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Introduction

Let S=S% be the unit sphere in R%*. It is well-known that
functions and functionals f on S can be developed in the series of
the spherical harmonics; f=3.7,f., where f, are spherical harmonic
functions of degree n in (d+1)-dimensions. Certain function spaces or
functional spaces on the sphere S can be characterized by the behavior
of the sequence {||f.ll.}s=0,1,2,... (Lemma 1.1). On the other hand, T.O.
Sherman [7] introduced the two transformations f— Ff(b, n) and f—
F. f(b, n) and studied the developments of functions or functionals on S
using them.

In this paper we propose to replace his transformation F, by a
slightly different tranformation Fi:

Fofo, m)=F,f.6,n) for f=3 ..

Though F, f(b, n) is well-defined only for some differentiable func-
tions, F,f(b, n) can be defined for more general functions and functionals.
And in the results of Sherman [7] we can replace F, f(b, n) by F,f(b, n).

Here Ff(b, n) and F,f(b, n) are polynomials on the “equator” B =
{seS; s:a=0}, where a=(0,0, ---, 1) €S denotes the “north pole”.

The two transformations F' and F, define the mappings:

F: f— F(f)={Ff( , W}i=o,1... € II Pu(B)

Fy f — F(f)={Ff( , M}umo... € I Pu(B) ,
where P,(B)={g; a polynomial on B of degree at most n} and ] P,(B) is
the direct product of P,(B) (n=0,1,2, --:). We call F the Sherman

transformation and F,; the modified Sherman transformation respectively.
Furthermore, we can consider that F and F, are dual to each other in
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a sense (see Proposition 3.1).

The aim of this paper is to investigate the images of certain func-
tion spaces or functional spaces on S under the Sherman transformation
F and the modified Sherman transformation F;. Among others we will
determine the images of 2 (S), Exp(S) and their dual spaces under the
transformations F' and Fj.

The plan of this paper is as follows: In §1 we fix the notations and
recall several results on spherical harmonic functions, which will be in
need in the sequel. In §2, we investigate the Sherman transformation
F. Our main theorem in § 2 is Theorem 2.1. We study in §3 the images
of certain function or functional spaces on S by the modified Sherman
transformation F,; (Theorem 3.2). Lastly in §4 we discuss the relations
between the Sherman transformation F and the Fantappié indicator.

The author wishes to express her sincere gratitude to Professor M.
Morimoto for his unceasing encouragement and guidance.

§1. Notations.

Let us fix notations.
Let d be a positive integer. S=S? denotes the unit sphere in R**!:
S={x ¢ R**; ||z||=1}, where ||z||*=a?+a}+ - - - +2%;,. The rotation invariant

integral on S with S 1ds=1 is denoted S f(s)ds. L*S) is the Hilbert
S S
space of L? functions with the inner product

(f19)=(f, Ds=|_fo)g@ds

and the norm || fll.=|lflls.=(f, /)¥*. We will use mainly the bilinear form

D (f, )s=\_Fe)g)ds -

Let H,, denote the space of spherical harmonics of degree » in (d+1)-
dimensions. It is well known that H,,1 H, ; (n#m) with respect to the
bilinear form (f, g)s and L*\S) is the direct sum of H,,; n=0,1, ---.

(1.2) LZ(S)=§|=30 H,,.
The orthogonal projection of L*S) onto H,, is given as follows:
(1.3) fe L¥S) — f.(s)=(dim H, ,) sz(sl)Pﬂ,a(s -8,)ds, ,

where
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1 n=0
(1.4) dim H, ;= N(n, d)={(2n+d—l)(n+d——2)! 1

nl @—1D1 "

v

and P,, is the Legendre polynomial of degree n and of dimension d-+1.
Namely,

(1.5) P",d(r)=<—_;_)"_IM( prye-az & ar (1 — p2)ntd-2r2

I'n+d/2) dr"
—1=r=1 (Rodrigues’ formula) .
(1.6) P,,(1)=1, 1P, r)|=1.

2(8S) denotes the space of C~ functions on S equipped with the
topology of uniform convergence on S in~ all derivatives.

Now we define the complex sphere S:

S={zeC*; 22+t + .- +22,,=1} .
We put for »>1
Stry={z=z+iye§; |yl <(r—1/7)/2} .
It is clear that S is the real part of S:
S:S"ﬂ R

and that S('r), r>1 forms the fundamental system of complex neighbour-
hoods of S in S. Let us denote by < (S(r)) the space of holomorphic
functions on S(») equipped with the topology of uniform convergence on
every compact subset of S(»). 7 (S) denotes the space of real-analytic
functions on S. We have the linear isomorphism

7(S) =lim >ilnd 2 (S(r))

and we equip .(S) with the locally convex inductive limit topology of
oS, r>1.

Now we define <>(S) to be the space of holomorphic functions on S.
The restriction mapping ~(S)— .o7(S) being injective, we identify ~(S)
with a subspace of 97(S). Remark that the restriction mapping

p: 2(C+) — ~(8)

is surjective.
Let us denote by Exp(C%*') the space of entire functions of exponen-
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tial type on C¢*. We define the subspace Exp(S) of #(S) to be the
image of Exp(C%") under the restriction mapping p:

Exp(S) = p(Exp(C**) .
Summing up, we have defined the following function spaces on S:
™ Exp(S) G 2(S) G (S) G 2(S) G LXS) ,

where the inclusion mapplngs are linear continuous and with dense image.
2'(S), 7'(S), &’(S) and Exp’(S) denote the dual spaces of =2(S),
(S), 2(S), and Exp(S) respectively. Using the bilinear form (f, g)s=

S f(8)g(8)ds, we will identify L*S) with its dual space. We have the
S

following series of functional spaces on S:

(**) Exp'(5) O 2'(8) D w'(8) D 2'(8) O LX(S) .

We can characterize the function or functional spaces in (*) or (**)
by behaviors of the spherical harmonic development as follows.

LEMMA 1.1. (Morimoto [4]). If f, (resp. fI) is the n-th spherical
harmonic component of f (resp. f'), then

(L.7) f € Exp(8) — lim sup(n! ||f,[l)""< oo ,
(1.8) f e &8 — lim sup||f,|li"=
f € (S) = lim sup||£,[l:"<1,
(1'9) ©o
F=>. f. converges in the topology of S7(S).
n=0
FeD(S) = ||f.ll: ts rapidly decreasing as n — oo ,
1.10 o
( ) z_‘,f,, converges to f in the topology of =2(S).
(1.11) f e LX(S) = {l|fullan=o,r2,-- €%,
(1.12) e 2'(S) — ||fill. is slowly increasing as m— oo,
(1.13) f'e 7'(S) = limsup| f7lli"=1,
(1.14) f'e &'(8) — lim sup|| fi|ly"< e,

(1.15) ' e Exp’(S) — lim sup(|| £2|lo/n1)/*=0 .
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REMARK. If f, is in H,, then it is valid that
(1.16) AR ARG oo AT

where || f|l-=sup,.s|f(s)l. So we may replace‘ll . by || |l in (1.7)-(1.10)
and in (1.12)-(1.15).
The “north pole” aeS is fixed and B= {se8S; s.:a=0}=8*" denote

the “equator”. The rotation invariant integral on B with g 1db=1 is
B
denoted S F(b)db.
If f is a measurable function on S we have

(1.17) Ss fls)ds=C, S_ SB (1—7%)4=22f(pg + (1 — ) b)dbdr ,
where

_ I'((d+1)/2)
118 C=Tuprape

P,(B) denotes the space of polynomials on B of degree at most n.
H,, , denotes the space of spherical harmonics of degree » in d
dimensions and we will identify H;,_, with a subspace of P,(B) for j=
0,1,2, ---, n. Then we have the direct sum decomposition of P,(B):

P(B) =) Hya-s

H;

;.41 are orthogonal with respect to the bilinear form

f, g>B=§B\f<b)g<b>db .

In particular, we have
dim P,(B)=3 dim H, ,_, .
=0

H,; and H;,_, (=0,1,2, .-+, n) are related as follows:

LEMMA 1.2. (see for example Miiller [6] p. 25 and Lemma 15).
Suppose s;,, 1<k<dim H;, ,, i1s a bas_z's of Hj 44 7=0,1, -+, n. Put

Fin(ra+Q—r)"0) =1 —1)"P,_; 25+4(r)8;,:(b) .
Then f;w 7=0,1, «-o,m, k=1,2, -+, dim H; ;_, is a basis of H, ..

Thanks to Lemma 1.2, every f,€ H,, can be expressed in the form
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(119)  fulra+A—rPB)=3 (L= Pojusuar)s;(®)

with s;e H;,;_,, §=0,1, ---, n. In this case, we have,

(1.20) 1fullsa=Ca 3, atm, 5, d)ls;lh.s

where

a2 alm, G d)=| A=rEEAP, L )y dr
1

= Cz,‘.’.dN(n—j, 2j+d)
= TG +d2)  (n—P)H! 2j+d—-1)!

T TG+@+1)/2) Crn+d—D(n+ji+d—2)!

and

(1.22) lslo= | ls@®)idb .
Here we also have clearly that

(1.23) dim H, ;=dim P,(B) .

§2. Sherman transformation F'.

For any f’cExp'(S), we define the Sherman transform Ff' of f' by

Ff'®, n)=<f", e, n)) ,

where e(b, n)(s)=(a-s+1b-s)" (s€S), be B and ne Z,={0,1, 2, ---}.
Ff'( ,n) belongs to P,(B) (cf. Sherman [7] p. 6) and by the definition

we have

Ffe, m={_f9)etd, n)s)ds

for any f e L*¥S).

ReEMARK. If f'e Exp’(§) and f, is the n-th spherical component of

S', then we have

Ff'®, m=|_fie)e®, neds=Ffi®, ») ,

since we have faoe€ H,,, eb,n)eH,,; and H,,1 H, ; (n#m).
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The transformation F of Exp’(S) into ] P,(B)

[ e Exp'(8) — F(f)={Ff'(, ez,

is called the Sherman transformation.
In order to describe the images of the Sherman transformation F,
let us define the following subspaces of [[ P.(B):

(2.1)
(2.2)
2.3)
(2.4)
(2.5)
(2.6)
2.7
(2.8)
2.9)
(2.10)

(2.11)
2.12)
(2.13)
(2.14)

(2.15)

L={{g.}nez, € II Pu(B); {l|gall5.2tnez, €13}
L*={{g.}nez, € II Pu(B); {2"n7"||g,ll5,2lnez, €13}
L™={g.}nez, € II Pu(B); {27"n"||g.ll5,2bne 2y € LG}
D={{g.}nez, € II Pu(B); ||g.l5,. is rapidly decreasing as n — oo},
D*={{g,}nez, € TI P.(B); 2"||g.|l5,. is rapidly decreasihg as n — oo},

D~ ={{g.}nez, € II P.(B); 27"||g.l|5,. is rapidly decreasing as » — oo},

D'={{gu}ncz, € II Pu(B); ||g.lls,. is slowly increasing as n — oo},

D" ={{g.}rez, € Il Pu(B); 2"||g.]|5,. is slowly increasing as n — o},

D'=={{g.}nez, € II P.(B); 27"||g.ll5,. is slowly increasing as m — oo},
A ={{galnez, € II Po(B); lim sup |lg. |53 <7} ,

A[7]1={{gu}nez, € II Pu(B); lim sup [lg.[53=7} ,
0= A[0]={{gnlrez, € II Pu(B); lim supl|g,[[¥:=0} ,
0'=A(0)={{gu}nez, € II Pu(B); lim sup|lg[¥z <},

E={{gnlnez, € II Pu(B); lim sup(n! [ig,[l5,)"" < oo}

E'={{g.}nez, € II Po(B); lim sup(|lgalz./n!)""=0} ,

where li={{a.}nez,; 2in=0 N(n, d)|a,|’< <}
We have the following inclusion relations:

EGSOS A1) DS L & DS A12]S A1) DS LE D
SANSAQESD G L&D SARISO'SE .

REMARK. If g,€ P,(B), then it is valid that
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 19all5,:2 1941l =V 'N(m, d)||g.ll5.2 »

where ||g./|s=5ub,.5lg.(0)|. So we may replace || ||z, by || || in (2.4)-(2.15).
Our main theorem in this section is the following

THEOREM 2.1. The Sherman transformation F 18 a linear one-to-one
mapping of Exp'(S) into ] P,.(B), which satisfies the following properties:

(2.16) LtrcF(LXS)cL,

(2.17) v D*cF(=2(S))cD,

(2.18) D*cF(=2'(S)cD’,

(2.19) A(Q/2)c F(s(S))c A1),

(2.20) All2lc F(7'(S))c All],

(2.21) F is a one-to-one mapping of *(S) onto O,
(2.22) F is a ome-to-one mapping of &'(S) onto O,
(2.23) F' 18 a one-to-one mapping of Exp(g) onto E ,
(2.24) F is a one-to-one mapping of Exp’(S) onto E'.

We need the following lemmas in order to prove the theorem.

LEMMA 2.2. (cf. Sherman [7] p. 26~). If f,€ H,, i8 expressed in the
Jorm (1.19), we have

(2.25) Ff (b, n>=§:=0¢(n, 3, d)s;(b)

where

. oy 29N d+1)/2)0 (G +d/2)(n+1)
(226 #n 3 0= @Cn+d—D)r*I'(n+5+d—1)

i L(@+1)/2) | ml .
(¢/2) PTG +d/2) (n_j)!a(n, J, d)

_(py_ L@+ ml 1 .
rg+@+1/2) (n—j! Nmn-—j,2j+d)

LEmMMA 2.3. Consider f, ;€ H,, such that

Jai(ra+Q—r)b)=1—1"P,_;,;14(r)s;(b)
with s;€eH; 4, §=0,1, ---, m. Then we have
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2.27)  |IFf.i(, mli3,e

1 ) -~
m”fn&“s,z (.7 0)
(d—1)! (n1)® » .
=\ Gnrd—Dn-p! mrdij—gr Ml O=i=n)
(d—1! (n})? \ S
@n+d—1)! I nllt e (G=m) .

Furthermore, if f'=352.,f.cExp'(S), fleH,; n=0,1,2, -, then
we have

(2.28) C-27"n"*|| falls,. = N, )| Ff'(, n)|lz.=falls,e »
where C is a constant.

ProoF. By Lemma 2.2, we have

NF S i s W)z=18(n, 7, DI |I8;ll5,: -
On the other hand, (1.20) gives
| fr,5ll5,.=Cac(n, 3, d)||8;ll3,2 -
Now (1.21) and (2.26) give

lg(n, 5, D> _ n!l(n+d—2)!
(2.29) N, d) Cian, j,d) @m—7!I(n+d+7—2)!

Therefore we get

; - n! (n+d—2)! e
(2.80)  N(n, d)|Ff, ( , n)|%,; e T

and (2.30) implies (2.27).
As we have Ff'(b, n)=Ff,(b, n), we may assume f'=f,€ H,,. Since
f. is given in the form f,=32,f.; (ef. (1.19)), by Lemma 2.2, we have

IES'C L m)llsa=3 16(n, g, d)Plls;l5.s

=z IEfs iy )l -

From Lemma 1.2, we have

1fallsa= 3 sl -
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(2.30) gives

’ s _% n!(n+d—2)! .
New, DIESC, mlba=3 bR il

We also have
(2.31) @r+d-2)=z(n+j+d-1)! (n—-N!'=n+d—-2)! n!,
7=0,1,2, ..., n, since
m+ij+d=2)! (n—-Nz(n+G-1)+d—-2)! (n—(F—-1))!,

7=1,2, --+, n. Therefore we get

n!l(n+d—2)! 2 < , . .
(2,n_l_d__2)! ”f”“S.Z—-N(n’ d)”Ff( ’ n)”3,2§”fn”s,z .

By Stirling’s formula, we obtain

nl (n+d—2)! e own 3 P
@n+d—2)! Crn)*(n/2n+d—2))"(n+d —2)/(2n +d —2))*+-¥

207.2—271%1/2 ,
where C’ is a constant. So we have (2.28). Q.E.D.

PrROOF OF THEOREM 2.1. By Lemma 1.2, for any f, € H, ,, there exist
s;€H;; , (7=0,1,2, ---, n) such that f, is expressed in the form (1.19).
Therefore, the mapping f,— Ff,(,n) is a linear one-to-one mapping of
H,,; onto P,(B). It implies that the Sherman transformation

F:f'-_’{Ff’( 7")}n62+

is a linear one-to-one mapping of Exp/(S) into [[ P,(B). Using Lemma
1.1 and Lemma 2.3, we can obtain (2.16)-(2.24). Q.E.D.

REMARK 2.1. In connection with Theorem 2.1, (2.16)-(2.20), we give
examples in which

L*'sFILXS)&L, D'SF(2@8)sD, D*&SF(Z'S)&D,
AQ2)SF(7(S)S A1), and A[l2]SF("(S)SA[l] .

We consider {s,},cz, €Il P.(B) such that s,eH,,, and |s,]|z.=
(0/2* (neZ,), where 1<p<2. Then {s,},.;, belongs to A(1) since
lim sup,.. [|s.||¥2=p/2<1. If there exists f'e .o'(S) such that F(f')=
{8a}nez, and f'=37,f. (fae H,4), then we have, from (2.27),
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— 1)1 Yi/2n
Bt lsli=p>1.

It implies that f’¢ '(S) and F(w'(S))» A1), therefore we obtain

FIXS)&EL, F(28)sD, F(@'S)&D,
F((S)&EAQ), and F(w'(S)EA[1].
Next consider f=>.7,7"P, .« -a), where 1/2<7<1. Then f lies in

S7(S) since lim sup,..||7"P,« -a)||¥*=7n<1l. But we see by (2.27) and
1.16)

lim sup|| /,||¥%=1im sup {

n—roo n—o0

lim sup(|FA( , n)|[5=lim sup||7"P, .( -a)ll"=29>1/2,

which implies F(f) ¢ A[1/2]. So we have F(7(S))Z A[1/2], from which
result
F(Z(S))2D*, F(2'(S)xD+, FUILXS)xL*,
F((S)22A1/2), and F(¥'(S)2A[1/2].

REMARK 2.2. In connection with Theorem 2.1, (2.19) and (2.20), we
give examples in which A®)2F((S)) (resp. A[p]pF('(S))) and
A ZF(s7(S)) (resp. A[p]ZF(.'(S))) for any 7 with 1/2<n<1. We
consider f=>7_, 7P, ( -a), where n<7n,<1. Then f belongs to . (S),
since lim sup,..||72P,« -a)|li"=7,<1. But we have F(f)¢ A[7], since
lim Sup,—. || Ff( , n)||¥:=1.>7. So we get F((S))Z A(n)) and F('(S))&
Aln].

Next consider {s,}.ez, € IIP,«(B) such that s,e H,, and ||s,||5.=%}
(n=0,1,2, --.), where 1/2<7,<7<1. Then {s,},cz, lies in A(7) since
lim sup,.«||8,||¥:=7,. If there exists f’e o’(S) such that F(f')={s,}.cz,
and f'=>w,fr (fie H,,;), then we have, from (2.27)

lim sup|| f7||¥% =2 lim sup||Ffi( , »)||¥:=27>1 .
So f’ does not belong to .'(S). It implies {s.},c,, € F(¥'(S)),
AL F(s7(S) and Al]ZF('(S)) (1/2<9<1).

§3. The modified Sherman transformation Fj.

If /=3, f.cExp(S) and f’e H, ; is expressed in the form (1.19),
then we will define

(3.1) Fyf'(®, n>=§o sx(n, 7, d)s;(b)
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where
. an, 3, d 1
(3.2) #(n, 3, d)=C, Z‘V.(n’ d)) D
—=(—g)i2ite I'((d+1)/2)(n—3)! I'(5+d/2)
Cn+d—1)n"*(n+d—2)!
_(=20)I'(g+d/2) (m—J)! 1
rd/2) n! N(n,d)

REMARK 38.1. The transformation f— F,f( , n) is a unique linear one-
to-one mapping of H,, onto P,(B), which satisfies the following formula:

|, o9& ds=Nen, &) | Frv, w)Fige, wyab ,

for any f and g€ H, ,.

T. O. Sherman [7] introduced the transformation f— F, f(b, n) on 2(S).
We can see that F,f’(b, ») is equal to F,f.(b, n).

The transformation F, of Exp’(S) into [J P.(B)

[ € Exp'(S) —— Fy(f)={Fef'( , ez,

is called the modified Sherman transformation.
Following Proposition 3.1 shows that F' and F are dual to each other
in a sence.

_ProposITION 3.1. (Sherman [7] Theorem 3.8). Let f e Exp(S) (resp.
2(8), (8), 2(S), LXS)) and f'eExp'(S) (resp. £'(S), &'(S), 2'(S),
L*(S)). Then we have

(3.3) s y=35 Now, ) | Ffb, mFf'b, myab
(3.9) S =3 N, @) | Ffo, mFf0, mdb .

Our main theorem in this section is the following

THEOREM 3.2. The modified Sherman transformation F; is a linear
one-to-one mapping of Exp'(S) into I[ P,.(B), which satisfies the following
properties: '

3.5) LcFy(LXS))cL~,
(3.6) Dc Fy(=2(S)cD,
3.7 D'cF(2'(S)cD-,
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(3.8) AQ)CFy(7(S))cAQ2) ,

(3.9) - A[llc Fy(7'(S))c Al2] ,

(3.10) F, is a one-to-one mapping of A8) onto O,
(3.11) F; is a one-to-one mapping of 2'(S) onto O,
(3.12) F, is a one-to-one mapping of Exp(S) onto E,
(3.13) | F, is a one-to-one mapping of Exp’(S) onto E'.

We need the following lemma in order to prove the theorem.
LeEMMA 3.3. Constder f, ;€ H,, such that
Fusra+ 1=y = (1 —1)i2P,_, 111 a(r)si(b)

with s;€e H; ;_,, 7=0,1,2, --+-, n. Then we have
— L i fellts (G=0)
Nn,d) "™

d—1)! (n—3)! n+d+j—2)! . .
(3.14) l]F#f,,,j(b,n)ll"},,2=<( ((n) +Zz_27))!)2((72*;+;j 1)) I fuilke (0=<j<m)

d—1)! 2n+d—2)! T
(m+d—2)1)*2n+d—1) "~ »"5*

Furthermore, if f'=>.0_fr€ Exp'(S), fle H,,, n=0,1,2 :--, then
we have

(3.15) 1 £allse = N(m, Y2 Fof'C, w5, =C- 2207 flls,e

(=mn) .

where C 18 a constant.

Proor. (1.20) gives
”fn,jH?S',z:Cda(’nv j’ d)”sjllzﬁ'ﬂ .

On the other hand, we have easily
|F3fai s M)lze=Igs(n, 3, D) |5z, -
Now (3.2) and (2.29) give

N(n, d)igs(n, j, D> _  Cia(n, g, d)
Cia(n, 3, d) N(n, d)l¢(n, j, d)*
_ (=N (n+d+5—2)!
n! (n+d—2)! )
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Therefore we get

— ! d+7—2)!
316)  Now, FS A, lls,=EDIREILIB 1, e,
and (3.16) implies (3.14).
We can obtain (3.15) in the same way as in the proof of Lemma
2.3. Q.E.D.

PROOF OF THEOREM 3.2. It is easy to see that F, is a linear one-
to-one mapping of Exp'(§) into J] P,(B). From Lemma 8.3 and Lemma
1.1, we can prove (3.5)-(3.13) in the same way as in the proof of Theo-
rem 2.1. Q.E.D.

REMARK 3.2. In connection with Theorem 3.2, (3.5)-(8.9), we give
examples in which L& FL*S))&E L™, DEF(2(S))&ED~, D'SFy(=2'(S))&D'-,
ANSF(7(S)SEA2), and A[l]&SFy('(S) < A[2].

We consider {0"},cz, € I P.(B), where 1<p<2. Then {0"},.,, belongs
to A(2). If there exists f'e . o7'(S) such that Fy(f')={0"}.cz, and f'=
S Sa (fie H,,;), then we have, from (3.14)

lim sup|| f;1[¥ =lim sup(N(n, d)*|F4fa( , n)[|5,)""
=lim sup(N(n, d)"?p")""=p>1.
Therefore f’ does not belong to '(S). This implies FyL*S)&EL",

F(2(S)ED~, F(2'(S)ED'~, Fy(¥(S)SAR), and Fy('(S))< A[2].
Next consider

Salra+@1—7r")") =1 —r")"*g,(b,) ,

where —1=r=<1, b,eB, s,€H,,, and ||s,|[z.,=0/2 for 1<p<2. Since
lim sup,. || £,|I¥3 = lim sup, .. || £,||4" = lim sup, .« ||8,]|¥" = lim sup,_.. ||s,||¥% =
p/2<1, f belongs to ¥(S). We obtain from (3.14),

lim sup(|Fyf( , m)|[¥:=lim sup((@n +d—2)!/(n! (n+d—2)! N(n, d)))"||f.]1¥3
=2lim sup||f,|[{i=p>1.

So Fy(f) does not belong to A[l]. It implies L& Fy(L*S)), DS Fy(2(S)),

DS F(2'(S)), AD)ESF(s7(S)) and A[l]&EFy((S)).

REMARK 3.3. In connection with Theorem 3.2, (3.8) and (3.9) we
give examples in which A®)ZFy(.(S)) (resp. A[n]ZFy('(S))) and
AM)DF(7(S)) (resp. A]DFy(7'(S))) for any n with 1<9<2. We
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consider f=3_,f,, such that f.(ra+{1—r)"%,)=(1—r)"%s,(b,), where
—1=r=1, b,€B, s,€¢ H,,_,, and |[s,|[5.="./2)", for 1<n<n,<2. Then f
lies in o7(S) since lim sup, . ||Fyfo( , #)||¥3=2 lim sup,... | f,|[¥2=7>7. It
implies Fy(f) € A[7] and we have Fy(.(S))ZA(n) and Fy('(S)) & A[7].

Next we consider {g,}..z, € II P,(B) such that g,(b)=%2, where 1<7,<
7<2, neZ,. Since limsup,.||9,/|¥3=7, we see that {g,},.,, belongs to
A(7). If there exists f'=37.,fie o'(S) such that Fy(f")={g.}cz,, We
have, from (3.14),

lim sup||f;[[¥5 =1lim sup(N(n, d)'lgas.)"" =7,>1 .

So f' does not belong to .9'(S). Hence we obtain {9n)nez, € F('(S))
and it means that A[7]Z Fy(7'(S)) and A(n)) & Fy(7(S)).

§4. The Fantappié indicator.

Let K be a compact set in C**', We define the DFS space <(K) of
germs of holomorphic functions on K as follows:

Z(K)=limind (W) ,
WoOK

where W is an open set of C?*' containing K and (W) is the space of
holomorphic functions on W equipped with the topology of uniform con-
vergence on every compact subset of W. #/(K) denotes the dual space
of ~7(K).

The Fantappié indicator T(g, &) for Te ~'(K) is defined as follows:

T(So: E)=<Tw9 ?E';——u?> ’

where &eC End grw=23ew; for ¢=(&, &, **+, Ear)y W=(Wy, Wy ++ -,
Wa4,) €C*T. T is defined on the set of (&, &) such that KN {w e C**; &+
gw=0}=0.

For Fantappié indicator, see Martineau [3] and [4].

Now, we consider the following power series;

4.1) ZF(b, _z)=§1 Ff'(b, n)z", f'e s'(S) and zeC.
If we fix z€C with |2|<1, then we have
3. Ff'®, m)z= 3, {f', 2"e(b, ) .

Since lim sup,..||2"e(b, n)||Y"=|2|<1, =, z"%(b, n) lies in (S) and
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S, z"e(b, n) converges in %(S) by Lemma 1.1, (1.9). Hence we can see
go {f!s z"e(b, 'n)>=<f’, ;:LO z"e(b, m)) .

On the other hand, we have

1
1—2z(a+1ib)-s ~

3, welb, m)(0)=3, #°(a-a+ib-s)y =
So we have

(4 1 — 4
42) ' w0

if |2|<1. The left hand side of (4.2) is the Fantappié indicator for f'(s, =1,
g=—2z(a+1b), and K=S). Therefore the Sherman transformation is
closely related with the Fantappié indicator. We show some properties
of #f'(b, z) using Theorem 2.1.

THEOREM 4.1. (1) If f'e 7'(S), Ff'(b, z) is holomorphic in {z€C;
|2 <1}.

(2) If fe 2(S), #f(b, z) is holomorphic in {z€C; |z|<1l} and all
derivatives of Ff(b, z) are continuous on {z€C; |z|<1}.

(3) If fe 7 (S), there exists €¢>0 such that Zf(b, z) 1s holomorphic
in {z€C; |z|<1-+¢€}, where ¢ depends on f.

(4) If fe #S), Ffb, 2) is an entire function in z.

(5) If feExp(S), b, 2) is an entire function of exponential type
in z.

We need the following lemmas in order to prove the theorem.
LEMMA 4.2. Ifa,cC(neZ,) and |a,] is rapidly decreasing as n— oo,

then the power series g(z)=>Dim-0 @,2" 18 holomorphic im {z<€C; |z|<1} and
(d¥/dz*¥)g(z) ©s continuous on {z€C; |z|<1} for any ke Z,.

LEMMA 4.3. (Boas [1]). F(z)=3\7-,a.2" 18 an entire function of
exponential type =M +f and only if limsup,..(n! |a,|)"*<M.

PrOOF OF THEOREM 4.1. We denote by o, the convergence radius of
FFf'(b, 2)=>'w, Ff'(b, n)z*. Then we have
1 > 1
lim sup|Ff'(b, n)[** — lim sup|[Ff'( , n)¥"

Oy=

Hence, #f'(b, z) is holomorphic in {z€C; |z|<1/(lim sup,-.|Ff'( , n)||¥™)}.
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This fact and Theorem 2.1 imply (1), (3) and (4) of the theorem. We
can prove (2) by Theorem 2.1 and Lemma 4.2. (5) is implied by Theorem
2.1 and Lemma 4.3. Q.E.D.
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