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Introduction

Let (M, I, g) be a parahermitian symmetric space [2] which is identi-
fied with a co-adjoint orbit of a real simple Lie group with Lie algebra
g. Such a manifold M can be expressed as an affine symmetric coset
space G/C(Z), where G is the analytic subgroup generated by g in the
simply connected Lie group corresponding to the complexification of g,
and C(Z) is the centralizer in G of an element Zeg satisfying the con-
dition (C) (see §1).

The purpose of this paper is to study the isotropy subgroup C(Z)—the
number of its connected components and the structure of the identity
component. Our method here is classification-free. A main result is
Theorem 3.7, which is efficiently used in Kaneyuki and Williams [3], [4],
in applying the method of geometric quantization.

NOTATIONS.
G° the identity component of a Lie group G,
G, the set of elements in G left fixed by an automorphism a of G,
C* (resp. R*) the multiplicative group of non-zero complex (resp. real)

numbers,
R* the multiplicative group of positive real numbers,
i =v-1.

§1. Symmetric triples.

Let g be a real simple Lie algebra and § be a subalgebra of g and
o be an involutive automorphism of g such that § is the set of o-fixed
elements in g. Then the triple {g, §, g} is called a simple symmetric
triple. Suppose further that {g, ¥, o} satisfies the following condition (C)
(which is equivalent to (C;) in [2]):
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(C) there exists an element Ze€g such that ad Z is a semisimple opera-
tor with eigenvalues 0, +1 only and that § is the centralizer of Z
in g.

We will denote by m* the +1 eigenspaces in g of ad Z and put m=m*+m.
Then it is known [5] that the center 3() of § is of one or two dimension
over R. {g, b, o} is said to be of the first category or of the second
category, according as dim§(H)=1 or 2. If {g, , o} is of the second
category, then g has a structure of complex Lie algebra and ¢ is an
involutive automorphism of g, regarded as the complex Lie algebra [5];
in particular, h is a complex subalgebra of g. Let {g, B, o} be of the
first category, and let g and § be the complexifications of g, and §,,
respectively. Then the triple {g, 9, o} satisfies the condition (C) and it is
of the second category, where ¢ is the C-linear extension of the original
o on g,

§2. Symmetric triple of the second category.

Let {g, b, 0} be a (complex) simple symmetric triple of the second
category (which satisfies the condition (C)). The subalgebra § is then
reductive and can be written as the direct sum of complex ideals,

(2.1) b=38+3(H) ,

where 3 is the commutator (semisimple) subalgebra [, §] of § and 3(p) is
the center of ). Let us denote by G the simply connected (complex) Lie
group generated by Lie G=g, and let H be the analytic subgroup of G
corresponding to §. We extend o to an involutive automorphism of G,
which is denoted again by o. Then H coincides with the set of ¢-fixed
elements in G [5], and so it is closed in G. Let us denote by S the
(closed) analytic subgroup of G corresponding to 8. Then we can write

(2.2) H=SZH),
where Z(H) is the analytic subgroup of G corresponding to 3().
LEMMA 2.1. Z(H)=C*.

PrOOF. It is known [5] that the Lie algebra 3(§) is generated by
both elements Z in the condition (C) and ¢Z, which satisfies

1 on mt,

2.3) adu’iZ={ . -
—17 on m~.
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From this it follows that Ad,Z(H) is isomorphic with C*. On the other
hand, G is complex simple and so its center is finite. Therefore Z(H) is
isomorphic with C*.

Let = be a Cartan involution of g which commutes with ¢. Then we
have the corresponding Cartan decomposition

2.4 g=1+1t,

where f is a maximal compact subalgebra of g. The subalgebra b and
consequently 8 and 3(§) are stable under z. Therefore we have

(2.5) h=pnt+Hnat,
(2.6) 3=8Nt+3nit,
(2.7) 3 =3O Nt+3H N3t .

(2.6) is a Cartan decomposition of 8. Let K, K;, K, be the analytic
subgroups of G generated by £, 83N¥, 3(9) Nt which are maximal compact
subgroups of G, S, Z(H), respectively. Then we have

(2.8) G=K-P, KnNnP=Q1),
(2-9) S=KS’PS ’ KsnPs=(1) ’
(2.10) Z(H)=K;-P,, K,NP;=(Q1),

where P=exp if, Ps=exp(8Nif) and P,=exp(3(H) N<E).
LEMMA 2.2. I'=SNZ(H) is a finite cyclic group.

PROOF. Let us take an arbitrary element a €I'. Then, by (2.9) and
(2.10), a can be written as a=Fk, exp X,=k, exp X,, where k, € K, X,e8n:1l,
k.e K, and X,e3H)nit. Noting that [X,, X,]=0, we have k;'k,=exp(X,—
X,). So, from (2.8) it follows that k;'k,=exp(X,—X,)=1. Since exp: it—P
is a diffeomorphism, we get X, =X, c8N3(H)=(0). Thus we obtaina=k, € K.
Since S and Z(H) are closed in G, I" is closed in the compact group K.
Hence, from Lemma 2.1 it follows that I" is a finite eyclic group.

REMARK 2.3. By general theory oi; parabolic subgroups of complex
semisimple Lie groups, the centralizer C(Z) of Z in G is connected:

(2.11) C(Z)=H.
LEMMA 2.4. S 18 simply connected.

PROOF. Let us put Mt=expm*cCG. Then the coset space G/H is



486 SOJI KANEYUKI AND MASATO KOZAI

the cotangent bundle of G/H-M*=K/KN H which is a compact irreducible
hermitian symmetric space (cf. Takeuchi [6]). K*:=KNH is a maximal
compact subgroup of H. This implies that z,(H)=x,(K*). Let us consider
the exact sequence of the homotopy groups:

(2.12) s T K*) — my(K) — n(K/K*) — (K *)

_.__.,n'l(K)__-)... .

Since K is simply connected, compact, semisimple, we have 7,(K )=m,(K)=0
(E. Cartan [1]). Therefore n,(K/K*)=xn,(K*), K/K* is a compact her-
mitian symmetric space, and so 7=,(K/K*)=0. Hence, by the Hurewicz
isomorphism, we have n,(K/K*)= H(K/K*, Z). But it is well-known that
H(K/K*, Z)=Z. Under the covering homomorphism of SxZ(H) onto
H=SZ(H), n(SxZ(H)) is regarded as a subgroup of T.(H)=r(K*)=
H(K/K*, Z)=Z. Also, by Lemma 2.1, we have 7m,(SxZ(H))=r,S)Xx
n(Z(H))=n(S)xZ. Therefore we should have x,(S)=0.

LEMMA 2.5. We have the decomposition
(2.13) H=S8.P,, (direct product)
where S=SK, and P,=R*.

PrROOF. I'=SNZ(H) is a finite group and so it is contained in the
maximal compact subgroup K, of Z(H). Take an element r ¢ SK, NP,
and write r=st, where 8¢S, teK,. Then s=rt*eSNZ(H)=I'cK,.
Hence r=ste K;NP,=(1) (cf. (2.10)).

§$3. Symmetric triple of the first category.

Let {g, B, o} be a simple symmetric triple of the first category satis-
fying the condition (C). Let g and § be the complexifications of g, and
B, respectively. Then, as is mentioned in §1, {g, §, g} is a (complex)
simple symmetric triple of the second category. All arguments in §2
are then valid for {g, §, o} here. We will keep the notations in §2.

LEMMA 3.1. The element Zeg, satisfying the condition (C) is con-
tained in 3(H)N1<t; 3(B) s spanned by Z and 1Z over R.

ProoF. (C) implies that the eigenvalues of ad Z on g are also 0, =+1.
By (2.7) we can write Z=2'+2", Z'e3®)Nt, Z"ec3BH)Nil. We have
ad Z=ad Z’+ad Z"”; here ad Z’ is a semisimple operator and has purely
imaginary eigenvalues only, and ad Z” is also semisimple with real
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eigenvalues only. So, ad Z’=0 and consequently Z’=0. Hence we get
Z=2Z"e3®) N1t. The second assertion is evident, since 3(%) is the com-
plexification of the center (%, of §,.

Let G, be the analytic subgroup of G generated by g,, and C(Z) be
the centralizer of Z in G,. The conjugation § of g with respect to g,
extends to an involutive automorphism of G which is denoted again by 4.

LEMMA 3.2. We have
3.1) C(Z)=H,,
where H, denotes the set of elements in H vleft fixzed by 6.

PrOOF. Since G is simply connected, the set G, of #-fixed elements
in G is connected; so we have G,=G,. Let C(Z) be the centralizer of Z
in G. Then, by (2.11), we get H=C(Z). Therefore Ho=(5'(Z)),=C~'(Z)ﬂ
G,=C(Z).

Since I' is a finite cyclic group, it is given by

(3.2) I'={1,z22 .., 2" }\=2, .

Let 2I" be the subgroup of the squares of elements in I'. We will define
a homomorphism w of C(Z) to I')2I'=2Z,. Let us take an arbitrary ele-
ment € C(Z) and write it in the form

3.3) ' x=ab, where ae€S and beZ(H).
Then we have the following
LEMMA 3.3. The element y=a'0(a)=>00(b") s in I.

ProoOF. Since xeG,, we have a '6(a)=b6(b""). @ leaves § stable and
so does 8. Since S is connected, we get (a) € S. By Lemma 3.1, (b~ e
Z(H). So we get a '9(a)=bo(b")e SNZ(H)=T.

We define a map @ by putting

(3.4) w(x)=[y],

where [y] denotes the equivalence class of ¥ in I"/2I". It can be verified
(cf. Proof of Theorem 3.5 below) that w(x) is well-defined, that is, w(x)
does not depend on the choices of a and b in (3.8).

LEMMA 3.4. w:C(Z)—TI/2I" 18 a homomorphism.

ProoF. Take two elements z=ab, x,=a,b,, where a, a,€S and b,
b,e Z(H). Then, since a7 '9(a)e " Z(H), we have a'6(a)-a7'0(a,)=
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ar(a '0(a))b(a,) =(aa,)'6(aa,), which implies w(x)w(x,)=w(xx,). Let 7w be
the natural projection of I onto I'/2I". We denote " (w(C(Z))) by I,
which is a subgroup of I'. Note that w(C(Z))=I/2I.

THEOREM 3.5. S,Z(H), is a normal subgroup of C(Z), and w induces
the following isomorphism:

(3.5) C(Z)[SeZ(H)o=T,/2I" .

PROOF. Let us take an element z¢€S,Z(H),. We can write z in two
ways: t=ab=a,b,, where acS,, be Z(H),, a,€ S, b,e Z(H). Then we get
ata=bb'eSNZ(H)=I, and so we have a=a,?', b,=bz'. I is a finite
subgroup of Z(H) and so it is contained in a unique maximal compact
subgroup K, of Z(H). Since K,=exp Ri1Z, we have 6(v)=v"" for vel.
Noting this in mind, a;'0(a,)=(az"})0(az™})=2'a'6(a)z'=2* € 2I", which
implies S,Z(H),CKer w.

Conversely, let us take x € Ker w, and write it in the form of (3.3).
Then y=a"'0(a)=0b0(b") € 2I"; we write y=9%, y,€I'. Then we put 2=a,b,,
where a,=ay, and b,=y;'b. Then we have 0(a,)=0(ay,) =60(a)f(y.)=0(a)y: =
ayy:'=ay,=a,, which implies a, € S,. Analogously we have 6(b,)=b,, which
implies b, € Z(H),. These arguments show that Ker w CS,Z(H),.

Let @ be the isomorphism of Z(H) onto C* given in Lemma 2.1, and
let us consider the conjugation § =pfp~ of C*. Then it is easily verified
that § is the restriction of the usual complex conjugation of C to C*.

Therefore ¢(Z(H),)=(p(Z(H)));=C; =R*. We will give the structure of
the subgroup S,Z(H),.

LEMMA 3.6. If m in (3.2) is odd, then

(3.6) SeZ(H)y=Sy; X Z(H)y=S; X R* ;
wf m is even, then S,Z(H), is connected and
3.7 SyZ(H)y=S; X R* .

PrOOF. Suppose first that m is odd. Then it is enough to show

SsNZ(H)s=(1). From the fact mentioned just before the lemma, it fol-
lows that

(3.8) P(SyNZ(H)s)=p(I" N Z(H )s)
=p(INP(Z(H)s)=p(')N R* .

@(I") here, .isomorphic to Z,, is a cyclic subgroup of U(1), and so ¢(I")
is the group of the m-th roots of unity. Since m is odd, —1€ R* is not
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contained in @(I'). Therefore @(I")N R*=(1), which implies S,NZ(H),=
Q).

Let us consider next the case where m is even. In this case,
the group @(I") contains —1, and so @(I")NR*={=%1}. On the other
hand, since Z(H), is a central subgroup in C(Z), we have the isomor-
phisms

(3.9) SeZ(H )s=(Sy>x Z(H)s)[Se N Z(H )4
=(Syx R*)/{x1}.

The natural projection w of S;x R* onto (Sy;x R*)/{x1} induces an iso-
morphism of S,x R* onto (S,x R*)/{=*1}.

THEOREM 3.7. Let {g, %, o} be a simple symmetric triple of the first
category satisfying the condition (C). Let G, be the amnalytic subgroup,
generated by @, of the simply connected Lie group corresponding to the
complexification of g,. Let C(Z) be the centralizer of Z in G, whose
identity component is denoted by C%Z), and let S, be the analytic sub-
group of C(Z) generated by the commutator subalgebra 3,=[%, B]. Then,
of m in (3.2) is odd, then

(8.10) C(Z)=S,xR* .
If m in (3.2) 18 even, then
(3.11) C(Z)=S,xR" ;

Sfurthermore, in this case, we have [C(Z): C'(Z)]=1 or 2, according as
FO:ZF or Fo———ro

PrROOF. By Lemma 2.4, S is simply connected and so S, is connected
[6]. Therefore we have S;,=SNG,=S,. Suppose first that m is odd.
Then 2I'=I" and so I'y,=2I". By Theorem 3.5 and Lemma 3.6, we have
the first assertion. The other case follows also from Theorem 3.5 and
Lemma 3.6.
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