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Introduction

Let $X$ be a real Banach space and $X^{\prime}$ be its dual space. In this
paper, we characterize the (maximal) cyclical monotonicity of a $w^{*}-$

G\^ateaux differentiable (nonlinear) operator: $X\rightarrow X^{\prime}$ , by means of the
G\^ateaux derivative. Our result is a nonlinear version of the well-known
proposition; A linear and densely defined maximal monotone operator in
a Hilbert space is cyclically monotone if and only if it is self-adjoint.

We give an equivalent condition for a $w^{*}$ -G\^ateaux differentiable
operator from $X$ to $X^{\prime}$ to be cyclically monotone, under some assumptions.
Furthermore we give sufficient conditions for a $(w-)G\hat{a}teaux$ differentiable
operator in a Hilbert space to be maximal cyclically monotone. For
instance, our Corollary 1 says that an operator $A$ in a Hilbert space is
maximal cyclically monotone, if $\overline{\delta A(x),}$ the minimal closed extension of the
G\^ateaux derivative of $A$ at $x$ , is positive self-adjoint for each $x$ in the
domain of $A$ , under a suitable assumption.

\S 1. Preliminaries.

Throughout this paper we use the following notations and definitions.
$X$ denotes a real Banach space with norm $\Vert$ $||$ , and $X$’ denotes its

dual space. We denote by $(x, f)$ the pairing between $x\in X$ and $feX’$ .
Especially if $X$ is a real Hilbert space, $(, )$ is the inner product and we
use the notation $H$ instead of $X$.

For a subset $S$ of $X,\overline{S}$ denotes the closure of $S$ in $X$.
Let $A$ be an operator from $X$ to $X^{\prime}$ . $D(A)$ denotes the domain of

$A$ and $R(A)$ denotes the range of $A$ . We denote the minimal closed
extension of $A$ by $\overline{A}$ .
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Let $A$ be a linear operator from $X$ to $X’$ . $A$ is said to be symmetric
if $(x, Ay)=(y, Ax)$ for every $x$ and $y$ in $D(A)$ . $A$ is said to be positive
if $(x, Ax)\geqq 0$ for every $x$ in $D(A)$ .

$A$ (multi-valued) operator $A$ in $H$ is said to be monotone if $(x_{1}-x_{2}$ ,
$x_{1}^{\prime}-x_{2}^{\prime})\geqq 0$ whenever $x!\in Ax_{i},$ $i=1,2$ . $A$ monotone operator $A$ is said to
be maximal monotone if it has no monotone extensions in $H$. It is well-
known that a monotone operator $A$ in $H$ is maximal monotone if and
only if $R(I+xA)=H$ for some $\lambda>0$ .

$A$ (multi-valued) operator $A:X\rightarrow X$’ is said to be cyclically monotone
if $\sum_{=1}^{n}(x_{i}-x_{i-1}, x_{i}^{\prime})\geqq 0$ whenever $x_{i}^{\prime}\in Ax_{i}$ , $x_{n}=x_{0},$

$x_{n}^{\prime}=x_{0}^{\prime}$ . $A$ cyclically
monotone operator $A$ is said to be maximal cyclically monotone if it has
no cyclically monotone extensions from $X$ to $X^{\prime}$ .

Let $\phi;X\rightarrow(-\infty, \infty$ ] be a convex functional. Also assume that $\phi$ is
proper, i.e. that its effective domain $D(\phi)=\{xeX;\phi(x)<\infty\}$ is nonempty.
Then the subdifferential of $\phi$ is defined by

$\partial\phi(x)=$ {$z\in X^{\prime};\phi(w)-\phi(x)\geqq(w-x,$ $z)$ for all $w\in X$}.

$\partial\phi;X\rightarrow X^{\prime}$ is cyclically monotone. Furthermore, it holds that an operator
$A:X\rightarrow X^{\prime}$ is maximal cyclically monotone if and only if $ A=\partial\phi$ for some
lower-semicontinuous proper convex functional $\phi$

DEFINITION. Let $A:X\rightarrow X^{\prime}$ be a single-valued operator with convex
domain. We shall say that $A$ is G\^ateaux diferentiable on $D(A)$ if there
is a linear operator $\delta A(x);X\rightarrow X^{\prime}$ such that

(1.1) $\lim_{x+\lambda_{leD(A)}^{\lambda\rightarrow 0}}\frac{1}{\lambda}\{A(x+xy)-Ax\}=\delta A(x)y$ for $\forall y\in X$ with $x+y\in D(A)$ ,

for every $x\in D(A)$ . Furthermore, $\delta A(x)$ is called the G\^ateaux derivative
of $A$ at $x$ . If the convergence in (1.1) is in the weak (resp. $w^{*}$) $-$

topology, we say that $A$ is $w$ (resp. $w^{*}$)-G\^ateaux diferentiable.

\S 2. Theorem and proof.

THEOREM. Let $A:X\rightarrow X$’ be a $w^{*}$-G\^ateaux differentiable operator on
convex domain $D(A)$ and $w^{*}$-continuous on every 2-dimensional subset in
$D(A)$ . Then the following three condition$s$ are equivalent.

$1^{o})$ $A:X\rightarrow X^{\prime}$ is cyclically monotone.
$2^{o})$ $\delta A(x):X\rightarrow X$

’ is cyclically monotone for each $xeD(A)$ .
$3^{o})$ $\delta A(x):X\rightarrow X^{\prime}$ is positive symmetric for each $xeD(A)$ .
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REMARK 1. Let $A$ be an operator in a Hilbert space $H$. Suppose
that there is a dense Banach space $Y$ such that $Y\subset H=H’\subset Y^{\prime}$ , and
$\tilde{A}:Y\rightarrow Y$’ such that $A=\tilde{A}_{H}$ (the restriction of $\tilde{A}$ to $D(\tilde{A}_{H})=\{x;\tilde{A}x\in H\}$).
If $\tilde{A}:Y\rightarrow Y^{\prime}$ is cyclically monotone, then $A$ is cyclically monotone in $H$.
Hence, if $\tilde{A}$ satisfies the hypothesis of Theorem and the condition $2^{o}$ ) or
3), then $A$ is cyclically monotone.

To prove Theorem, we shall show the following lemmas.

LEMMA 1. Let $A:X\rightarrow X$’ be an operator with convex domain, and
be $w^{*}$-continuous on every l-dimensional subset in $D(A)$ . Suppose that
there is $x_{0}\in D(A)$ such that

(2.1) $\int_{0}^{1}(y, A(x_{0}+sy))ds+\int_{0}^{1}(z, A(x_{0}+y+sz))ds$

$=\int_{0}^{1}(y+z, A(x_{0}+s(y+z)))ds$

for every $y,$ $z\in X$ with $x_{0}+y,$ $x_{0}+y+z\in D(A)$ . If $\phi$ is defined by

(2.2) $\phi(x)=\int_{0}^{1}(x-x_{0}, A(x_{0}+s(x-x_{0})))ds$ for $x\in D(A)$ ,

then for each $x,$ $y\in D(A)$ , the function $t\mapsto\phi(x+t(y-x))$ is diferentiable
on $[0,1]$ and

$\frac{d}{dt}\phi(x+t(y-x))=(y-x, A(x+t(y-x)))$ for $0\leqq t\leqq 1$ .

PROOF. Let $u$ and $v$ be any elements of $D(A)$ . We put $v_{1}=v-u$ .
Taking $y=u-x_{0}+tv_{1},$ $z=hv_{1}(0\leqq t, t+h\leqq 1)$ in (2.1), we have

$\phi(u+tv_{1})+\int_{0}^{1}(hv_{1}, A(u+tv_{1}+shv_{1}))ds$

$=\phi(u+tv_{1}+hv_{1})$ .
Hence, we have that

(2.3) $\frac{1}{h}\{\phi(u+(t+h)v_{1})-\phi(u+tv_{\iota})\}$

$=\int_{0}^{1}(v_{1}, A(u+tv_{1}+shv_{1}))ds$ .
Since $(v_{1}, A(u+tv_{1}+shv_{1}))$ is continuous in $h$ , by letting $h\rightarrow 0$ , the right-
hand side of (2.3) converges to $(v_{1}, A(u+tv_{1}))$ . Thus the assertion holds.
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LEMMA 2. Let $A:X\rightarrow X$’ be a cyclically monotone operator with
convex domain, and be $w^{*}$-continuous on every l-dimensional subset in
$D(A)$ . Then A satisfies the hypothesis of Lemma 1.

PROOF. Let $x,$ $x+y$ and $x+y+z$ be any elements of $D(A)$ . We set

$x_{i}=x+\frac{i}{n}y$ , $y_{j}=x+y+\frac{j}{n}z$ , $z_{k}=x+\frac{k}{n}(y+z)$

for $i,$ $j,$ $k=0,1,$ $\cdots,$ $n$ . From the covexity of $D(A)$ we have

$x,$ $y_{\dot{f}},$ $z_{k}\in D(A)$

for $i,$ $j,$ $k=0,1,$ $\cdots,$ $n$ . From the definition of $x,$ $y_{j}$ and $z_{k}$ , we have
$x_{+1}-x=(1/n)y$ , $y_{j+1}-y_{j}=(1/n)z,$ $z_{k}-z_{k+1}=-(1/n)(y+z)$ for $i,$ $j$ , $k=0$ ,
1, $\cdots,$ $n-1$ . Thus, for the cyclical sequence $\{x=x_{0},$ $x_{1},$ $\cdots,$ $x_{n}=x+y=y_{0}$ ,
$y_{1},$ $\cdots,$ $y_{n}=x+y+z=z_{n},$ $z_{n-1},$ $\cdots,$ $z_{0}=x=x_{0}$}, we use the cyclical mono-
tonicity of $A$ to have

(2.4) $\sum_{k=0}^{n-1}(\frac{1}{n}(y+z),$ $A_{Z_{k}})\leqq\sum_{i=1}^{n}(\frac{1}{n}y,$ $Ax)+\sum_{i=1}^{n}(\frac{1}{n}z,$ $Ay_{j})$ .

Similarly, for $\{z_{0}, z_{1}, \cdots, z_{n}=y_{n}, y_{n-1}, \cdots, y_{0}=x_{n}, x_{n-1}, \cdots, x_{0}=z_{0}\}$ , we use
the cyclical monotonicity of $A$ to have

(2.5) $\sum_{k=1}^{n}(\frac{1}{n}(y+z),$ $Az_{k})\geqq\sum_{i=0}^{n-1}(\frac{1}{n}y,$ $Ax_{i})+\sum_{j\Rightarrow 0}^{n-1}(\frac{1}{n}z,$ $Ay_{i})$ .

Letting $ n\rightarrow\infty$ in (2.4), we get

$\int_{0}^{1}(y+z, A(x+t(y+z)))dt$

$\leqq\int_{0}^{1}(y, A(x+ty))dt+\int_{0}^{1}(z, A(x+y+tz))dt$ .

Letting $ n\rightarrow\infty$ in (2.5), the reverse inequality holds in the above. Hence
we obtain (2.1) for any $x\in D(A)$ .

LEMMA 3. Let $u(t, s)$ and $v(t, s)$ be partially diferentiable and con-
tinuous real-valued functions on a simply connected domain $D\subset R^{2}$ , and
suppose that $(\partial u/\partial t)=(\partial v/\partial s)$ on D. Then $\int_{Q}(uds+vdt)=0$ for every
polygon $Q$ in $D$.

PROOF. If $u$ and $v$ are $C^{1}$-class functions on $D$ , we have the con-
clusion by Green’s theorem. Thus the assertion of Lemma 3 follows by
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using the mollifier.

LEMMA 4. Let $A:X\rightarrow X$’ be a $w^{*}$-G\^ateaux diferentiable operator on
convex domain $D(A)$ and $w^{*}$-continuous on every 2-dimensional subset in
$D(A)$ . If $\delta A(x)$ is symmetric for each $x\in D(A)$ , then $A$ satisfies the
assumption of Lemma 1.

PROOF. Let $x,$ $y$ and $z$ be elements of $X$ with $x,$ $x+y$ and $x+y+$
$z\in D(A)$ . We set

$P=\int_{0}^{1}(y, A(x+sy))ds+\int_{0}^{1}(z, A(x+y+sz))ds$

$-\int_{0}^{1}(y+z, A(x+s(y+z)))ds$ .
We have only to prove that $P=0$ . If $y$ and $z$ are linearly dependent,
this is trivial from the definition of the integral. Hence, we may assume
that $y$ and $z$ are linearly independent. We set

$g(t, s)=(y, A(x+ty+sz))$

$h(t, s)=(z, A(x+ty+sz))$ .
Since $D(\delta A(x))\supset D(A)$ – $x$ for every $x\in D(A),$ $D(A)$ is convex and $A$ is $w^{*}-$

continuous on every 2-dimensional subset in $D(A)$ , we easily see that $g$

and $h$ are partially differentiable and continuous on domain $D\supset\{(t, s)$ ;
$0\leqq s\leqq t\leqq 1\}$ . Moreover we have

$\frac{\partial}{\partial s}g(t, s)=(y, \delta A(x+ty+sz)z)$

$\frac{\partial}{\partial t}h(t, s)=(z, \delta A(x+ty+sz)y)$ .
Noting that $\delta A(x+ty+sz)$ is symmetric, these imply that

$\frac{\partial}{\partial s}g(t, s)=\frac{\partial}{\partial t}h(t, s)$ on $D$ .
Hence, applying Lemma 3 to $u=h$ , $v=g$ and $Q=\{(t, 0);0\leqq t\leqq 1\}U$

$\{(1, s);0\leqq s\leqq 1\}\cup\{(t, t);0\leqq t\leqq 1\}$ , we obtain that

$P=\int_{Q}(g(t, s)dt+h(t, s)ds)=0$ .

Now we shall prove Theorem.
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PROOF OF THEOREM. $3^{o}$ ) implies 1). Suppose that 3’) holds. Then
it holds by Lemma 4 that $A$ satisfies the hypothesis of Lemma 1. Let
$\phi$ be the functional on $D(A)$ , defined by (2.2), which satisfies the conclu-
sion of Lemma 1. We extend $\phi$ on $X$, (which denotes the same $\phi$) as
follows: $\phi(x)=\infty$ for $x\not\in D(A)$ . We devide the proof of 3) $\Rightarrow 1^{o}$ ) into the
following two steps.

1) We shall show that $\phi:X\rightarrow(-\infty, \infty$ ] is convex and proper. Since
$D(A)\neq\emptyset,$ $\phi$ is proper. Thus we only need to prove the convexity of $\phi$ ,
i.e.,

$t\phi(x)+(1-t)\phi(y)\geqq\phi\{tx+(1-t)y\}$

for $x,$ $y\in X,$ $0\leqq t\leqq 1$ . Since $D(A)$ is convex and $\phi(x)=\infty$ for $x\not\in D(A)$ ,
the last inequality is trivial when $x$ or $y\not\in D(A)$ . Thus we have only to
show that $\phi$ is convex on $D(A)$ . Let $x$ and $y$ be any elements of $D(A)$ .
Then, for $0\leqq t\leqq 1$ , we have

(2.6) $\frac{d^{2}}{dt^{2}}\phi(x+t(y-x))=\frac{d}{dt}(y-x, A(x+t(y-x)))$

$=(y-x, \delta A(x+t(y-x))(y-x))$

$\geqq 0$ .
At the last inequality of (2.6), we used the positivity of $\delta A(x+t(y-x))$ .
(2.6) implies that $\phi$ is convex on $D(A)$ .

2) We shall show that $ A\subset\partial\phi$ . Let $x,$ $y\in D(A)$ , and $t\in(0,1)$ . From
1), we have

$\phi(x+t(y-x))=\phi((1-t)x+ty)\leqq(1-t)\phi(x)+t\phi(y)$ .
Therefore,

$\frac{1}{t}\{\phi(x+t(y-x))-\phi(x)\}\leqq\phi(y)-\phi(x)$ .

Letting $t\downarrow 0$ , it follows from the property of $\phi$ that

$(y-x, Ax)\leqq\phi(y)-\phi(x)$ .
This inequality is obviously true for $y$ which is not in $D(A)$ . Therefore,
$x\in D(\partial\phi)$ and $Ax\subset\partial\phi(x)$ if $x\in D(A)$ . This implies that $ A\subset\partial\phi$ . Hence, $A$

is cyclically monotone.
1) imples $2^{o}$ ). Suppose that 1) is satisfied. Let $x$ be any fixed

element of $D(A)$ . We must show that $\delta A(x):X\rightarrow X$
’ is cyclically monotone.

Let $x_{0},$ $x_{1},$ $\cdots,$ $x_{n}=x_{0}eD(\delta A(x))$ . Then there is an $\eta>0$ such that
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$x+tx_{t}\in D(A)$ for $|t|<\eta$ $(i=1, \cdots, n)$ .
Since $A$ is cyclically monotone, we have

$\sum_{l=1}^{n}(t(x_{i}-x_{i-1}), A(x+tx_{i}))\geqq 0$ .
Therefore,

$\sum_{i=1}^{n}(t(x_{i}-x_{i-1}), A(x+tx_{i})-A(x))\geqq 0$ .
Dividing this inequality by $t^{2}(>0)$ , and letting $t\downarrow 0$ , we obtain

$\sum_{i=1}^{n}(x_{l}-x_{i-1}, \delta A(x)x_{i})\geqq 0$ .
This implies that $\delta A(x)$ is cyclically monotone.

$2^{o})$ implies 3). Suppose that $2^{o}$ ) holds. Let $x$ be any fixed element
of $D(A)$ . We must show that $\delta A(x)$ is positive symmetric. We set $B=$

$\delta A(x)$ . The monotonicity of $B$ means that $B$ is positive. Thus, we have
only to show that $(y, Bz)=$ ( $z$ , By) for $vy,$ $\forall z\in D(B)$ . Applying Lemmas 1, 2
with $A=B$ and $x_{0}=0$ , we have

$\frac{d}{dt}\phi(y+tz)|_{t=0}=$ ($z$ , By),

where $\phi(w)=\int_{0}^{1}(w, B(tw))dt=(1/2)(w, Bw)$ for $w\in D(B)$ . Therefore we
obtain that

$(z, By)=\lim_{t\rightarrow 0}\frac{1}{t}\{\phi(y+tz)-\phi(y)\}$

$=\lim_{t\rightarrow 0}\frac{1}{2t}$ {$(y+tz,$ $B(y+tz))-(y$, By)}

$=\frac{1}{2}(y, Bz)+\frac{1}{2}$( $z$ , By).

This yields that $(z, By)=(y, Bz)$ , and the proof is complete.

From the next two theorems and our Theorem, we get a sufficient
condition for the maximal cyclical monotonicity.

THEOREM A (see [4]). Let $B:H\rightarrow H$ be a positive definite (i.e.,
$\inf_{xeD(B),||x||=1}(x, Bx)>0)$ , self-adjoint operator. Then $R(B)=H$.

THEOREM $B$ (see F. E. Browder [2] Corollary 2 to Theorem 2). Let
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$A$ be a G\^ateaux diferentiable operater in $H$ with convex domain and
closed range. If $R(\delta A(x))$ is dense in $H$ for every $x\in D(A)$ , then $R(A)=H$.

COROLLARY 1. Let $A$ be a G\^ateaux differentiable closed operator in
$H$ with convex domain, and suppose that $A$ is w-continuous on every two
dimensional subset in $D(A)$ . If $\overline{\delta A(x)}$ is positive self-adjoint for each
$x\in D(A)$ , then $A$ is maximal cydically monotone, i.e., there is a proper
lower-semicontinuous convex functional $\phi;H\rightarrow(-\infty, \infty$ ] such that $ A=\partial\phi$

PROOF. By Theorem, we have that $A$ is cyclically monotone. Thus
it suffices to show that $R(I+A)=H$. Since $I+\overline{\delta A(x)}$ is a positive definite,
self-adjoint operator in $H$, it follows from Theorem A that $R(I+\overline{\delta A(x)})=H$,
which implies that $R(I+\delta A(x))$ is dense in $H$. From the monotonicity
and the closedness of $A$ , it is easily seen that $R(I+A)$ is closed in $H$.
Therefore, we apply Theorem $B$ to an operator $I+A$ to get $R(I+A)=H$.

REMARK 2. Let $x_{0}$ be an element of $D(A)$ . If we define $\phi$ as

$\phi(x)=\left\{\begin{array}{ll}\int_{0}^{1}(x-x_{0}, A(x_{0}-t(x-x_{0})))dt & for xeD(A),\\\lim_{u\rightarrow x.ve}\inf_{D\{A)}\phi(y) & for xe\overline{D(A)}\backslash D(A),\\\infty & for x\not\in D(A),\end{array}\right.$

then $\phi$ satisfies the conclusion of Corollary 1.
In fact, from the proof of Theorem, $\phi:H\rightarrow(-\infty, \infty$ ] is proper, convex

and $ A\subset\partial\phi$ . Hence $\phi(y)\geqq\phi(x)+(y-x, Ax)$ for $x,$ $y\in D(A)$ , which implies
that $\lim\inf_{\rightarrow x,,eD(\Delta)}\phi(y)\geqq\phi(x)$ for $x\in D(A)$ . Thus $\phi$ is lower-semicontinu-
ous, and the maximal monotonicity of $A$ implies that $ A=\partial\phi$ .

The next corollary also follows from Theorem.

COROLLARY 2. Let $Y$ be a reflexive Banach space such that $Y\subset H\subset Y^{\prime}$

with the continuous and dense inclusion. Let $\tilde{A}:Y\rightarrow Y^{\prime}$ be an operator
which is everywhere defined on $Y$, coercive, w-G\^ateaux differentiable and
w-continuous on every 2-dimensional subset of Y. If $\delta\tilde{A}(x):Y\rightarrow Y^{\prime}$ is a
positive symmetric operator for each $x\in Y$, then $A=\tilde{A}_{H}$ (see Remark 1)
is maximal cyclically monotone operator in $H$, i.e., there is a proper
lower-semicontinuous convex functional $\phi;H\rightarrow(-\infty, \infty$ ] such that $ A=\partial\phi$

PROOF. $A$ is a cyclically monotone operator in $H$, by Remark 1. On
the assumption of this corollary, $A$ is maximal monotone in $H$ (see [1,
Example 2.3.7]). Hence, $A$ is maximal cyclically monotone in $H$.
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REMARK 3. The functional $\phi:H\rightarrow(-\infty, \infty$ ] defined in Remark 2
satisfies the conclusion of Corollary 2 also.

In fact, the functional $\tilde{\phi}:Y\rightarrow(-\infty, \infty$ ] defined by $\tilde{\phi}(x)=$

$\int_{0}^{1}(x-x_{0},\tilde{A}(x_{0}-t(x-x_{0})))dt$ for $x\in Y$ is proper, convex and $ A=\partial\phi$ in $Y\times Y^{\prime}$ ,

from the proof of Theorem. Hence, we easily have that $ A=\partial\phi$ in $H\times H$

and $\phi$ is a proper lower-semicontinuous convex functional from $H$ to
$(-\infty, \infty]$ .

\S 3. Example.

In this section, we give an example of Corollary 2.
Let $\Omega\subset R^{n}$ be a bounded damain with smooth boundary $\partial\Omega$ . $(\partial/\partial x)$ ,

$i=1,$ $\cdots,$ $n$ , denote distributional derivatives. $H^{o_{1}}(\Omega)$ is the usual Sobolev
space which consists of {$u\in L^{2}(\Omega);(\partial/\partial x_{i})u\in L^{2}(\Omega)i=1,$ $\cdots,$ $n,$ $u=0$ on $\partial\Omega$ }.
$H^{-1}(\Omega)$ denotes the dual space of $\mathring{H}^{1}(\Omega)$ . Let $\tilde{A}:\mathring{H}^{1}(\Omega)\rightarrow H^{-1}(\Omega)$ be an
operator such that

$\tilde{A}u=-\sum_{\dot{g}=1}^{n}\frac{\partial}{\partial x_{j}}a_{j}(x, u_{1}, \cdots, u_{n})$
$(u\in\mathring{H}^{1}(\Omega))$ ,

where

$u_{i}=\frac{\partial}{\partial x_{i}}u$ , $i=1,$ $\cdots,$ $n$ ,

$a_{j}(x, u_{1}, \cdots, u_{n}):(u_{1}, \cdots, u_{n})\in(L^{2}(\Omega))^{n}\rightarrow L^{2}(\Omega)$ ,

(3.1) $a_{j}(x, \cdot, \cdot\cdot, )\in C^{1}(R^{n})$ for each fixed $ x\in\Omega$ ,

(3.2) $\frac{\partial}{\partial u_{k}}a_{j}=\frac{\partial}{\partial u_{j}}a_{k}(\equiv a_{jk})$ ,

(3.3) $|a_{jk}(x, y_{1}, \cdots, y_{n})|\leqq M$ for $\forall x\in\Omega,$ $\forall y_{i}\in R$ $(i=1, \cdots, n)$ ,

(3.4) $\sum_{j,k=1}^{n}a_{\dot{g}k}\xi_{j}\xi_{k}\geqq\alpha\sum_{j=1}^{n}\xi_{j}^{2}(^{\exists}\alpha>0)$ (uniformly elliptic).

$A=\tilde{A}_{H}:L^{2}(\Omega)\rightarrow L^{2}(\Omega)$ is an operator defined by

$D(A)=\{u\in\mathring{H}^{1}(\Omega); Au\in L^{2}(\Omega)\}$ , $Au=\tilde{A}u$ for $u\in D(A)$ .
Then $A$ is a maximal cyclically monotone operator in $H$.

PROOF. We set $H=L^{2}(\Omega)$ with norm $||\cdot||=\Vert\cdot||_{L^{2}(\Omega)}$ and $Y=H^{o_{1}}(\Omega)$ with
norm $|||\cdot|||=||\cdot\Vert_{H^{1}(\Omega)}\circ$ We have only to show that the hypothesis of
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Corollary 2 are satisfied. We put $\partial u=(u_{1}, \cdots, u_{n})$ . It is well-known
that $Y$ is reflexive.

1) First, we show that $\tilde{A}$ is w-Fr\’echet differentiable on $Y$ (and

therefore $\tilde{A}$ is w-G\^ateaux differentiable and w-continuous on Y) with

$\delta\tilde{A}(u)v=-\sum_{j,k=1}^{n}\frac{\partial}{\partial x_{\dot{f}}}(a_{\dot{g}k}(x, \partial u)v_{k})$ .
Let $u,$ $w\in Y$ be any fixed elements. It suffices to show that

$\frac{1}{|||v|||}(w,\tilde{A}(u+v)-\tilde{A}u+\sum_{j,k=1}^{n}\frac{\partial}{\partial x_{\dot{f}}}(a_{2k}(x, \partial u)v_{k}))\rightarrow 0$

as $|||v|||\rightarrow 0$ . By (3.1), it holds that

$(w,\tilde{A}(u+v)-\tilde{A}u)=\sum_{\dot{g}=1}^{n}(w_{j}, a_{j}(x, \partial(u+v))-a_{\dot{f}}(x, \partial u))$

$=\sum_{j=1}^{n}(w_{j},\sum_{k=1}^{n}\frac{\partial}{\partial u_{k}}a_{j}(x, \partial u+\theta ae,*\partial v)v_{k})$

for some $\theta_{g,v}$ with $0<\theta.,.<1$ . Hence we have that

$\frac{1}{|||v|||}(w,\tilde{A}(u+v)-\tilde{A}u+\sum_{j,k=1}^{n}\frac{\partial}{\partial x_{\dot{f}}}(a_{\dot{g}k}(x, \partial u)v_{k}))$

$=\frac{1}{|||v|||}\sum_{j,k}(w_{j}, \{a_{\dot{g}k}(x, \partial u+\theta_{x,v}\partial v)-a_{\dot{g}k}(x, \partial u)\}v_{k})$

$=(\sum_{j,k}\frac{v_{k}}{|||v|||},$
$w_{j}\{a_{\dot{g}k}(x, \partial u+\theta ae,v\partial v)-a_{\dot{g}k}(x, \partial u)\})$

$\leqq\sum_{\dot{J}^{k}}\Vert w_{j}\{a_{\dot{g}k}(x, \partial u+\theta_{g,v}\partial v)-a_{\dot{g}k}(x, \partial u)\}\Vert$ .
We put $g_{\dot{g}k,v}(x)=w_{j}\{a_{\dot{g}k}(x, \partial u+\theta_{x,v}\partial v)-a_{jk}(x, \partial u)\}$ . Then we only need to
show that $||g_{\dot{g}k.v}||\rightarrow 0$ as $|||v|||\rightarrow 0$ for $j,$ $k=1,$ $\cdots,$ $n$ . If not, for some
$j,$ $k$ , there are a sequence $\{v^{(m)}\}\subset Y$ and an $\epsilon_{0}>0$ such that

(3.5) $|||v^{t\prime\hslash)}|||\rightarrow 0$ as $ m\rightarrow\infty$ and

(3.6) $\Vert g_{n}\Vert\geqq\epsilon_{0}$ ,

where $g_{n}=g_{\dot{g}k,*}(’*)$ . By (3.3), it holds that

(3.7) $|g_{n}(x)|\leqq 2M|w_{j}(x)|$ .
(3.5) implies that

$||v_{i}^{(n)}||\rightarrow 0$ as $ m\rightarrow\infty$ , $i=1,$ $\cdots,$ $n$ .
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Thus we can extract a subsequence $\{v^{tl)}\}$ of $\{v^{(m)}\}$ such that
$v_{i}^{(t)}(x)\rightarrow 0$ a.e. $x$ on $\Omega$ as $ l\rightarrow\infty$ , $i=1,$ $\cdots,$ $n$ .

By (3.1), this convergence yields that

(3.8) $g_{\dot{g}k,v^{(l)}}(x)^{2}\rightarrow 0$ a.e. $x$ on $\Omega$ as $ l\rightarrow\infty$ , $j,$ $k=1,$ $\cdots,$ $n$ .
From (3.7) and (3.8), we have by Lebesgue’s convergence theorem that
$\Vert g_{\iota}\Vert\rightarrow 0$ as $ l\rightarrow\infty$ , which contradicts (3.5).

2) Secondly, we prove that $\tilde{A}:Y\rightarrow Y$’ is coercive. Let $ u\in$ Y. Then
we have

($u$ , Au– $\tilde{A}O$) $=\sum_{j=1}^{n}\int_{\Omega}u_{j}(a_{j}(x, u)-a_{j}(x, O))dx$

$=\sum_{j.k=1}^{n}\int_{\Omega}a_{\dot{g}k}(x, \theta_{x,u}\partial u)u_{k}u_{\dot{f}}dx$ ,

for some $\theta_{x,u}$ with $0<0.,.<1$ , by (3.1). Thus we have by (3.4) that

$(u,\tilde{A}u-\tilde{A}O)\geqq\alpha\sum_{j=1}^{n}\int_{\Omega}u_{j}^{2}dx\geqq\alpha C|||u|||^{2}$

for some constant $C>0$ . In the last inequality, we used Poincar\’e’s
inequality, since $\Omega$ is bounded. Therefore we have that

$\frac{1}{|||u|||}(u,\tilde{A}u)\geqq\frac{1}{|||u|||}(u,\tilde{A}O)+\alpha C|||u|||\geqq-\Vert\tilde{A}O\Vert+\alpha C|||u|||$ .

This yields that $\lim_{|||u|||\rightarrow\infty}(1/|||u|||)(u,\tilde{A}u)=\infty$ , i.e., $\tilde{A}$ is coercive.
3) Finally we show that $\delta\tilde{A}(u)$ is positive symmetric for each $ue$ Y.

Let $u,$ $v,$ $w$ be any elements of Y. Then

$(w, \delta\tilde{A}(u)v)=(w,$ $-\sum_{j,k=1}^{n}\frac{\partial}{\partial x_{j}}(a_{\dot{g}k}(x, \partial u)v_{k}))$

$=\sum_{j,k=1}^{n}\int_{\Omega}a_{jk}(x, \partial u)w_{\dot{f}}v_{k}dx$ .

Hence, by (3.2), we have that $(w, \delta\tilde{A}(u)v)=(v, \delta\tilde{A}(u)w)$ , i.e., $\delta\tilde{A}(u)$ is
symmetric. And positivity follows from (3.4).

Consequently, $A$ satisfies the hypothesis of Corollary 2, and hence $A$

is a maximal cyclically monotone operator in $H$.
REMARK 4. This example is dealt with by Y. Komura and Y. Konishi

[3] without proof.
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