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Introduction

Let $(M, I, g)$ be a parahermitian symmetric space [2] which is identi-
fied with a co-adjoint orbit of a real simple Lie group with Lie algebra
$\mathfrak{g}$ . Such a manifold $M$ can be expressed as an affine symmetric coset
space $G/C(Z)$ , where $G$ is the analytic subgroup generated by $\mathfrak{g}$ in the
simply connected Lie group corresponding to the complexification of $\mathfrak{g}$ ,
and $C(Z)$ is the centralizer in $G$ of an element $Ze\mathfrak{g}$ satisfying the con-
dition $(C)$ (see \S 1).

The purpose of this paper is to study the isotropy subgroup $C(Z)$–the
number of its connected components and the structure of the identity
component. Our method here is classification-free. A main result is
Theorem 3.7, which is efficiently used in Kaneyuki and Williams [3], [4],

in applying the method of geometric quantization.

NOTATIONS.
$G^{0}$ the identity component of a Lie group $G$ ,
$G_{\alpha}$ the set of elements in $G$ left fixed by an automorphism $\alpha$ of $G$ ,
$C^{*}$ (resp. $R^{*}$ ) the multiplicative group of non-zero complex (resp. real)

numbers,
$R^{+}$ the multiplicative group of positive real numbers,
$i$ $=\sqrt{-1}$ .

\S 1. Symmetric triples.

Let $\mathfrak{g}$ be a real simple Lie algebra and $\mathfrak{h}$ be a subalgebra of $\mathfrak{g}$ and
$\sigma$ be an involutive automorphism of $\mathfrak{g}$ such that $\mathfrak{h}$ is the set of $\sigma- fixed$

elements in $\mathfrak{g}$ . Then the triple $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is called a simple symmetric
triple. Suppose further that $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ satisfies the following condition (C)

(which is equivalent to $(C_{3})$ in [2]):
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(C) there exists an element $Z\in \mathfrak{g}$ such that ad $Z$ is a semisimple opera.
tor with eigenvalues $0,$ $\pm 1$ only and that $\mathfrak{h}$ is the centralizer of 2
in $\mathfrak{g}$ .

We will denote by $\mathfrak{m}^{\pm}$ the $\pm 1$ eigenspaces in $\mathfrak{g}$ of ad $Z$ and put $m=2\mathfrak{n}^{+}+m^{-}($

Then it is known [5] that the center $8(\mathfrak{h})$ of $\mathfrak{h}$ is of one or two dimension
over R. $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is said to be of the first category or of the seconi
category, according as dim $\int(\mathfrak{h})=1$ or 2. If $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is of the second
category, then $\mathfrak{g}$ has a structure of complex Lie algebra and $\sigma$ is an
involutive automorphism of $\mathfrak{g}$ , regarded as the complex Lie algebra $[5]_{1}$

in particular, $\mathfrak{h}$ is a complex subalgebra of $\mathfrak{g}$ . Let $\{\mathfrak{g}_{0}, \mathfrak{h}_{0}, \sigma\}$ be of $th\epsilon$

first category, and let $\mathfrak{g}$ and $\mathfrak{h}$ be the complexifications of $\mathfrak{g}_{0}$ and $\mathfrak{h}_{0}$ ,
respectively. Then the triple $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ satisfies the condition (C) and it is
of the second category, where $\sigma$ is the C-linear extension of the original
$\sigma$ on $\mathfrak{g}_{0}$ .

\S 2. Symmetric triple of the second category.

Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be a (complex) simple symmetric triple of the second
category (which satisfies the condition $(C)$). The subalgebra $\mathfrak{h}$ is then
reductive and can be written as the direct sum of complex ideals,

(2.1) $\mathfrak{h}=@+8(\mathfrak{h})$ ,

where 6 is the commutator (semisimple) subalgebra $[\mathfrak{h}, \mathfrak{h}]$ of $\mathfrak{h}$ and $\int(\mathfrak{h})$ is
the center of $\mathfrak{h}$ . Let us denote by $G$ the simply connected (complex) Lie
group generated by Lie $G=\mathfrak{g}$ , and let $H$ be the analytic subgroup of $G$

corresponding to $\mathfrak{h}$ . We extend $\sigma$ to an involutive automorphism of $G$ ,
which is denoted again by $\sigma$ . Then $H$ coincides with the set of a-fixed
elements in $G[5]$ , and so it is closed in $G$ . Let us denote by $S$ the
(closed) analytic subgroup of $G$ corresponding to B. Then we can write

(2.2) $H=SZ(H)$ ,

where $Z(H)$ is the analytic subgroup of $G$ corresponding to $8(\mathfrak{h})$ .
LEMMA 2.1. $Z(H)\cong C^{*}$ .
PROOF. It is known [5] that the Lie algebra $\partial(\mathfrak{h})$ is generated by

both elements $Z$ in the condition (C) and $iZ$, which satisfies

(2.3) $ad_{u}iZ=\left\{\begin{array}{ll}i & on m^{+} ,\\-i & on m^{-}.\end{array}\right.$
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From this it follows that $Ad_{\mathfrak{g}}Z(H)$ is isomorphic with $C^{*}$ . On the other
hand, $G$ is complex simple and so its center is finite. Therefore $Z(H)$ is
isomorphic with $C^{*}$ .

Let $\tau$ be a Cartan involution of $\mathfrak{g}$ which commutes with $\sigma$ . Then we
have the corresponding Cartan decomposition

(2.4) $\mathfrak{g}=f+il$ ,

where $f$ is a maximal compact subalgebra of $\mathfrak{g}$ . The subalgebra $\mathfrak{h}$ and
consequently @ and $\int(\mathfrak{h})$ are stable under $\tau$ . Therefore we have

(2.5) $\mathfrak{h}=\mathfrak{h}\cap f+\mathfrak{h}\cap if$ ,

(2.6) @=@\cap f+@\cap if,

(2.7) $8(\mathfrak{h})=8(\mathfrak{h})\cap f+8(\mathfrak{h})\cap if$ .
(2.6) is a Cartan decomposition of 6. Let $K,$ $K_{s},$ $K_{Z}$ be the analytic
subgroups of $G$ generated by $l$ , @\cap f, $8(\mathfrak{h})\cap 1$ which are maximal compact
subgroups of $G,$ $S,$ $Z(H)$ , respectively. Then we have

(2.8) $G=K\cdot P$ , $K\cap P=(1)$ ,

(2.9) $S=K_{s}\cdot P_{s}$ , $K_{s}\cap P_{s}=(1)$ ,

(2.10) $Z(H)=K_{Z}\cdot P_{Z}$ , $K_{Z}\cap P_{Z}=(1)$ ,

where $P=\exp if,$ $P_{s}=\exp(@\cap if)$ and $P_{Z}=\exp(8(\mathfrak{h})\cap iI)$ .
LEMMA 2.2. $\Gamma=S\cap Z(H)$ is a finite cyclic group.

PROOF. Let us take an arbitrary element $ a\in\Gamma$ . Then, by (2.9) and
(2.10), $a$ can be written as $a=k_{1}$ exp $X_{1}=k_{2}$ exp $X_{2}$ , where $k_{1}\in K_{s},$ $X_{1}\in@\cap if$ ,
$k_{2}\in K_{Z}$ and $X_{2}\in\partial(\mathfrak{h})\cap if$ . Noting that $[X_{1}, X_{2}]=0$ , we have $k_{2}^{-1}k_{1}=\exp(X_{2}$-

$X_{1})$ . So, from (2.8) it follows that $k_{2}^{-1}k_{1}=\exp(X_{2}-X_{1})=1$ . Since $exp:if\rightarrow P$

is a diffeomorphism, we get $X_{1}=X_{2}\in@\cap\partial(\mathfrak{h})=(0)$ . Thus we obtain $a=k_{2}\in K$.
Since $S$ and $Z(H)$ are closed in $G,$ $\Gamma$ is closed in the compact group $K$.
Hence, from Lemma 2.1 it follows that $\Gamma$ is a finite cyclic group.

REMARK 2.3. By general theory of parabolic subgroups of complex
semisimple Lie groups, the centralizer $\tilde{C}(Z)$ of $Z$ in $G$ is connected:

(2.11) $\tilde{C}(Z)=H$ .
LEMMA 2.4. $S$ is simply connected.

PROOF. Let us put $M^{+}=\exp m^{+}\subset G$ . Then the coset space $G/H$ is



486 SOJI KANEYUKI AND MASATO KOZAI

the cotangent bundle of $G/H\cdot M^{+}=K/K\cap H$ which is a compact $irreducibl\epsilon$

hermitian symmetric space (cf. Takeuchi [6]). $K^{*}:=K\cap H$ is a maximal
compact subgroup of $H$. This implies that $\pi_{1}(H)\cong\pi_{1}(K^{*})$ . Let us considel
the exact sequence of the homotopy groups:

(2.12) $\rightarrow\pi_{2}(K^{*})\rightarrow\pi_{2}(K)\rightarrow\pi_{2}(K/K^{*})\rightarrow\pi_{1}(K^{*})$

$\rightarrow\pi_{1}(K)\rightarrow\cdots$

Since $K$ is simply connected, compact, semisimple, we have $\pi_{l}(K)=\pi_{1}(K)=t$

(E. Cartan [1]). Therefore $\pi_{2}(K/K^{*})\cong\pi_{1}(K^{*})$ , $K/K^{*}$ is a compact her.
mitian symmetric space, and so $\pi_{1}(K/K^{*})=0$ . Hence, by the Hurewicz
isomorphism, we have $\pi_{2}(K/K^{*})\cong H_{2}(K/K^{*}, Z)$ . But it is well-known that
$H_{2}(K/K^{*}, Z)\cong Z$. Under the covering homomorphism of $S\times Z(H)$ ontc
$H=SZ(H),$ $\pi_{1}(S\times Z(H))$ is regarded as a subgroup of $\pi_{1}(H)\cong\pi_{1}(K^{*})\cong$

$H_{2}(K/K^{*}, Z)\cong Z$. Also, by Lemma 2.1, we have $\pi_{1}(S\times Z(H))\cong\pi_{1}(S)\times$

$\pi_{1}(Z(H))\cong\pi_{1}(S)\times Z$. Therefore we should have $\pi_{1}(S)=0$ .
LEMMA 2.5. We have the decomposition

(2.13) $H=\tilde{S}\cdot P_{Z}$ , (direct product)

where $\tilde{S}=SK_{Z}$ and $P_{Z}\cong R^{+}$ .
PROOF. $\Gamma=S\cap Z(H)$ is a finite group and so it is contained in the

maximal compact subgroup $K_{z}$ of $Z(H)$ . Take an element $r\in SK_{z}\cap P_{4^{r}}$

and write $r=st$ , where $s\in S,$ $teK_{z}$ . Then $s=rt^{-1}eS\cap Z(H)=\Gamma\subset K_{Z}$ .
Hence $r=st\in K_{Z}\cap P_{Z}=(1)$ (cf. (2.10)).

\S 3. Symmetric triple of the first category.

Let $\{\mathfrak{g}_{0}, \mathfrak{h}_{0}, \sigma\}$ be a simple symmetric triple of the first category satis.
fying the condition (C). Let $\mathfrak{g}$ and $\mathfrak{y}$ be the complexifications of $\Re$ and
$\mathfrak{y}_{0}$ , respectively. Then, as is mentioned in \S 1, $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is a $(complex^{\backslash }$,
simple symmetric triple of the second category. All arguments in \S 2
are then valid for $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ here. We will keep the notations in \S 2.

LEMMA 3.1. The element $Ze\mathfrak{g}_{0}$ satisfying the condition (C) is $con$ .
tained in $8(\mathfrak{h})\cap if;8(\mathfrak{h})$ is spanned by $Z$ and $iZ$ over $R$ .

PROOF. (C) implies that the eigenvalues of ad $Z$ on $\mathfrak{g}$ are also $0,$ $\pm 1\downarrow$

By (2.7) we can write $Z=Z^{\prime}+Z^{\prime}’,$ $Z^{\prime}\in \mathfrak{z}(\mathfrak{y})\cap f,$ $Z^{\prime}\in 8(\mathfrak{h})\cap if$ . We $hav\epsilon$

ad $Z=adZ^{\prime}+adZ$“; here ad $Z$’ is a semisimple operator and has purely
imaginary eigenvalues only, and ad $Z^{j}$’ is also semisimple with real
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eigenvalues only. So, ad $Z^{\prime}=0$ and consequently $Z^{\prime}=0$ . Hence we get
$Z=Z^{\prime}\in 8(\mathfrak{h})\cap if$ . The second assertion is evident, since $8(\mathfrak{h})$ is the com-
plexification of the center $8(\mathfrak{h}_{0})$ of $\mathfrak{h}_{0}$ .

Let $G_{0}$ be the analytic subgroup of $G$ generated by $\mathfrak{g}_{0}$ , and $C(Z)$ be
the centralizer of $Z$ in $G_{0}$ . The conjugation $\theta$ of $\mathfrak{g}$ with respect to $\mathfrak{g}_{0}$

extends to an involutive automorphism of $G$ which is denoted again by $\theta$ .
LEMMA 3.2. We have

(3.1) $C(Z)=H_{\theta}$ ,

where $H_{\theta}$ denotes the set of elements in $H$ left fixed by $\theta$ .
PROOF. Since $G$ is simply connected, the set $G_{\theta}$ of $\theta- fixed$ elements

in $G$ is connected; so we have $G_{\theta}=G_{0}$ . Let $\tilde{C}(Z)$ be the centralizer of $Z$

in $G$ . Then, by (2.11), we get $H=\tilde{C}(Z)$ . Therefore $ H_{\theta}=(\tilde{C}(Z))_{\theta}=\tilde{C}(Z)\cap$

$G_{0}=C(Z)$ .
Since $\Gamma$ is a finite cyclic group, it is given by

(3.2) $\Gamma=\{1, z, z^{2}, \cdots, z^{m-1}\}\cong Z_{n}$ .
Let $ 2\Gamma$ be the subgroup of the squares of elements in $\Gamma$ . We will define
a homomorphism $\omega$ of $C(Z)$ to $\Gamma/2\Gamma\cong Z_{2}$ . Let us take an arbitrary ele-
ment $x\in C(Z)$ and write it in the form

(3.3) $x=ab$ , where $a\in S$ and $b\in Z(H)$ .
Then we have the following

LEMMA 3.3. The element $y=a^{-1}\theta(a)=b\theta(b^{-1})$ is in $\Gamma$ .
PROOF. Since $xeG_{0}$ , we have $a^{-1}\theta(a)=b\theta(b^{-1})$ . $\theta$ leaves $\mathfrak{h}$ stable and

so does B. Since $S$ is connected, we get $\theta(a)\in S$ . By Lemma 3.1, $\theta(b^{-1})\in$

$Z(H)$ . So we get $ a^{-1}\theta(a)=b\theta(b^{-1})\in S\cap Z(H)=\Gamma$ .
We define a map $\omega$ by putting

(3.4) $\omega(x)=[y]$ ,

where $[y]$ denotes the equivalence class of $y$ in $\Gamma/2\Gamma$ . It can be verified
(cf. Proof of Theorem 3.5 below) that $\omega(x)$ is well-defined, that is, $\omega(x)$

does not depend on the choices of $a$ and $b$ in (3.3).

LEMMA 3.4. $\omega:C(Z)\rightarrow\Gamma/2\Gamma$ is a homomorphism.

PROOF. Take two elements $x=ab,$ $x_{1}=a_{1}b_{1}$ , where $a,$ $a_{1}\in S$ and $b$ ,
$b_{1}\in Z(H)$ . Then, since $a^{-1}\theta(a)\in\Gamma\subset Z(H)$ , we have $a^{-1}\theta(a)\cdot a_{1}^{-1}\theta(a_{1})=$
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$a_{1}^{-1}(a^{-1}\theta(a))\theta(a_{1})=(aa_{1})^{-\iota}\theta(aa_{1})$ , which implies $\omega(x)\omega(x_{1})=\omega(xx_{1})$ . Let $\pi b\langle$

the natural projection of $\Gamma$ onto $\Gamma/2\Gamma$ . We denote $\pi^{-1}(\omega(C(Z)))$ by $\Gamma_{0}$

which is a subgroup of $\Gamma$ . Note that $\omega(C(Z))=\Gamma_{0}/2\Gamma$ .
THEOREM 3.5. $S_{\theta}Z(H)_{\theta}$ is a normal subgroup of $C(Z)$ , and $\omega$ induce.

the fouowing isomorphism:

(3.5) $C(Z)/S_{\theta}Z(H)_{\theta}\cong\Gamma_{0}/2\Gamma$ .
PROOF. Let us take an element $x\in S_{\theta}Z(H)_{\theta}$ . We can write $x$ in $tw($

ways: $x=ab=a_{1}b_{1}$ , where $a\in S_{\theta},$ $b\in Z(H)_{\theta},$ $a_{1}\in S,$ $b_{1}eZ(H)$ . Then we ge
$ a_{1}^{-1}a=b_{1}b^{-1}eS\cap Z(H)=\Gamma$ , and so we have $a=a_{1}z^{l},$ $b_{1}=bz^{l}$ . $\Gamma$ is a $finit_{t}$

subgroup of $Z(H)$ and so it is contained in a unique maximal compac
subgroup $K_{Z}$ of $Z(H)$ . Since $K_{Z}=\exp RiZ$, we have $\theta(\gamma)=\gamma^{-1}$ for $\gamma\in\Gamma$

Noting this in mind, $ a_{1}^{-1}\theta(a_{1})=(az^{-l})^{-1}\theta(az^{-l})=z^{l}a^{-1}\theta(a)z^{l}=z^{2l}\in 2\Gamma$ , whicl
implies $ S_{\theta}Z(H)_{\theta}\subset Ker\omega$ .

Conversely, let us take $ x\in$ Ker $\omega$ , and write it in the form of (3.3)
Then $ y=a^{-1}\theta(a)=b\theta(b^{-1})\in 2\Gamma$ ; we write $y=y_{1}^{2},$ $ y_{1}\in\Gamma$ . Then we put $x=a_{1}b_{1}$

where $a_{1}=ay_{1}$ and $b_{1}=y_{1}^{-1}b$ . Then we have $\theta(a_{1})=\theta(ay_{1})=\theta(a)\theta(y_{1})=\theta(a)y_{1}^{-1}=$

ayg71 $=ay_{1}=a_{1}$ , which implies $a_{1}eS_{\theta}$ . Analogously we have $\theta(b_{1})=b_{1}$ , whicl
implies $b_{1}eZ(H)_{\theta}$ . These arguments show that Ker $\omega\subset S_{\theta}Z(H)_{\theta}$ .

Let $\varphi$ be the isomorphism of $Z(H)$ onto $C^{*}$ given in Lemma 2.1, an $($

let us consider the conjugation $\theta=\varphi\theta\varphi^{-1}$ of $C^{*}$ . Then it is easily verifie $($

that $\theta$ is the restriction of the usual complex conjugation of $C$ to $C^{*}$

Therefore $\varphi(Z(H)_{\theta})=(\varphi(Z(H)))_{\overline{\theta}}=C_{\tilde{\theta}}^{*}=R^{*}$ . We will give the structure $0$

the subgroup $S_{\theta}Z(H)_{\theta}$ .
LEMMA 3.6. If $m$ in (3.2) is odd, then

(3.6) $S_{\theta}Z(H)_{\theta}\cong S_{\theta}\times Z(H)_{\theta}\cong S_{\theta}\times R^{*}$ ;

if $m$ is even, then $S_{\theta}Z(H)_{\theta}$ is connected and

(3.7) $S_{\theta}Z(H)_{\theta}\cong S_{\theta}\times R^{+}$

PROOF. Suppose first that $m$ is odd. Then it is enough to shov
$S_{\theta}\cap Z(H)_{\theta}=(1)$ . From the fact mentioned just before the lemma, it fol
lows that

(3.8) $\varphi(S_{\theta}\cap Z(H)_{\theta})=\varphi(\Gamma\cap Z(H)_{\theta})$

$=\varphi(\Gamma)\cap\varphi(Z(H)_{\theta})=\varphi(\Gamma)\cap R^{*}$ .
$\varphi(\Gamma)$ here, isomorphic to $Z_{n}$ , is a cyclic subgroup of $U(1)$ , and so $\varphi(I$

is the group of the m-th roots of unity. Since $m$ is odd, $-1\in R^{*}$ is no
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contained in $\varphi(\Gamma)$ . Therefore $\varphi(\Gamma)\cap R^{*}=(1)$ , which implies $S_{\theta}\cap Z(H)_{\theta}=$

(1).
Let us consider next the case where $m$ is even. In this case,

the group $\varphi(\Gamma)$ contains $-1$ , and so $\varphi(\Gamma)\cap R^{*}=\{\pm 1\}$ . On the other
hand, since $Z(H)_{\theta}$ is a central subgroup in $C(Z)$ , we have the isomor-
phisms

(3.9) $S_{\theta}Z(H)_{\theta}\cong(S_{\theta}\times Z(H)_{\theta})/S_{\theta}\cap Z(H)_{\theta}$

$\cong(S_{\theta}\times R^{*})/\{\pm 1\}$ .
The natural projection $\pi$ of $S_{\theta}\times R^{*}$ onto $(S_{\theta}\times R^{*})/\{\pm 1\}$ induces an iso-
morphism of $S_{\theta}\times R^{+}$ onto $(S_{\theta}\times R^{*})/\dagger\pm 1$ }.

THEOREM 3.7. Let $\{\mathfrak{g}_{0}, \mathfrak{h}_{0}, \sigma\}$ be a simple symmetric triple of the first
category satisfying the condition (C). Let $G_{0}$ be the analytic subgroup,
generated by $\mathfrak{g}_{0}$ , of the simply connected Lie group corresponding to the
complexification of $\mathfrak{g}_{0}$ . Let $C(Z)$ be the centralizer of $Z$ in $G_{0}$ whose
identity component is denoted by $C^{0}(Z)$ , and let $S_{0}$ be the analytic sub-
group of $C(Z)$ generated by the commutator subalgebra $e_{0}=[\mathfrak{h}_{0}, \mathfrak{h}_{0}]$ . Then,

if $m$ in (3.2) is odd, then

(3.10) $C(Z)\cong S_{0}\times R^{*}$

If $m$ in (3.2) is even, then

(3.11) $C^{0}(Z)\cong S_{0}\times R^{+}$ ;

furthermore, in this case, we have $[C(Z):C^{0}(Z)]=1$ or 2, according as
$\Gamma_{0}=2\Gamma$ or $\Gamma_{0}=\Gamma$ .

PROOF. By Lemma 2.4, $S$ is simply connected and so $S_{\theta}$ is connected
[5]. Therefore we have $S_{\theta}=S\cap G_{0}=S_{0}$ . Suppose first that $m$ is odd.
Then $ 2\Gamma=\Gamma$ and so $\Gamma_{0}=2\Gamma$ . By Theorem 3.5 and Lemma 3.6, we have
the first assertion. The other case follows also from Theorem 3.5 and
Lemma 3.6.
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