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Introduction

Let @: ¥ —S® be a minimal immersion of a compact orientable surface
XY into the unit 8-sphere S® It is valuable to study the set of such im-
mersions with Y of given genus. For example, when Y is of genus 0,
i.e., Y is the 2-sphere, @ must be the totally geodesic immersion of S
into S°® [8] [1] [4].

Assume Y is the torus. In this case, there is the well-known minimal
isometric embedding of the flat square torus S'(1/1 2)xSY1/1”2) into S*
called the Clifford immersion. Though there are many minimal immersions
of the torus into S%, they are not embedded. Thus, it is conjectured that
the only minimal embedding of the torus into S® is the Clifford one [7].

To study this, we consider minimal immersions of a torus into S®
having the following property:

(=) Each line of curvature of the immersions lies in some
totally geodesic 2-sphere in S&.

The main theorem of this paper is the following:

THEOREM. (1) There exist infinitely many minimal immersions of
the torus into S® satisfying (x).

(2) A minimal immersion of the torus into S® satisfying (x) is not
an embedding provided that it 18 congruent with the Clifford one.

§1. Preliminaries.

Let @: 3 —S® be a smooth immersion of a surface into the unit 3-
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sphere. The first fundamental form of ¢ is the induced metric g=
®*{, >, where {, ) is the standard metric of S®. The second fundamental

form h of ¢ is defined as h(X, Y)=—(V,v,Y) for all vectors X and Y

tangent to @, where v is the unit normal vector field of @ and V is the
canonical connection of S°.

The existence of isothermal coordinates shows us that there exist
local coordinates (u, v) of X in which g is written as

1.1) g=e’(du’+dr?) ,

where ¢ is a smooth function of u and v. Write the second fundamental
form in these coordinates as

1.2) h=Ldu*+2Mdudv+ Ndv? ,

where L, M and N are functions of u and v.
The mean curvature of ¢ is the function H on I defined by

(1.3) H= %e“’(L+N)

in the present isothermal coordinates. The immersion ¢ is called minimal
when H is identically 0, i.e., N=—L in (1.2).
In these coordinates, the equation of Gauss is

(L4) -2 Ac=(LN-M)e™+1, where A=y 2.

Consider the complex function f of z=u+1iv
(1.5) f(z)=M+iN .
When ¢ is minimal, the equation of Codazzi holds if and only if f is a

holomorphic function of z.

§2. Fundamental equation.

Suppose @: ¥ —S* be a minimal immersion of the torus. On taking
the universal cover of Y, ¢ is lifted to the minimal immersion &: R*— S®.
Since the induced metric §=%*(, ) is conformal to the flat metric of
R? [2], there exist global coordinates (u, v) in which the first fundamental
form is

(2.1) g=e’(du*+dv?) ,

where ¢ is a smooth function on R? which is invariant by the deck
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transformations of the cover R*— Y, i.e., ¢ is a doubly periodic function.
The second fundamental form of & is written as (1.2), where L, M and
N are also doubly periodic functions defined on R?

Since & is minimal, the doubly periodic function £ in (1.5) is holomorphic
on the whole complex plane. Hence by Liouville’s theorem, L, M and N
must be constant on R?. Then, by a suitable change of coordinates, we
may assume the second fundamental form is diagonalized as

h=L(du’—dv?®) ,

where L is a positive constant. Replacing u, v and ¢ by V'L, v/\/L
and o+log L respectively, we have the first fundamental form (2.1) and
the second fundamental form

(2.2) h=duw*—dv* .
By (2.1) and (2.2), the equation of Gauss (1.4) becomes
(2.8) . f Ag=—4sinho .

Conversely, by the fundamental theorem of the theory of surfaces
[6], we have the following proposition:

PropPosITION 2.1. (1) If ¢:3— 8% 18 a minimal immersion of the
torus, and @: R*— S® 18 the lift of ¢ to the universal cover of X, then
there exist coordinates (u,v) of R® im which the first and the second
fundamental forms of & are written as (2.1) and (2.2) respectwely, and
the function o in (2.1) satisfies (2.3).

(2) If a smooth function o on R* satisfies (2.8), then there exists a
minimal immersion @,: R®*—S® whose first and the second fundamental
forms are (2.1) and (2.2) respectively. Moreover, such an immersion s
unique up to congruence.

REMARK. Even if ¢ in (2.8) is doubly periodic, the corresponding
immersion ¢, is not necessarily doubly periodic. To study minimal im-
mersions of the torus into S® we must search for doubly periodic solutions
of (2.3) whose corresponding immersions are also doubly periodiec.

The trivial solution of (2.8) is ¢=0. In this case, the corresponding
minimal immersion ¢, is an isometric minimal immersion of R* with flat
metric which is written explicitly as

Po(u, v)= 1/ cosl/2u,-171—2——s1n1/2u,1—/1—2—0081/2v,-17%s1n1/2'v)
. e S,
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where S*={(z°, «!, 2% 2*) € R*; D3, (2*)*=1}. Since ¢, is doubly periodic, it
gives the minimal isometric immersion of the flat torus RYI" into S3,
where I" is the lattice on R® generated by {0,V 27x) ,V 2=, 0)}). This
immersion is called the Clifford immersion, which has the following
properties:

(1) It is the only isometric minimal immersion of the flat torus
into S® up to congruence.

(2) The immersion is one-to-one, i.e., it is an embedding.

(3) The area of the immersed torus is 2z

(4) The immersion is given by the first eigenfunctions of the laplacian
of R*I'. In other words, the first eigenvalue of the laplacian of R*I"
is 2.

§3. Lines of curvature.

Suppose @: R*— S* be a minimal immersion with the first and the
second fundamental forms (2.1) and (2.2) respectively.

Vector fields 9/ou and 6/ov give the principal directions of h, and
their integral curves are the lines of curvature of . Let

3.1) c.(v)=9(u, v), c,(uw)=p(u, v) .

Then curves ¢, and ¢, in S® are lines of curvature of @ parametrized by
v and u respectively. The following lemma is easy to show.

LEMMA 3.1. (1) The curve c, has the curvature

x,=%e“’/’{(a,a)’+4e"}"2

and the torsion

r=e o (2 + (SO T
(2) The curve ¢, has the curvature

lc,=%e"’”{(a,a)’+4e"}1’2

e (RO ST

LEMMA 3.2. FEach line of curvature of @ lies in some totally geodesic

and the torsion
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2-sphere in S® if and only if o is the following form:
(8.2) o(u, v)=log{U(u)+ V(v)}* ,
where U and V are smooth functions on R.

PROOF. Suppose ¢ is as in (8.2). So, it is an easy consequence of
Lemma 3.1 that 7z, and 7, are identically 0 for any % and v. Then each
¢, and ¢, lies in some totally geodesic 2-sphere in S°®

Conversely, if each 7, is identically 0, 8,(¢"°/k.) must be identically
0. Hence 4(e°k,)*=(0,e°%)*+4 must depend only on w. Let 9,e”2=U(u).
Then e°?= U(u)+ V(v) for some function V(») and the conclusion follows.

O

PROPOSITION 3.8. Let @: R2—S® be a minimal immersion with the
first and the second fundamental forms (2.1) and (2.2) respectively. Then
each line of curvature of @ lies in some totally geodesic 2-sphere in S*
if and only if o(u, v) depends only on one variable w or v.

PrOOF. If ¢ depends only on # or v, ¢, and ¢, are curves without
torsion because of Lemma 3.1.

Assume each ¢, or ¢, lies in a totally geodesic S:®. Then ¢ is written
as (3.2). Substituting (3.2) in (2.3), we have

U'(U+v)+v"U+vV)—(U»—(Vy=1—-(U+V),
where U’'=dU/du, V'=dV/dv, etc. Differentiating this equation by » and v,
Urv+uv’=—-12U+V)yU'v’'.
If U'V’'#0, then’

(F-)+(5)= 12U+ vr.

Differentiating the above, we obtain U’'V’'=0. So, U’V’' must be identical-
ly 0. Hence U or V is a constant funection. O

§4. Differential equation.

In this section, we construct a family of minimal immersions of R®
into S® whose lines of curvature lie in some totally geodesic 2-spheres in
Se.

Let @: R*— S® be one of such immersions. So, by Propositions 2.1 and
8.8, there exist coordinates (u, v) of R?* with the following properties:
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(1) The first fundamental form of o is
4.1) g=e’(du*+dv?) ,

(2) the second fundamental form of ¢ is
4.2) h=du*—dv* ,

(3) the function o depends only on #», and
(4) the function o(v) satisfies the ordinary differential equation:

(4.3) %%: _4sinho.

The equation (4.8) has an integral:

-;—( ZZ )2+4 cosho=4a,

where « is an integral constant. Then for each ac[l, «), there exists
a unique solution o, such that:

1/do,\ _
(4.4) -E(-Tv-—) +4 cosh o,=4a ,
(4.5) o.(0)=loga, where a=a+vVa—1,
(4.6) 49 0)<0.
v

LEMMA 4.1. The solutions {o.; a €[1, «)} have the following proper-
ties:

(1) 0,=0.

(2) For each ac(l, «), o, 18 a periodic function with period

. 2 (= dx
T(“)_I/ESo vV1i—(1—a¥)sin’z
—o(—r), BTy dTa
(3) 0.(V)=0,(—") , T (v) T (—v).
(4) —logaz<o,Zloga .

(5) o, 18 simply decreasing on [O, —ZKZQ)—:I and increasing on [I(E“_), T(a)].
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ProOF. (1) and (38) are immediate consequences of (4.4).
dcr
8(a'2 1)

+4cosh =4«

—loga 0 loga ©

—/8(@—1)
FIGURE 1
Figure 1 is the phase curve of the solution o, of the equation (4.4). The

tangent vectors (do./dv, d*c./dv*) of this curve never vanishes, so g, is
periodic with period

_ T{a) _ —loga dO'a
T(“)—So dv= 2Smga do./dv

=2S10ga do
~10ea 1 8(ax— cosh o)
__2 S”” dx
Vad VI—(1—adsin’z

and thus (2) is proved.
By Figure 1, (4) and (5) are also proved. O

By Proposition 1.1, there exists the immersion @, of R* into S° de-
fined by (4.1), (4.2) and oc=o0,. Since ¢,=0, the immersion ¢, is the
Clifford immersion.

REMARg_. Though the period of the Clifford immersion in the direc-
tion v is V' 2, lim,,, T(a)==. This shows that the Clifford immersion is
isolated in the family {®,} as an immersion of the torus.

Consider the lines of curvature of ¢,
ci(v) =@ (u, v) , cs(u)=@(u, v) .

Since they lie in some totally geodesic 2-spheres in S° we may consider
each of ¢ and ¢? as a curve in S?’CR’. By Lemma 3.1, we obtain the
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following lemma.
LEMMA 4.2. (1) c? 18 the curve wn S* with the curvature
k:=1"2ae %—1 ,

(2) c¢? is a small circle with radius e’*v'2a in R’
(3) @, gives a minimal immersion of the cylinder whose funda-
mental domain s

{w, v); 0=u< \/%z} CR:.

(4) c2 18 the curve in S? wzth the curvature
K;=¢ e, |

(5) The curves c; are congruent with each other.

§5. Existence of minimal tori.

In this section, we prove the first part of the main theorem.

Let o, and @, be as in the previous section. Then by Lemma 4.2(3),
@, gives an immersion of the cylinder.

Assume @, gives an immersion of the torus and ¢ never closes up
in S®. Then the image of ¢2 is dense in the image of ,. On the other
hand, the image of c¢Z lies in some totally geodesic 2-sphere, then the
image of ¢, lies in the 2-sphere. This is impossible. Hence ¢, gives an
immersion of the torus if and only if the curve ¢Z is closed with some
integral times of the period of o,.

The first part of the main theorem is an immediate consequence of
the following proposition:

PROPOSITION 5.1. There exist countably many a’s in (1, «) such
that the curve c% is closed with period k,T(c) for some positive number
k,=2.

We shall prove this later.

Take ae(1, «), and let T=T(a) and o=0,. Consider c=c%|y rq as
a curve in S’°CR®. Let x=k%=e° be the curvature of ¢ as the curve
in S* and £=1Vk*+1 that of ¢ as the curve in R®. In the rest of this
section, we take the arc length s as the parameter of ¢ instead of w.
To begin with, we have the following lemma:
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LEMMA 5.2.
(1) Length of ¢ —-S e*dv=m .
(2) | sds=n
(3) | #ds<2n s

PROOF. Since ||de/dv||=e2,

length of ¢ = ST e’dv

0

loga eo/zdo.
—2 by (4.4
S-mga TBe—cohoy Y 44D

=T,
then (1) is prov'ed.v
Similarly, (2) is true because
Y kds= ST e %e’*dv

o 0
_ Sloga e~dg
"~ " )10 18(a—cosh )

_ .—2S—loga _ ep/zdp
10ga 1/ 8(a—cosh o)
=7.
Finally, by Lemma 5.2,

S:Eds=§:|/mds

so (8) is proved. _ : O
This lemma leads the followmg |

LEMMA 5.8. If the curve ¢ is closed with period k. times that of the
period of the metric e °? then k,=2.

PrROOF. If k,=1, the total curvature of the closed curve c as a curve
in R is

Y £ds<2rm
0
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by Lemma 5.1. On the other hand, by Fenchel’s theorem [5], the total
curvature of a closed space cannot be less than 2z. This is impossible. [7]

Let e (resp. n) be the unit tangent vector (resp. the unit normal
vector) of ¢ as a curve in S So, (c(s), e(s), n(s)) forms the moving
frame of R® along ¢. Define F(a) to be the orthogonal matrix which
changes the frame (c(0), e(0), n(0)) to (¢(w), e(x), n(x)). So F(a) is a
continuous curve in SO(3) parametrized by a (1, ).

Each orthogonal matrix A € SO(3) is conjugate to a matrix

cosf —sinfd O
R(0)=(sin 0 cos 6 O) .
0 0 1

Let 6(a) be a continuous function such that F(a) is conjugate to R(6(a)).
In terms of F, the curve c¢ is closed with period k,-times that of the
metric ¢*? if and only if F(a)*= is the identity matrix. This condition
is equivalent to

5.1) k.0(a)=0 mod2r .

To prove Proposition 5.1, we see the behavior of the curve F(a)
when a tends to 1 and oo.

LEMMA 5.4.

(1) lim 8(a)=v"27 .

all

(2) limé(a)=x .

atoo

PROOF. The curve ¢ converges to the small circle with radius 1/1/2
in R® as 1.

V2r c(n/2)
D >
’ S
e b
V2
c(0)=c(m)

all at oo
Behavior of ¢ when a tends to 0 and oo.

FIGURE 2
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By Lemma 5.2, the length of ¢ is = independent of e, so_ the angle
between (c(0), €(0), n(0)) and (c(x), e(n), n(x)) tends to V' 2z as all
(Figure 2). Then (1) is true.

cliz/2—o,7/2+0]

a circle with radius arcsin p projection

- TS e .
-

o)

FIGURE 3

To prove (2), we consider ¢ as a curve in R? such that ¢(z/2) is the
north pole (0, 0, 1) of the unit sphere, and E denotes the equator of the
unit sphere as in Figure 3. Let o be a small positive number. So the
curve €,=clio rp—p3 30 €;=C|ir/010,.1 CONVerge to the great circles in S* with
length 7/2—p as aT oo because ¢ tends to «~ and k=e~° tends uniformly
to O. C :

Let ¢ be the orthogonal projection of ¢lir/—p zs+01 to the plane con-
taining E, and % the total curvature of &. For sufficiently small o, &
is nearly equal to the total curvature of ¢|i.o—p.zn+01r Then by Lemma
5.2 and the fact that the curvature of ¢ is concentrated in s=x/2 as
al o, we have

lim kE=n+d() ,

where lim,,0(0)=0. So the rotation number of & tends to 1/2+46’(0) as
al o, where lim,;,6"=0.

Hence, the curve ¢ converges to a curve consisting of two great ares
of length #/2 which meet at north pole with angle . This shows that
lim,;. 8(a)=m and (2) is proved. 1

PROOF OF PROPOSITION 5.1. By Lemma 5.4, there exist countably
many a’s in (1, o) such that 6(a)/2z are rational numbers. For such a,
the lines of curvature ¢ are closed in [0, k,x]. Moreover, by Lemma 5.3,
k.=2. ]

§6. Proof of non-embeddedness.

In this section, we prove the last part of the main theorem. This
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is the immediate consequence of the following proposition.

PROPOSITION 6.1. If the curve ¢ tn the previous section 18 closéd m
S? with period k-times that of its metric, where k=2, then ¢ must have
a self-intersection.

PROOF. Assume ¢ has no self-intersection. So, ¢ bounds a simply
connected domain £ of S* such that the normal vector field of ¢ is the
inward normal of 62. By Gauss-Bonnet theorem for a domain of a
surface [6], we have

| L 1dv+ Sm kds=2rx ,

where dv is the canonical area element of S2.. On the other hand, the
total curvature of 02 is

|, sds=k | rds=tr,
9 0
because of Lemma 5.2(3). Then,

Area of Q=Sgldv=(2—-k)7t§0.
This is impossible. R

This completes the proof of the main theorem.
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