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Introduction

An immersion f of an m-dimensional sphere S™ into an M-dimensional
sphere S¥(r) is called an isometric minimal immersion f: S™(1) — S¥(r) if
J: S™—S8¥(r) is a minimal immersion, and, at the same time, f: S™(1)—
S¥(r) is an isometric immersion. Some special cases of such immersions
were studied by E. Calabi [1] and by M. do Carmo and N. Wallach [2]
and the general cases by M. do Carmo and N. Wallach [3]. In the
present introduction we quote, with a little change of style, those results
in [3] which have intimate relation with the present paper.

" When m is given. essentially important cases of isometric minimal
immersions f of a standard m-sphere S™(1) into a sphere S¥(r) are the
following ones. For each positive integer s>1 there exists a class of
isometric minimal immersions

Jo: S™(1)— S (r)
such that

n=02s+m—1)(s+m—2)!/(s!(m—1)!),
r’*=m/(s(s+m—1)) .

- We consider the cases m=3 and s=4. Then in each of the classes men-
tioned above there exist three kinds of isometric minimal immersions,
namely standard minimal immersions, nonstandard full isometric minimal
immersions and non full isometric minimal immersions.

Suppose we have fixed a rectangular coordinate system in R" and
consider S"~'(r) as the hypersphere of radius » whose center is the origin
0. Then the image f,(S™(1)) is expressed by n coordinates f4(A=1, :--, n)
which are eigenfunctions of the Laplacian A, on S™(1) with eigenvalue
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n=8(s+m—1), satisfying
; (fA)r= r

and the isometry condition.

We also see in [3] that the set of equivalence classes of isometric
minimal immersions is parametrized by a compact convex body L in a
certain vector space W,. The interior points of L correspond to the
equivalence classes of full isometric minimal immersions and the boundary
points of L correspond to those of non full isometric minimal immersions.

Such minimal immersions were studied or are being studied by several
mathematicians (see [4] and [7]). The present author also studied the
same object in his own way [5] and it became clear that the vector space
W, corresponds to a space of some bi-symmetric tensors in BR™*' of degree
2s which we call DZ,.

The purpose of the present paper is to investigate in more detail the
space D}, namely, the space W, of do Carmo and Wallach for the case
m=3, s=4. Thus it is proved that dim D},=18 and that there exist
mappings @, and @, from the space H; of harmonic polynomials of R®
of degree 4 into D}, such that, if {a, ---, a,} is an orthonormal basis of

3 then {p,a,, -, Psty, Piy, **+, P14} is an orthonormal basis of Dj..

REMARK 1. The use of letters m and » in [5] and in the present
paper differs from that in [3]. Also the curvature of the sphere to be
immersed differs from that in [3] being fixed to be 1. This is preferred
only with the purpose of simplicity.

REMARK 2. The inner product in H} is defined in §5.

In §1 we reproduce some of the results of the previous paper [6] and
explain the linear space D,. As R‘, where the standard sphere S%1) is
embedded as the unit hypersphere, admits the group SO(4) which has
the well-known special property, attention is attracted to this fact in §2.
There we introduce six transformations J,, J,, Js, I,, I,, I, which play -
important role in our study. When a harmonic polynomial of degree 4
and with three variables is given, we get from it some elements of D; ,.
This fact is explained in §3. From this result we can deduce mappings
®, and @, of the space H} into Di,. These mappings are studied in §4
and their images D,, D, in §5. The fact that the dimension of W, is not
less than 18 for m=3, s=4 was established by do Carmo and Wallach [3].
But we wanted to verify dim Di,=18. As we could not find a short cut
proof of this fact, without which we cannot state the main results in §7,
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it is proved through a lengthy calculation in §6. In §8 parameters given
in §6 are evaluated for @,a and ®,a in a typical case. In §9 the action
of some subgroups of SO(4) on Dj, is studied.

The author wishes to express his hearty thanks to Prof. M. do Carmo

and Prof. K. Ogiue for their kind encouragement.

'§1. Preliminaries.

Let us consider S™(1) as the unit hypersphere of R™*' where we
have fixed an orthonormal basis {e, -, €,,:}. On the other hand let us
take in R" an orthonormal basis {¢,, ---, &,} and a hypersphere S"~'(r)
where the center is the origin and the radius is . We use indices as
follows: '

A, BC,---=1 -, m,
a/,b,c,""h,/i,j’...=1’.,.’m+1,
a,B,'y,-o.’x’x,#’..;::l’...’m’

and adopt the usual summation convention if possible.
Let f:S™(1)—S"*(r) be an immersion such that

Sfw)=r4we,, uesS*Q1).
Then >, (f4)?*=r’ If f4 satisfy
(1.1) A, fA=N 0%, N=8(s+m—1)

where A, is the Laplacian on the standard sphere S™(1), then f is called
an immersion of order s. A theorem of Takahashi [6] states that, if f
is an isometric minimal immersion, then f is necessarily an immersion

of order s.

As S™(1) is the unit hypersphere of R™*!, we can put u=u'e,, >, (u)’ =
1, and the functions u* are eigenfunctions of A, satisfying A,u*=muk.
It is well-known that, for each eigenfunction + of A, satisfying A, 4=
A, there exists just one harmonic polynomial

F=Fi1"'i8X11 e Xi'
of degree s such that
P(u)=Fy ... ur(u) « - u's(u) .

The number n=2s+m—1)(s+m—2)!/(s!(m—1)!) gives the dimension of
the space H™*' of harmonic polynomials of degree s in R™*', It is also
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clear that a harmonic polynomial F' of degree s determines a symmetric
tensor t such that t(v, ---, v)=F(v, --+, v), hence we can consider F' as
a symmetric tensor satisfying

Z‘.F(e‘, €4y Ugy *°°y ’U,)=0 ’

where v, -+, v, are arbitrary vectors of R™*.
This fact implies that, when an immersion f,: S™(1) — S*~'(+) of order
s is given, we have n tensors F“ such that

fc(u)=FA(u; %y u)gA ’ 2‘4 FA(ety €y Vgy **°y 'U,)=0 .

In terms of the components with respect to the frame {e, :--, €...}
F4 satisfy

(1.2) 3 Flyyq,=0.

F4 are called the tensors of degree s associated with the immersion f,.

REMARK. In the present paper we do not use the letter p for a point
of S™(1).

DEFINITION OF B;,. Now we define a linear space B, by saying
that Ce B™, if and only if the tensor C of degree 2s satisfies the following
conditions where w,, ---, v,, are arbitrary vectors of R™*':

(1) Cwy, +++, Vi Veyry ***, V) 18 symmetric both in v, -+, v, and in
Vst1s *° %y Vogy

(li) C(?Jl, *oty Voy Vet °* % ’020)=C(7)c+1’ ccty Vogy Vyy °* %y vc)

(iii) 20, Cle, €0 Vs * =+ Va3 Vray =+ *5 V2)=0.

Br, is called the space of bi-symmetric harmonic tensors of bi-degree

(s, 8).

DEFINITION OF DP,. We define a linear subspace DT, in B™, as follows:
Ce Dr, if and only if Ce€ Br, and satisfies

(iv) Clw,w,v, -+, v;v, -+, v)=0
for arbitrary vectors v and w of R™*',

DEFINITION OF f,,. When F“ are the tensors of degree s associated
with an immersion f, of order s, we define f,, by

(1.8) fu=S FAQF*.

f., belongs to B, and is called the tensor of degree 2s associated with
the immersion f,.
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Let f, and f) be isometric minimal immersions and let f,, and f;, be
tensors of degree 2s associated with f, and f, respectively. Then f,,=f..
if and only if f, and f, belong to the same equivalence class (see [5] Theo-
rem 3.83). The tensor of degree 2s associated with standard minimal im-
mersions h, is denoted by h,,. Then, for any isometric minimal immersion
f, we have f, ,—h,,€ D", ([5] §6). Conversely, if d. L€Dr, and if t,<t<t,
where (¢, t,) is a certain interval depending on d, . then h,.+td,, is the
tensor f,, of degree 2s associated with some isometric minimal immersion
fo: S™(1)—S"(r). This suggests that we can find many important prop-
erties of such immersions from the properties of D7,.

Let g be any element of SO(m+1). For any element C of D7, let
us define gC by

(1.4) gC(Wyy ++ %y Vs Vyray ** %5 Vo) =C(@g7 0y, ++ ), 70,5 G Viry ** 75 970s4)

where v,, + - -, v,, are arbitrary vectors of R™*'. Then it is easy to verify
that gCe D7,.

For any tensors T,, T, of R™™ of the same degree the inner product
(T, T,y is defined as usual. Then the following lemma is easily verified.

LEMMA 1. Let C, C; be elements of D*,. Then {gC,, gC,>=<C,, C,).

§2. Some orthogonal transformations of R*.

Let us fix an orthonormal basis {e,, e,, €;, ¢,} in B*. On the other hand,
we take a rectangular coordinate system in R® and express a point p of
R by p=(x,y,2). If we take linear transformations J,=zJ,+yJ,+2J,
defined by

J,e,= —we,+ye;—ze, ,

J,e,=xe,—ye,—ze,

J,es= —xe,—ye, +ze, ,

Je.=xe;+ye,+ze, ,
then J, is an orthogonal transformation when p is a point of the unit
sphere S?(1). As it is well-known, J,, J,, J; satisfy JJy,= —JgJ, =, JoJ, =
‘_J1Js=J2, J1J2= _J2J1=Js-

Similarly, let I,=xI,+yI,+zI, be defined by

Ie = —uxe,+ye+ze, ,

Le,=xe,+ye,—ze, ,

Ie,=xe,—ye, +ze, ,

Ie,=—xe,—ye,—ze, .
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Then I, is an orthogonal transformation when p is a point of S*1). We
can easily see that I,I,=—ILI,=1I, I.I,=—I,I,=1, I.I,= —I,I,=I, and more-
over

(2-1) JxIl=IlJ: (K, >"=1’ 2: 3) ’
(2-2) g <Jxei’ Ilei> =0

where (, ) denotes the inner product in R*.
Furthermore, J, and I, satisfy

2.3) JuitJdu=—20d,, ILIL+ILI,=—28,1I,

where I,=J, is the identity transformation. Then the set {aI,+bI,+cl,+
dl, a*+b*+c*+d*=1} is a subgroup of SO(4). Let us denote this subgroup
by O,. Similarly, {aJ,+bJ,+cJ,+dJ,, a®+b*+c*+d?=1} is another subgroup
of SO(4). Let us denote this by O,. O, and O, commute and generate
SO(4).

§3. Harmonic polynomials of R® and elements of D;..

Here and in the sequel we use indices as follows:

a'vb’c’ "'9h)7:’jy "'=172,3’4’
By Yy By N My e 0=1,2,8
and adopt the usual summation convention if possible. Using ', 2? 2°,

hence z* collectively, for the rectangular coordinates in R®, we see that
a harmonic polynomial a(x) in R® of degree 4 can be written as

(3.1) AU(X) = Ay & T T 2"
where a,;,, are symmetric in the lower indices and satisfy
’(3.2) Z a,,p,,=0 .

When a harmonic polynomial a(x) is given, let us define a tensor C®
of degree 8 by

(3.3) CP (v, v, Vs Vis Wy, Wiy Wyy W) = FFa" (T Wy, 0, T ;W05 V,)
<J #Wg,y ?Js> <J yWyy '”4>

where &, (resp &) denotes the symmetrizer with respect to w,, w,, w,;, w,
(resp v, v, 5, v,) and a***=a,;,,. Then we can prove that C{ is an
element of D;, as follows.

C{ satisfies the condition (i) because of .$4.54. (ii) is satisfied because
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of {(Jw, v)=—{Jv, w). As we have
2, (Jw,, e {Jw,, e = {Jw,, Jw,)

=Wy, Wy if k=,
= —{J,w,, Jyw,)y if k#EN,

we get, in view of (3.2),

Zi“ Ci (€ €1y Vsy Va5 Wiy Wy Wy W) =0,

hence (iii) is satisfied. That C® satisfies the condition (iv) is easy to see.
Similarly, we can define an element C{* of Dj, by
3.4) Ci¥ (V1) Vsy Vsy V3 W1y Way Wyy Wy)
= S F0 L, v,) D ws, ve) {Tpws, v I wy, vy .
We see immediately that (8.3) shows the existence of a linear map
@, of the space H? of harmonic polynomials of R® of degree 4 into Dj,

such that @,(a)=C{. Similarly we have a linear map ®;. Let us define
D;, D; by D,=9,(H}), D,=®,(H{). These are linear subspaces of Dj,.

§4. Some properties of the mappings #, and ®,.

The inner product <{A, B) for the elements A, B of D}, can be written

sk %

4.1) <A; B>=; Za“ A(eip €iyy €igy €15 €41y €jyy €1y 6,-4)
« B(ey,, €4y €4y €4, €5,y €jyy €5y €5,)

where

* *

2= 2, X= 2

i 1yigigly J Jydodgdy

First we calculate the inner product {C{®, C®>. As a**** are symmetric

in the upper indices, we can write (8.3) in the form

CP(vyy Vay sy Va3 Wiy Wy Wyy W,)
=(1/24)a*** ; < Wpayy V) . Wp )y V) S uWp @) Vs J yWp ) vy

where P is a permutation of 1, 2, 3,4 and 3, means summation over all
permutations. As b* are also symmetric in the upper indices, we have,
taking (4.1) into account, the following formula:
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CP, CP
%k *
= (1/24)a-2=peer® by 2, 35 ity €50y €50 Ty €50 00,5 €50

J
¢ <Jaetp(1) ’ ejl> <Jpelp(2) H e]'g> <Jreip(g) 9 eJ'3>
* <Jl)e{p“)! eJ'4> M

Then we get
(4.2) €, CP>=1/28) S cr
*
(4'2)1’ cP.:atl#l'baﬂrﬂ ; <JaJxe11! etpu)><JﬁJle{z) elp(2)>
¢ <JTJFe¢3’ eip(3)><J8Jve(4) 6;1,“,)
in view of

Z:l <wa’ ej> <Ja'v! e:'> = <wa’ Ja’v> = <Jath7 'U> °

We now calculate cp.
In case P is the trivial permutation, namely, P(¢)=1 for i=1, 2, 8, 4,
¢r is written ¢, and we have

c,=4'a,,,, b
because of the identity
Z“, Ty €)=—40, .
Consider the case P fixes two of the numbers 1, 2, 8, 4, for example,
the case P(1)=1, P(2)=2, P(3)=4, P(4)=8. As we have
%‘, Ty uesy €;9{J3J e;, €
=2, Iy €<esy Jse0
=§ Iy ey, J,Jse.)
=z“, (T Jrd e, )
= —E‘_‘. (T oI s, €y + 80,0,

because of (2.3), and, as b*" are symmetric in the upper indices and
satisfy (3.2), we get, in view of (2.3),

Cr=C,/2 .
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Let n=n,+---4+n, be a partition of n and let us denote this by
(ny, +++,n,). By a subdivision of the set S={1, ---, n} subordinate to the
partition (n,, +--,n,) we mean a subdivision such that S=8,+-.--+58§,
where, for each i(=1, ---, p) S, is a subset of S with n, elements. An
element g of the symmetric group &, is said to be subordinate to the
partition (n, --+,n,) if and only if g is the product g,x-..:-Xg, where,
for each 4, g, acts as a cyclic permutation of length n, on S, for some
subdivision of S subordinate to the partition.

The symmetric group S, has five types of elements corresponding to
the partitions of 4, namely, (1,1,1,1), (1,1, 2), 1, 3), (2, 2), (4). For the
first two types we have already calculated c;.

In order to get ¢, for the third type, namely, for the elements P of
&, subordinate to the partition (1, 3), we use

h%‘,j s 2eny € Jrd uey, €;7<JsJ 5, €
=;.§‘,- (T pdseny €Iy sy €;9<e5, J,Jsen)
=% (ST, €y {TrJ sy J.1ses)
=}§, (T o e, €Ky Judrd Jses)
=§, (T seny Judved o6y
=§. (Tod v wd 3 264, €1)

and the steps similar to those used for the second type. The result is

cr=c,/4. Similarly we get cp=c,/4 for the fourth type and c¢,=c,/8 for
the fifth type.

The number of permutations of each type is easily counted and the
result is as follows: 1,6, 8,3,6. Thus we get

; cr=(1+6/2+48/4+3/4+46/8)c,=(15/2)c,
hence
(4.3) (CP, CP> =802, .
Similarly we get
(4.4) (C, CP> =800 3,0 .

Next we calculate the inner product <C{*, C{> using (2.1) and (2.2).
As we can write the inner product in the form
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*
<C}6)’ C-(’b)> = (1/24)a:1yvbaﬁﬂ 2‘ ; <JaI‘eil’ e¢P(1)> <J3Iletz) e‘P(2)>
<JTIlletsy etp(s)> <J3Ivet4’ etp(4)> ’

contribution to this inner product from permutations subordinate to par-
titions other than (2, 2) and (4) vanishes because of (2.2). On the other
hand, as we have

; <JaIxeu ej> <JﬁIZej: et> = <JﬁJaI2Ixe” 6¢>

and, similarly,
:,2,-,“;; (T Leer, e{Jslze, €;)<{J 11 e;, ery<{Jsl es, &)
=S JrJsJ 1111, €) ,
we get, in view of (3.2),
o, opy=0.
Thus we have proved the following lemma.

LEMMA 4. Let C® and C® be defined by (8.3) and (8.4) respectively
when Q.2 0z i8 a harmonic polynomial in R°. Then these are
elements of D, and the inmer products satisfy

(C, CPy=(C, CP> =80aub™ , (CP, CP)=0.

§5. The subspaces D, and D, of D;,.

We can define inner products in the space H} of harmonic polynomials
in R® in various ways. Here, and in the sequel, we take (, ) defined as
follows: if a=ag,x 0’ x"z", b=>by,x c*x"z*, then (a, b) = b "

From Lemma 4 we get the following theorem.

THEOREM 5.1. D, and D, are linear subspaces of D, orthogonal to
each other. @, and @, are homothetic mappings of H; imto D}, hence
dim D,=dim D,=dim H}=9, dim D; ,=18.

REMARK. It was proved by do Carmo and Wallach [3] that dim D} ,=
18.

LEMMA 5.2,
9CP=Cp if ge0O,, gCP=C{ if geO;.

Proof is easy since we have, for example,
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(T(a+bT,+ e, +dT)w, (a+bJ,+cJy+dTo)v)
= ((@+bJ, + e, +dJ) Law, (@+bJ,+ e, +dT)v)
=<{ILw, v)

if a*+b°+c*+d*=1.

§6. The dimension of the space Dj ..

6.1. A classification of the components of a tensor C belonging to

3
4,40

As it is pointed out in §1 the necessary and sufficient condition for
a tensor C of degree 2s to be an element of D=, is that C satisfies the
four conditions (i), (ii), (iii), (iv) for arbitrary vectors wv,, «--, v, v, w of
Rm+, Especially in the case of D, (iv) is equivalent to

(6.1.1) C(vy, vy v, v; v, v, v, v)=0.
From this we easily find that, if Ce D;,, then C satisfies the equations

Clv, v, vv; v, v, v, v)=0,
C(vy, v, v, v; v, v, v, v)=0,
C(vy, v, v, v; Vs v, v, v)=0,

and further

(6.1.2) C(vy, Vg vgy v; v, v, v, v)=0,
(6.1.3) C(vy, sy v, V; ¥ v, v, v)=0,
(6.1.4) C(vyy vy, Vsy V5 ¥, V, ¥, V)

= —4C(vy, Vs Vg, V; Vyy V, V, V)
=6C(v,, Vsy V, V; Vg, Vyy V, V) ,

(6.1.5) C(vy, sy sy Va5 Vs, ¥, V, V)
= —C(v,, vy, Vg Vs; Vsy ¥, V, V)
—38C(vy, Vs, Vs, V; Vyy Vs, V, V)
=8C(v;, Vs, Vsy V; Vsy Vsy V, V)
+3C(vy, vy V, V; Vs, Vi Vs V)

(6.1.6) C(v1y vy Vsy Vi3 Vs, Voy U, V)
= —C(vy, Vsy Vs Us; Vay Voy ¥, V)
"‘C('Uu Vay Vsy Vey Vyy Uy Uy V)
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—2C(vy, Vgy Vg, V; Viy Vsy Vo V)
=C(vyy Vey Vsy Vo3 Vs Vi» V) v)
+C(v1, Vay ¥, V; Vsy Viy Vsy Vo)
+2C(v,, Vyy Vs, V; Vsy Viy Vgy V)
+2C(v,, sy Vo) V; Vsy Viy Vsy V)

for any vectors v,, -+, v, and v in R*. In short, any one of these equa-
tions is obtained by substituting v+ w for v in the equation or equations
preceding that one and taking a suitable vector for w (see, for example,
§7 of [5]).

Now we fix an orthonormal basis {e, e, ¢, ¢,} in R* and use the nota-
tion (abed, efgh) defined by

6.1.7) (dbcd, efgh) =C(e,, €y €,y €a; €4y €5, €,y €3)

where a, b, -+, g, h=1, 2, 3, 4. The components such as (bacd, efgh), (efgh,
abed), - - - are identified with (abcd, efgh) because of (i) and (ii). The equa-
tions given above suggest the following classification of the components.

Consider a component (abcd, efgh). We say that this component
belongs to the class (a, 8, 7, §), a=8=7=0, if a number appears a times,
another number appears @ times, and so onin (a, b, -+, g, h). We delete
0 so that, for example, we say that the component (1112, 1222) belongs
to the class (4, 4). (i), (ii) and (iv) are conditions within each of such
classes. (6.1.2) and (6.1.3) show that every member of the class (a, B, 7, 0)
vanishes if a=5.

6.2. Components of C in the classes (4, 4), (4, 2, 2) or (2, 2, 2, 2).

Here and in the sequel we understand that 4, <, 7, k appearing in any
one formula are different numbers taken from 1, 2, 8, 4, if it is not other-
wise indicated. With this understanding we define a,, and d,,; by

(hhhh, 1112)=12a,, , (hhhh, 1255)=120,,; .
Then we get from (iii), namely,
(hhhh, 1thh)+ (hhhh, tiit) + (hRhhh, 2155) + (hhhh, tikk)=0 ,
the equations
O+ 0+ 0x =0

because of (hhhh, ithh)=0. It is easy to see that this system of equations
is equivalent to the system of equations
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204+ api+ i — 0, =0

because of o=, 04 ="04i
On the other hand we have from (iii)
_ (hhhh, 1133)+ (ithh, 1157)+(35hh, 1157) + (kkhh, 1153) =0 .
We also get from (6.1.4) (hhhh, itj7)=6(hhit, hhjj), hence (hhit, hhjj)=
20,;;. Thus we get
128,428 -+208 4, + (hhkle, 1i55) =0
which is equivalent to
(6.2.1) (hhkk, 'i'ijj)=7ahi+7ahj+2a¢_,,-——6ahk—aik——a,-,, .

But, as (hhkk, iij7) is symmetric in & and k, we get a,+a;;,—a,—a;=
0 and finally

(6.2.2) a,,,--":a,-k .

Thus, if three parameters, for example, a,, a; a,, are given, then
all of a,, and 9,,; are determined.

Next we want to show that all components in the class (4, 4), (4, 2, 2)
or (2,2, 2, 2) are determined.

We can easily deduce from (6.1.4) that all components of the class
(4, 4) are given by

(6.2.3) (hhhh, 1111)=12q;; , (hhhi, hiti)= —3a,, , (hhit, hhii)=2a,, .
We also get from (6.1.4) all components in the class (4, 2, 2) in the form
(6.2.4) (hhhh, 1155) =6(Qn — Qi — Aaj)
(hhhi, hi3j) = —(8/2)(Qpe— Qni— Qsj)
(hhit, hhjg)=(hhij, hhij)=Qu— A—;
as we have §,,;= — (1/2)(a;; + ay; — ). At the same time we get from (6.2.1)
(hhkk, iijj)=6aht+6ah,—4ahk .

In order to get all components of the class (2, 2, 2, 2) we use (iii) and
get (hhjk, 115k)= — (hhjk, hhik)— (hhik, j77k)— (hhjk, kkjk), hence (hhjk,
115k) = a;+an,—4a,,. Putting v=e,, v,=v, =€, v, =v,=¢€;, V=V, = ¢, in
(6.1.6), we get (itjk, hhjk) = —(155k, hhik) — (i5kk, ihh) — 2(2jkh, i5kh),
hence 2(hijk, hijk) = 2(as; + a4; + ay,). Thus we have obtained all com-
ponents in the class (2, 2, 2, 2) in the form
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(6.2.5) (hhii, jjkk)=6a,,j+6a”,-—4a“ ’
(hhjk, iijk)=a,,5+ah,,—4a,,¢ ’
(higk, higk)=as+ ap;+ s -

6.3. Components of C in the class (3, 3, 1, 1).
In §6.2 we have proved (hhhh, i11%)=(j553, kkkk), namely,

C(elu €hy Chy €15 €4y €4y €y, e,)=C(e,~, €;y €4y €5, €py €y, €4y ek) .

Let us fix for a while the numbers h, i, 7, k. As the orthonormal basis
{e,, €, €;, e} can be chosen arbitrarily in R*, we can replace e, by ‘e,=
e,cos0+e;sind and, at the same time, e¢; by ‘e;='e;cos§—e,sinf and get

’ [ — ’ ’ ’ ’, .
C(’elu 'elu eh! eln etr ei’ ei’ ei)—C( ei; 6,-, ejy ej’ ek’ eln eIn ek) .

Differentiating both members with respect to # and putting /=0, we get

(6.3.1) C(en, €n, €ny €53 €:y €4y €y, €)= —C(ey, €;, €;, €;; €, €, €, €;) ,
that is,
(6.3.2) (hhhj, 1111)= —(hjj3, kkkk) .

We can also replace e, by ‘e;=e¢, cos +e¢,sin @ and at the same time e,
by ’e,=e, cos p—e,sin @ in (6.3.1). Thus we get

(6.3.3) (hhhj, iitk)=(3jjh, kkki) .
Let us define B4, by
(6.3.4) (khhi, 335k)=9Bn, 5 -

Then we have Bhi,ik=ﬁjk,hi from thiS deﬁnition, and Bhi,ik=B¢h,kj from
(6.3.3), hence

(6.3.5) | B, it = Bir, ki = Bik,ss = Brj,eh «

Thus, if B ;; are known for A=1, then all of them are obtained.
On the other hand we get

(hhhi, 1i5k)+ (hhhi, 333k)+ (Rhhi, kkjk)=0 ,
(hhhj, 1iik) = — (hhhk, 1115) —3(hhhi, 115k)
from (iii) and (6.1.5). Thus we have

(hhhi, '“f.?k) = Q(Bhi,jk + Bu,kj) ’
(hhhi, ’W/.') k)=— 3(31.5,4& + Bhk,ij) ’
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hence

35}";,51: - ﬁhk.i:‘ = 3,31.1,1;,' + th,(k .
Let us take up the following three among these equations,
3:312,34 - 514,23 = 3312,43 + Bm,u ’

3513,42 - ﬁm,s« = 3;813.24 + ﬂu.u ’
3314,23 — 613,42 = 3:314,32 + Bu,«s .

Then we get
(6.3.6)  Bunu=13e, PBue=—12e—4f+3g,

Bu,e=13f, Buu=—12f—49+3e,
Bis=139 , PBup=—12g9—4e+ 3f

where g, f, g are undetermined. Thus we get all 8, ;; using (6.3.5).
Putting v=e,, v,=v,=v;=¢;, V,=¢,;, v,=¢; in (6.1.5) we get

(hhhg, jjik)= —(hhhj, jjik)—3(hhj], hijk) ,
and putting v=e,, v,=v,=v,=e;, v;=6;, vs=¢, in (6.1.5) we get
(hhhi, jjjk)= —(hhhj, ij5k) —3(hhij, hjjk) .
Thus we have

(6.8.7) (hhht, 333%) =9B,ix »
(hhhg, 135k) = — 3B, — 3Bk, it »
(hh.’ij: h"fﬂk) = ZBht,jk + 28hk,ji ’
(hh'ij, hjjk)=— 2,3“,,‘1: + Bk, it s

which shows that all components in the class (8, 3, 1, 1) can be calculated
if the numbers ¢, f, g are given.

6.4. Components of C in (4,3,1), (4,2,1,1), (3, 8,2) or (3,2, 2,1).
Let us define a;,; by

(6.4.1) (hhhh, 1i13) =120t,; .
Then we get, in view of (6.3.2),
(6.4.2) Kpij = Qpgq »

All other components in the class (4, 8, 1) are then determined by (6.1.4)
and we get
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(6.4.3)  (hhhi, hiig)=(hhhj, hiii)= —3ay,; , (hhii, hhig)=2a,,; .
As we have, in view of (iii),
(hhhh, it5k) + (hhhh, j55k)+ (hhhh, jkkk)=0 ,
we get
(6.4.4) (hhhh, 1i5k) = —12(aty 1+ Aps;) «

All other components in the class (4, 2, 1, 1) are then determined by (6.1.4)
and we get
(6.4.5) (hhhi, hijk)=(hhhj, hitk) =38(as;+ ars;) ,
(hhit, hhjk)=(hhig, hhik)= —2(a .+ Aps;) -
If we replace ¢; by ’e;=e; cos §+e¢,sind and at the same time ¢, by
‘e;=e,cos0—e;sin@ in (6.3.1), differentiate the resulting formula with

respect to ¢ at §=0, then we get, in view of (6.1.2), 4(hhhj, 'nw)—
3(hijg, kkkk), hence

(6.4.6) (hhhj, 1135) = —9(aw._+akm) .
As we can deduce from (6.1.5)
2(titg, jhhh)= —3(2iih, jihh) ,
(2234, jhhh)= — (1253, thhh)—3(iijh, 15hh) ,
2(5717, thhh)= —3(77th, 11hh) ,
we get
(6.4.7) (hhhi, 1155) =6(Quin+ Auso)

(hhit, hig5) = — 4(Auen+ Auns)
(hhig, hiig) = Ctunn+ Quns -

Thus all components in the class (8, 8, 2) are obtained.

Now we want to determine the components in the class (8, 2, 2, 1).
From (hhhk, itjj)+ (hhhk, j555)+ (hhhk, kkjj)=0 we get (hhhk, iijj)=
—12a;3, —6( s + i), hence

(6.4.8) (hhhk, 1157) = —6(Qps+ Ajar)

by virtue of (6.4.2). From (hhhi, kiii)+ (hhhi, kijs)+ (Rhhi, kikk)=0 we
get (hhhe, kig)) =3+ 9@+ ), hence

(6.4.9) (hhhi, 155k) =904, + 60 ), .
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Similarly we get
(6.4.10) (hhii, hjjk) =40, + 600
(6.4.11) (hhik, hig7) =40+ Qs -

If we put in (6.1.5) v=e;, v,=¢€,, V,=v,=6;, Vs=vs=¢;, then we get (kije,
Jhhh)= —(kijj, thhh)—3(kijh, ijhh), hence

(6.4.12) (hhag, hwk)= — Qupp— O
by virtue of (6.4.9). Thus we have obtained all components in the class
3,22 1).

6.5. The dimension of the space D},.
The results obtained above can be resumed in the following lemma.

LEMMA 6. Suppose an orthonormal basis {e, e, e, e} is fived in R*
and the components of a tensor C belonging to D;, are denoted by (abed,
efgh) =Cle,, ey, €., €a; €., ey, €,, ;). Then C 1is determined if the following
18 components are given:

(1111, 2222), (1111, 33883), (1111, 4444) ,
(1112, 3334), (1118, 4442), (1114, 2223) ,

(1111, 2223), (1111, 3332), (1111, 2224), (1111, 4442) ,
(1111, 3334), (1111, 4443), (2222, 1113), (2222, 3331) ,
(2222, 1114), (2222, 4441), (3333, 1112), (3333, 2221) .

Whether these components may be freely chosen or not is not proved
above. But it has been proved by do Carmo and Wallach [3] that dim W,=
18 if s=4 and m=3. Due to this result the above 18 components are
free from restriction. Thus i, a, @, e, f, ¢ and a,,; satisfying (6.4.2)
can be considered as parameters in Theorem 1.5 of [3].

§7. The main results.

We have shown that dim D;,=18. On the other hand we have Lemma
4 and Theorem 5.1. Thus we have the following main theorem.

THEOREM 7.1. Let {a,, ---, a;} be an orthonormal basis of the space
of harmonic polynomials of degree 4 in ', 2*, 2°. Then {P(0a,), ---,
P (0ay), P;(0a), « -+, P,(0a)} is an orthonormal basis of D, if P s a
suitable constant.

Lemma 5.2 implies O,: D,—D,. As we have Lemma 1 and D, is
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orthogonal to D; by Theorem 7.1, we get O,: D,— D,. Similarly we have
O,: D,—D; and O;: D,— D,. In this way we get from Lemma 1, Lemma
5.2 and Theorem 7.1 the following theorem.

THEOREM 7.2. D; and D; are invariant subspaces of D;, under the
action of SO4). FEach element of D; (resp. D;) is imvariant under the
action of O, (resp. O,).

§8. Relation between 18 parameters and the coefficients of the
harmonic polynomial a(x).

First we give an example. If a is given by

8.1) a(x, ¥, 2) =8x*—24x*(y’+2")+8(y* +¢")’,
we have, for C{,
a,=2[3, as=a,=1/4,

e=0, f=5/12-18), ¢=5/(9-13),
ah¢j=0 ’

and, for C{*,
a,=2/3, o,=a,=1/2,
e=0, f=-5/12-13), g=-5/(9-18),
a,.‘,»=0 .

These results can be obtained directly from (3.3) and (3.4). But_we
can take the following convenient way. '

Taking unit vectors v and w we get from the definition of C\®

C¥ (v, v, », v; w, w, w, W)
=a***{Lw, v){Iyw, v){Lyw, v){lw, v) ,
C®¥ (v, v, v, v; Lw, Iy, L, I,v)
=a I Ly, v)XI} I, v){I.Iw, v){ILv, v)
= a‘z#vsxasl ﬂam’8w
:a“ﬁﬂ ,
and, similarly,
CP (v, v, v, v; Jv, Jpv, Jrv, Jw)=a*" .

Then, putting v=¢,, v=6,, or v=e, we get
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a™=C(1111, 2222)=C'(1111, 2222) ,
a?2=C® (1111, 3333)=C!" (1111, 3333) ,
a8 =C{ (1111, 4444)=C» (1111, 4444) ,

a'?= —C (1111, 2228)= —C{* (1111, 2223) ,
o™= —C{”(1111, 2224)=C{” (1111, 2224) ,
a**= —C (1111, 2333) = —C{* (1111, 2833) ,
a® = —Ci (1111, 2444)=C{ (1111, 2444) ,
a®®=C{ (1111, 3334) = —C{” (1111, 3334) ,
@™ =C{ (1111, 3444)= —C{ (1111, 8444) ,

allﬂ:C}ﬂ(zzzz, 1114) = —C{» (2222, 1114) ,
a'®= —C» (2222, 1113) = —C{"(2222, 1113) ,
a'*?=C" (2222, 1444) = — C{" (2222, 1444) ,
a®® = —C{" (2222, 1333) = —C!"(2222, 1333) ,
a®®= —(C{”(3333, 1112)= —C§ (8338, 1112) ,
a®*®= —C" (8383, 1222) = — C{" (3383, 1222) .

From the above equations we can calculate parameters a,; and a,;.
In order to calculate parameters e, f, g, we take

a****=C{® (v, v, v, v; L, Lw, Iw, Iw),
put v=e, cos §+¢;sin # and differentiate twice with respect to 4. Then,
putting =0, we get
3C® (v, v, w, w; Lo, I, Iy, Iv)
+3C (v, v, v, v; Lw, Iy, Lw, Lw)
+8C¥® (v, v, v, w; I, L, Iv, I,w) |
—2C¥ (v, v, v, v; Lw, ILw, Iw, Iv)=0

where v=e, w=e;. Let us fix ¢=1, Then putting 57=2,3,4 and a=
2,3,1, we get

2C{» (1111, 3333) =3C{* (1122, 3333) +3C{* (1111, 3344)+8C{¥ (1112, 3334) ,
2C“"(1111 4444)=3C{* (1188, 4444)+8C{"(1111, 2244) +8C{" (1118, 4442) ,
2C (1111, 2222) =3C{» (1144, 2222) +3C{* (1111, 2233) +8C{* (1114, 2223) .

Similarly, we get

2C{ (1111, 3333)=3C{" (1122, 3383) +3C{* (1111, 3344) —8C§’'(1112, 3334) ,
2C (1111, 4444)=3C5"(1133, 4444)+3C* (1111, 2244)—8C/* (1113, 4442) ,
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2C* (1111, 2222) =8C'* (1144, 2222)+3C'* (1111, 2233) —8C{* (1114, 2223) .

Thus we can express 18 parameters in terms of a*** as follows, where
we understand by + (resp. F)+ for I and — for J (resp. — for I and
+ for J):

a,=a'/12, a,=a**/12, a,=a**/12,

Q= —0""%[12, @uw=Fa""/12, ap,==xa""/12,
Qo= —a""2[12 , Qo=TFa"/12, a,=xa®/12,
Qo= —0a"%12 , Qp,=+a"™/12, a,=—0a"*/12,
Qo= — P12, py=+a"*/12, a=—a"*/12,
Biz,u=(F3a,+ba,;+3a,,)/6 ,
Bus.ee=(F3a,£5a,,+3a,,)/6 ,

B,z =(F3ayt5a;; +3a,)/6 .

§9. A subgroup of SO(4) and some elements of D;,.

The result of the infinitesimal action of J, on C{ is, as a*** are
symmetric,

G 0 Ty, 1) W3, V) (S W3, V) T, W4, V)
=4.5,F0 2 ((J Jyw,, v +<Jwy, J10,))
(2w, Vo) (T Wy, V) <{J W4y V) ©

The derivative ‘a is obtained as follows. As we have
<J‘J1'w, v> + <J:w: Jl”) = <(J,J1—J1J,)w, v,
we get for the right-hand-side

8.5, F (@ {Jyw,, v,) —a**{Jyw,, v,))
(T sy Vo) T sy VsY T 04 V)
hence _
Qe = 2(55a Y + O3a 4 0La P + O3at A — Of it — Bia M — OLat — ByateAE) |
Thus we have

’allll,___o , ’a2222=8a2228 , raassa= ___8a2388 ,
ramz — 2a1118 , rams —_— 2a1112 ,

’a1222 — 6a1228 , lams —_— 6a1238 ,
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’a2228 — 6a2283 — 2a2222 , » ’a2838 — 2a8883 — 6a2283 ,
’a1122 —_ 4a1128 , ’a1188 —_— — 4a1123 ,

’a2288 — 4a2838 — 4a2223 ,

’a1238 — 2a1383 — 4a1228 , 'a1228 — 4a1288 —_ 2a1222 ,
'a1128 - 2a1188 — 2a1122 .

If C® is invariant under the action of the one-parameter group
generated by J,, namely, if ‘a** vanish, then a*** must be such that

— y8888 2 . ,y1188
a2222 =a — 3a2233 , a112 =q ,

and other a*** vanish except a'''. As we have >, a***=0, we get

allll — 8a , a2222 —_ aasss —_ 3a ,
aR=g"= 4y, =g,

where « is arbitrary.

The same result is obtained when C{® is invariant under the action
of the one-parameter group generated by I,.

Any element C of D}, can be written as

C=CP+CP .

On the other hand we have Theorem 7.2. Thus we have the following
theorem.

THEOREM 9.1. Let C be an invariant element of D;, under the action
of the subgroup G,, of SO(4) generated by J, and I, Then C is a
linear combination of C® and C® where a is given by (8.1). The con-
verse is also true.

For a standard minimal immersion % of order 4 the associated tensor
h,. is invariant under the action of SO(4). Thus we have the following
corollary.

COROLLARY 9.2. If for an isometric minimal immersion f of order
4 the associated temsor f,, is such that f,,—h,, is a linear combination
of C¥ and C{® where a is given by (8.1), then f,, is invariant under the
action of G,,. Consequently, for any ge€G,, we have f(gu)=+(9)f(u),
u € S*(1), where (g) 18 an element of the isometry of S*(r).

Proor. If we put f(gu)="f(u), then f and ’f belong to the same
equivalence class and consequently there exists an element 4+(g) of SO(25)

[3].
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