thus $R^+ = \cap (R_p + J(R_p)) = \cap R_p = R$.

LEMMA 3.4. Let $k_0 \supset k$ be fields. There is a sequence of fields

$$k_0 \supseteq k_1 \supseteq k_2 \supseteq k_3 \supseteq \cdots \supseteq k_n \supseteq \cdots \supseteq k$$
, $\bigcap_{n \ge 0} k_n = k$

where k_n is algebraic over k_{n+1} .

COROLLARY 3.5. A quasi-valuation domain is seminormal.

PROOF. This is proved in the same way as (3.3); we give another proof which is useful for (3.10) and (3.11). Let (W, n, k) be a quasivaluation domain dominated by a valuation (V, n, k_0) . By Lemma 3.4, we have the fields k_n 's between k and k_0 such that k_n is algebraic over k_{n+1} with $\bigcap_{n\geq 0} k_n = k$. We set $V_n = \{x \in V; x \mod n \in k_n\}$. Then V_n is a prevaluation domain dominated by V such that V_n is integral over V_{n+1} with $\bigcup_{n\geq 0} V_n = W$. Since V_n is seminormal, so is W (cf. Hamman's criterion [4]).

In the normal case, the following theorem is well-known: A domain R is normal if and only if R is an intersection of valuation domains containing R. One can ask the following question: Let R be a seminormal domain with a quotient field K and the W_{λ} 's prevaluation domains between R and K. Then $R = \cap W_{\lambda}$? Proposition 3.15 shows that the above ques-

tion has really a negative answer. From now on, we discuss some facts related to this question. We start with some definitions.

DEFINITION 3.6. Let R be a domain, T an overdomain of R integral over R. We define

$$R_T^{\sharp}(p) = \{x \in T; x \in R_p + qT_p \text{ for all } q(\in \text{Spec}(T)) \text{ lying over } p\}$$

and $R_T^* = \cap R_T^*(p)$, the intersection ranging over all prime ideals of R. We say that the ring $R_T^*(p)$ is obtained by (#)-glueing T over p and that the ring R_T^* is the prenormalization of R in T. If $T = \tilde{R}$, then we call R_T^* the prenormalization of R and denote it by R^* , we say that the ring R is prenormal in T if $R = R_T^*$.

REMARK 3.7. A quasi-valuation domain and a prevaluation domain are prenormal.

We give some basic results.

PROPOSITION 3.8. R_T^* is the largest subring R' of T containing R such that

(3.8.1) For all $p' \in \text{Spec}(R')$, the canonical homomorphism $k(p' \cap R) \rightarrow k(p')$ is an isomorphism.

PROOF. R_T satisfies (3.7.1): Let $q \in \text{Spec}(R_T^*)$ and $p = q \cap R \in \text{Spec}(R)$. As $R_p \subseteq R_T^* \subseteq R_p + q'T_p$ where $q \in \text{Spec}(T)$ is lying over q, $k(p) = R_p/q'T_p \cap R_p \subseteq R_T^*/q'T_p \cap R_T^*(=k(p)) \subseteq R_p + q'T_p/q'T_p = R_p/q'T_p \cap R_p = k(p)$, hence k(p) = k(q).

Now we shall prove that if R satisfies (3.7.1), then $R' \subseteq R_T^{\ddagger}$. Let $x \in R'$, $x \notin R_T^{\ddagger}$. Then there are $q' \in \text{Spec}(R')$ and $p = q' \cap R \in \text{Spec}(R)$ such that $x \notin R_p + q'R'_p$. Then $k(p) = R_p/pR_p \cong R_p + q'R'_p/q'R'_p \hookrightarrow R'_p/q'R'_p = k(q')$. If $k(p) \to k(q')$ is bijective, $R_p + q'R'_p = R'_p$, hence $x \in R' \subseteq R'_p = R_p + q'R'_p$, a contradiction.

COROLLABY 3.9. R_T^* is seminormal in T.

PROPOSITION 3.10. A domain R is prenormal if and only if R is an intersection of prevaluation domains containing R.

PROOF. Let $T = \cap W_{\lambda}$ where W_{λ} 's are prevaluation domains containing R. Let $p' \in \text{Spec}(T)$, $p = p' \cap R \in \text{Spec}(R)$ and $(W, n) \supseteq R$ a prevaluation domain such that $n \cap T = p'$. If k(n) = k(p) all is done; and we may assume that $k(n) \supseteq k(p)$; by (3.4), there is a sequence of fields $k(n) = k_0 \supseteq k_1 \supseteq \cdots \supseteq k(p)$, $\bigcup_{i \ge 0} k_i = k(p)$ where k_i is algebraic over k_{i+1} , hence there is a sequence

of prevaluation domains $W = W_0 \supseteq (W_i, n) \supseteq \cdots \supseteq (W_i, n) \supseteq \cdots \supseteq (\bigcap_{i \ge 0} W_i, n)$ where $W_i/n = k_i$, $(\bigcap_{i \ge 0} W_i)/n = k(p)$. As $(\bigcap_{i \ge 0} W_i, n)$ T and $n \cap T = p'$, $(\bigcap_{i \ge 0} W_i, n) \supseteq k(p')$, i.e., k(p') = k(p), hence $T \subseteq R^{\dagger} = R \subseteq T$, i.e., R = T.

COROLLARY 3.11. A domain R is prenormal if and only if R is an intersection of quasi-valuations domains containing R.

We give some criteria of prenormality.

PROPOSITION 3.12. Let S be a multiplicative closed set in a domain R. If R is prenormal, so is $S^{-1}R$.

PROOF. By definition,

$$(S^{-1}R)^{\sharp} = \bigcap_{S \cap p = \emptyset} (S^{-1}R)^{\sharp}(S^{-1}p) = \bigcap_{S \cap p = \emptyset} R^{\sharp}(p) \subseteq S^{-1}\widetilde{R}$$
.

Take $y=x/s \in (S^{-1}R)^{\sharp}$ $(x \in \tilde{R}, s \in S)$. Then we have $x \in \tilde{R}^{\sharp}(p)$ for all $p \in Spec(R)$ where $p \cap S = \emptyset$. Moreover $x \in R + \tilde{p}$ for all $\tilde{p}(\in Spec(\tilde{R}))$ lying over all $p(\in Spec(R))$ that meet S. Therefore $x \in R + \tilde{q}$ for all $\tilde{q}(\in Spec(\tilde{R}))$ lying over all $q(\in Spec(R))$ that meet S. Hence $x \in R^{\sharp}(q)$ for all $q(\in Spec(R))$ that meet S. Therefore $x \in R^{\sharp}(q)$ for all $q(\in Spec(R))$ that meet S. Hence $x \in R^{\sharp}(q)$ for all $q(\in Spec(R))$ that meet S. Hence $sy \in R$, i.e., $y \in S^{-1}R$.

COROLLARY 3.13. Under the circumstances $S^{-1}(R^{\dagger}) = (S^{-1}R)^{\dagger}$.

PROOF. Since $S^{-1}R \subseteq S^{-1}(R^{\sharp})$; by (3.12), $(S^{-1}R)^{\sharp} \subseteq (S^{-1}(R^{\sharp}))^{\sharp} = S^{-1}(R^{\sharp})$.

COROLLARY 3.14. Let R be a domain. The followings are equivalent. (3.14.1) R is prenormal.

(3.14.2) R_p is prenormal for all $p \in \text{Spec}(R)$.

(3.14.3) R_m is prenormal for all $m \in Max(R)$.

PROOF. $R^{\dagger} \subseteq \cap (R^{\dagger})_{p} = \cap (R_{p})^{\dagger} = \cap R_{p} = R.$

We discuss a little further the properties of the prenormality.

PROPOSITION 3.15. Let (R, m) be a local domain, (T, M_1, \dots, M_n) an overdomain of R integral over R. Then $|Max(R_T^*)| = s$.

PROOF. By $\bigoplus_{j=1}^{*} (R+M_j)/M_j \hookrightarrow \bigoplus_{j=1}^{*} T/M_j$ and $T/J(T) \cong \bigoplus_{j=1}^{*} T/M_j$, we have $\bigoplus_{j=1}^{*} (R+M_j)/M_j \hookrightarrow T/J(T)$. Let f be the canonical epimorphism $f: T \to T/J(T)$. Then it is easy to show that $f^{-1}(\bigoplus_{j=1}^{*} (R+M_j)/M_j) = \bigcap_{j=1}^{*} (R+M_j)$. Hence, $\bigcup_{j=1}^{*} (R+M_j) \to \bigoplus_{j=1}^{*} (R+M_j)/M_j$ is surjective. Thus $M'_j = (\bigcap_{j=1}^{*} (R+M_j)) \cap M_j$ is a maximal ideal of $\bigcup_{j=1}^{*} (R+M_j)$. Moreover $M'_j \neq M'_i$ $(j \neq i)$. Therefore $|Max(\bigcup_{j=1}^{*} (R+M_j))| = s$.

The next theorem follows directly from (3.15).

THEOREM 3.16. Let (R, m) be a one-dimensional noetherian local domain. If R is prenormal, then R is a prevaluation domain.

We introduce at this point some definitions.

DEFINITION 3.17 ([2], 4.1). Let X be a free abelian group. A ring R is said to be quasi-normal if and only if the canonical homomorphism $Pic(R) \rightarrow Pic(R[X])$ is an isomorphism.

DEFINITION 3.18 ([2], 4.3). A domain R is locally unibranche (LUB) if and only if R_m is unibranche for all $m \in Max(R)$, i.e., the canonical map $Max(\tilde{R}) \rightarrow Max(R)$ is bijective.

REMARKS 3.19 ([2], 4.2).

(3.19.1) A normal ring is quasinormal.

(3.19.2) A quasinormal ring is seminormal.

THEOREM 3.20. Let R be a one-dimensional noetherian domain such that R is a finitely generated R-module. Then the followings are equivalent.

(3.20.1) R is quasinormal.

(3.20.2) R_m is quasinormal for all $m \in Max(R)$.

(3.20.3) R_m is seminormal and LUB for all $m \in Max(R)$.

(3.20.4) R is prenormal.

(3.20.5) R_m is prenormal for all $m \in Max(R)$.

(3.20.6) R_m is a prevaluation domain for all $m \in Max(R)$.

EXAMPLE 3.21. Let Q be the field of rationals, C the field of complexes, and X, Y indeterminates.

(3.21.1) $C[X, Y]/(X^2 - Y^3)$ is seminormal, but it is not prenormal.

(3.21.2) $Q[[X, Y]]/(X^2 + Y^2)$ is prenormal.

REMARK 3.22. From (3.20), in case R is a one-dimensional noetherian domain with finite normalization, we can give actually the quasinormalization of R as the prenormalization of R.

LEMMA 3.23 ([1], 5.6). Let R be a noetherian domain with finite normalization, X a free abelian group and I an invertible ideal of R[X]such that $I_0 = I \cap R$. Let p_1, \dots, p_t be the prime divisors of I and $q_j = p_j \cap R$. Then $I = I_0 R[X]$ if and only if each $I \cdot R_{q_j}[X]$ is principal.

Now we have the corollary of (3.20).

PROPOSITION 3.24. Let R be a noetherian S_2 -domain with finite normalization. Then R is quasinormal if and only if R_p is a prevaluation domain for all prime ideals p with ht (p)=1.

§4. M-prenormality and quasinormality.

In this section we give some properties of the *M*-prenormal domains and show that any *M*-prenormal domain is quasinormal. Our notations and terminologies are much the same as those in [1] and we assume that X is a free abelian group. All rings are assumed to be noetherian with finite normalization.

DEFINITION 4.1. Let R be a domain, T an overdomain of R integral over R. We define $R_T^b = \cap R_T^{t}(m)$, the intersection ranging over all maximal ideals of R. We say that the ring R_T^b is the *M*-prenormalization of R in T. If $T = \tilde{R}$, then we call R_T^b the *M*-prenormalization of R and denote it by R^b ; we say that R is *M*-prenormal in T if $R = R_T^b$.

From the definition and (3.15) we derive:

PROPOSITION 4.2. Any M-prenormal domain is prenormal and LUB.

PROPOSITION 4.3. Let (R, m) be an M-prenormal local domain which is not normal and $x \in R \setminus U(R)$. Then $\tilde{R} \setminus U(\tilde{R}) = m$ and m is a prime divisor of xR.

PROOF. By (4.2), R is LUB, hence $R = R^b = R + (\tilde{R} \setminus U(\tilde{R}))$, i.e., $\tilde{R} \setminus U(\tilde{R}) = m$. Take $u \in U(\tilde{R}) \setminus U(R)$, Then xR: ux = m. This means that m is a prime divisor of xR.

We note next that it is possible to localize to preserve the *M*-prenormality.

PROPOSITION 4.4. Let (R, m) be an M-prenormal local domain. Then R_p is M-prenormal for all $p \in \text{Spec}(R)$.

PROOF. Take $y = x/s \in \tilde{R}_p \setminus R_p$ where $x \in \tilde{R} \setminus R$ and $s \in R \setminus p$. By (4.3) $x^{-1} \in \tilde{R} \setminus R$, hence $y^{-1} = sx^{-1} \in \tilde{R}_p$, i.e., $y \in U(\tilde{R}_p)$, i.e., $\tilde{R}_p \setminus R_p \subseteq U(R_p)$. Thus there is a unique prime ideal p in R lying over p, hence $\tilde{p}\tilde{R}_p = pR_p$. Therefore $(R_p)^b = \tilde{R}_p \cap (R_p + \tilde{p}\tilde{R}_p) = \tilde{R}_p \cap R_p = R_p$.

COROLLARY 4.5. Under the circumstances R_p is unibranche for all $p \in \text{Spec}(R)$.

The next is a basic structure theorem for seminormal rings due to Traverso.

THEOREM 4.6 ([3]). Let R be reduced seminormal ring. (4.6.1) There is a sequence of rings

$$\tilde{R} = B_0 \supseteq B_1 \supseteq \cdots \supseteq B_n = R$$

where B_{i+1} is obtained from B_i by a finite number of glueings over prime ideals of R of height i+1.

(4.6.2) If $x \in R$ is not a zero-divisor, then each associated prime divisor of xR has height $\leq n$.

Then we have;

PROPOSITION 4.7. Let R be an n-dimensional domain which is not normal.

(4.7.1) There is an element x in R such that xR has a prime divisor of height n.

(4.7.2) There is a sequence of domains

$$\widetilde{R} = C_{\mathfrak{g}} \supseteq C_{\mathfrak{g}} \supseteq \cdots \supseteq C_{\mathfrak{g}} = R$$

where C_{i+1} is obtained from C_i by a finite number of (#)-glueing over prime ideals of R height i+1.

PROOF. (4.7.1): Let m be a maximal ideal of height n. Take $x \in m$. Then, by (4.3), mR_m is a prime divisor of xR_m of height n, hence m is a prime divisor of xR of height n.

(4.7.2): Since R is seminormal, then, by (4.6.1), there is a sequence of domains

$$\widetilde{R} = B_{\scriptscriptstyle 0} \supseteq B_{\scriptscriptstyle 1} \supseteq \cdots \supseteq B_{\scriptscriptstyle k} = R$$
 .

Let

$$B_i = R^+_{B_{i-1}}(p_{i1}) \cap \cdots \cap R^+_{B_{i-1}}(p_{ik})$$

where $ht(p_{ij}) = i$. Here we define

$$C_0 = B_0$$
, $C_i = R_{C_{i-1}}^{\sharp}(p_{i}) \cap \cdots \cap R_{C_{i-1}}^{\sharp}(p_{i})$.

By (4.5), $R_{C_{i-1}}^{*}(p_{ij}) = R_{C_{i-1}}^{+}(p_{ij})$. From $C_0 = B_0$, $B_i = C_i$ for all *i*. Thus $C_k = R$ for some *k*. If k < n, by (4.6.2) and (4.3), a contradiction, hence k = n.

DEFINITION 4.8 ([1], 5.3; [3], 3.1). If S be a multiplicative closed set,

we shall write inv (R, S) for the subgroup of the group of invertible fractionary *R*-ideals spanned by the integral invertible *R*-ideals that meet *S*.

PROPOSITION 4.9 ([1], 5.5; [3], 3.4). Let R be a domain and S a multiplicative closed set in R. Assume that if $s \in S$ and p is a prime divisor of sR, then $\operatorname{Pic}(R_p[X])=0$. Then $\operatorname{inv}(R, S) \to \operatorname{inv}(R[X], S)$ is an isomorphism.

PROPOSITION 4.10. Under the assumptions as in (4.9), assuming that $S^{-1}R$ is semilocal, there is an exact sequence

 $0 \longrightarrow \operatorname{Pic} (R) \longrightarrow \operatorname{Pic} (R[X]) \longrightarrow \operatorname{Pic} (S^{-1}R[X)].$

(4.9) and (4.10) are proved in the same way as [1], 5.5, 5.7 or [3], 3.3, 3.4.

REMARK 4.11. We don't know whether the domain assumption in (4.9) and (4.10) can be deleted.

The next lemma is needful to prove (4.13).

LEMMA 4.12 ([3], 3.5). Let T be a finite overring of a ring R and I the conductor of R in T. Let f be the inclusion of R in T and \overline{f} the inclusion of $\overline{R} = R/I$ in $\overline{T} = T/I$. Then Pic $(\Phi f) \rightarrow \text{Pic}(\Phi \overline{f})$ is an isomorphism.

We can now state the following theorem.

THEOREM 4.13. Any M-prenormal domain is quasinormal.

PROOF. By (4.7.2) we have a sequence of domains

$$\widetilde{R} = C_0 \supseteq C_1 \supseteq \cdots \supseteq C_n = R$$

where C_i is obtained from C_{i-1} by a finite sequence of (#)-glueings over prime ideals of R of height i and n = krull-dim(R).

For n=0 the assertion is vacuous, so we assume n>0 and use induction on n. By induction we may assume that $\widetilde{R}=C_{n-1}$, $R=C_n$. Let $I=C_{n-1}$: C_n and p_1, \dots, p_t the prime divisors of I in R. Then, for all j, ht $(p_j)=n$. Let $S=R\setminus(p_1\cup\dots\cup p_t)$. Pick $s\in S$. Let p be a prime divisor of sR. As $p\not\supseteq I$, $R_p=(C_{n-1})_p$. By induction Pic $(R_p[X])=$ Pic $((C_{n-1})_p[X])=0$. Therefore, by (4.10), we have an exact sequence

 $0 \longrightarrow \operatorname{Pic} (R) \longrightarrow \operatorname{Pic} (R[X]) \longrightarrow \operatorname{Pic} (S^{-1}R[X]) .$

We are to prove Pic $(S^{-1}R[X]) = 0$. Let $\overline{R} = S^{-1}R$, $\overline{T} = S^{-1}(C_{n-1})$, $R' = S^{-1}R/S^{-1}I$ and $T' = S^{-1}(C_{n-1})/S^{-1}I$. f, f', f_* and f'_* denote the inclusion $\overline{R} \to \overline{T}$, $R' \to T'$,

 $\overline{R}[X] \rightarrow \overline{T}[X]$ and $R'[X] \rightarrow T'[X]$ respectively. Since R' and T' are direct sum of fields, $\operatorname{Pic}(R'[X]) = \operatorname{Pic}(T'[X]) = 0$. By induction, $0 = \operatorname{Pic}(\overline{T}) =$ $\operatorname{Pic}(\overline{T}[X])$. Here we note that, for a commutative square of rings,

$$(4.13.1) \qquad \begin{array}{c} R_1 \xrightarrow{f} R_2 \\ \downarrow \\ R_3 \xrightarrow{g} R_4 \end{array}$$

there is the map of exact sequences induced by (4.13.1)

Therefore we have

(4.13.7)
$$U(\bar{R}[X]) = U(\bar{R}) + X \bigotimes_{Z} H_{0}(\bar{R})$$
$$U(\bar{T}[X]) = U(\bar{T}) + X \bigotimes_{Z} H_{0}(\bar{T})$$

$$(4.13.8) H_0(\bar{R}) = H_0(\bar{T})$$

(4.13.9)
$$U(R'[X]) = U(R') + X \bigotimes_{Z} H_0(R')$$

$$U(T'[X]) = U(T') + X \bigotimes H_0(T')$$
;

moreover, by the *M*-prenormality ((4.5) and (4.7.2)), (4.13.10) $H_0(R') = H_0(T')$.

Then, by (4.13.4) and (4.13.6), $\operatorname{Pic}(\varPhi f') \to \operatorname{Pic}(\varPhi f'_*)$ is an isomorphism. On the other hand, by (4.12), $\operatorname{Pic}(\varPhi f) \to \operatorname{Pic}(\varPhi f')$ and $\operatorname{Pic}(\varPhi f_*) \to \operatorname{Pic}(\varPhi f'_*)$ are isomorphism, hence $\operatorname{Pic}(\varPhi f) \to \operatorname{Pic}(\varPhi f_*)$ is an isomorphism. Applying the five lemma to (4.13.3) and (4.13.5), we have $\operatorname{Pic}(\bar{R}[X])=0$, i.e., $\operatorname{Pic}(S^{-1}R[X])=0$. This completes the proof.

References

 [1] H. BASS and P. MURTHY, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math., 86 (1967) 16-73.

- [2] S. GRECO, Seminormality and quasinormality of group rings, J. Pure Appl. Algebra, 18 (1980) 129-142.
- [3] C. TRAVERSO, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa, 24 (1970) 585-595.
- [4] R.G. SWAN, On Seminormality, J. Algebra, 67 (1980) 210-229.

Present Address: Sanno Junior Collge Department of Management Information 6-39-15, Todoroki Setagaya-ku, Tokyo 158

,

-