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Introduction

Let $\varphi:\Sigma\rightarrow S^{\epsilon}$ be a minimal immersion of a compact orientable surface
$\Sigma$ into the unit 3-sphere $S^{8}$ . It is valuable to study the set of such im-
mersions with $\Sigma$ of given genus. For example, when $\Sigma$ is of genus $0$ ,
i.e., $\Sigma$ is the 2-sphere, $\varphi$ must be the totally geodesic immersion of $S^{2}$

$\bigotimes_{\backslash }$

into $S^{8}[3][1][4]$ .
Assume $\Sigma$ is the torus. In this case, there is the well-known minimal

isometric embedding of the flat square torus $S^{1}(1/\sqrt{2})\times S^{1}(1/\sqrt{2})$ into $S^{8}$

called the Clifford immersion. Though there are many minimal immersions
of the torus into $S^{\epsilon}$ , they are not embedded. Thus, it is conjectured that
the only minimal embedding of the torus into $S^{8}$ is the Clifford one [7].

To study this, we consider minimal immersions of a torus into $S^{8}$

having the following property:

$(*)$ Each line of curvature of the immersions lies in some
totally geodesic 2-sphere in $S^{B}$ .

The main theorem of this paper is the following:

THEOREM. (1) There exist infinitely many minimal immersions of
the torus into $S^{8}$ satisfying $(*)$ .

(2) A minimal immersion of the torus into $S^{\epsilon}$ satisfying $(*)$ is not
an embedding provided that it is congruent with the Cliford one.

\S 1. Preliminaries.

Let $\varphi:\Sigma\rightarrow S^{8}$ be a smooth immersion of a surface into the unit 3-
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sphere. The first fundamental form of $\varphi$ is the induced metric $g=$
$\varphi^{*}\langle, \rangle$ , where $\langle, \rangle$ is the standard metric of $S^{8}$ . The second fundamental
form $h$ of $\varphi$ is defined as $ h(X, Y)=-\langle\overline{\nabla}_{X}\nu, Y\rangle$ for all vectors $X$ and $y$

tangent to $\varphi$ , where $\nu$ is the unit normal vector field of $\varphi$ and V is the
canonical connection of $S^{\epsilon}$ .

The existence of isothermal coordinates shows us that there exist
local coordinates $(u, v)$ of $\Sigma$ in which $g$ is written as
(1.1) $g=e^{o}(du^{2}+dv^{2})$ ,

where $\sigma$ is a smooth function of $u$ and $v$ . Write the second fundamental
form in these coordinates as
(1.2) $h=Ldu^{2}+2Mdudv+Ndv^{2}$ ,

where $L,$ $M$ and $N$ are functions of $u$ and $v$ .
The mean curvature of $\varphi$ is the function $H$ on $\Sigma$ defined by

(1.3) $H=\frac{1}{2}e^{-\sigma}(L+N)$

in the present isothermal coordinates. The immersion $\varphi$ is called minimal
when $H$ is identically $0$ , i.e., $N=-L$ in (1.2).

In these coordinates, the equation of Gauss is

(1.4) $-\frac{1}{2}e^{-\sigma}\Delta\sigma=(LN-M^{2})e^{-2\sigma}+1$ , where $\Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$ .
Consider the complex function $f$ of $z=u+iv$

(1.5) $f(z)=M+iN$ .
When $\varphi$ is minimal, the equation of Codazzi holds if and only if $f$ is a
holomorphic function of $z$ .

\S 2. Fundamental equation.

Suppose $\varphi:\Sigma\rightarrow S^{\epsilon}$ be a minimal immersion of the torus. On taking
the universal cover of $\Sigma,$

$\varphi$ is lifted to the minimal immersion $\tilde{\varphi}:R^{2}\rightarrow S^{8}$ .
Since the induced metric $ g\sim=\tilde{\varphi}^{*}\langle$ $\rangle$ is conformal to the flat metric of
$R^{2}[2]$ , there exist global coordinates $(u, v)$ in which the first fundamental
form is
(2.1) $g\sim=e^{\sigma}(du^{2}+dv^{2})$ ,

where $\sigma$ is a smooth function on $R^{2}$ which is invariant by the deck
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transformations of the cover $ R^{2}\rightarrow\Sigma$ , i.e., $a$ is a doubly periodic function.
The second fundamental form of $\tilde{\varphi}$ is written as (1.2), where $L,$ $M$ and
$N$ are also doubly periodic functions defined on $R^{2}$ .

Since $\tilde{\varphi}$ is minimal, the doubly periodic function $f$ in (1.5) is holomorphic
on the whole complex plane. Hence by Liouville’s theorem, $L,$ $M$ and $N$

must be constant on $R^{2}$ . Then, by a suitable change of coordinates, we
may assume the second fundamental form is diagonalized as

$h=L(du^{2}-dv^{2})$ ,

where $L$ is a positive constant. Replacing $u,$ $v$ and $a$ by $u/\sqrt{L},$ $v/\sqrt{L}$

and $\sigma+\log L$ respectively, we have the first fundamental form (2.1) and
the second fundamental form

(2.2) $h=du^{2}-dv^{2}$ .
By (2.1) and (2.2), the equation of Gauss (1.4) becomes

(2.3) $\Delta a=-4$ sinh $\sigma$ .
Conversely, by the fundamental theorem of the theory of surfaces

[5], we have the following proposition:

PROPOSITION 2.1. (1) If $\varphi:\Sigma\rightarrow S^{3}$ is a minimal immersion of the
torus, and $\tilde{\varphi}:R^{2}\rightarrow S^{\epsilon}$ is the lift of $\varphi$ to the universal cover of $\Sigma$ , then
there exist coordinates $(u, v)$ of $R^{2}$ in which the first and the second
fundamental forms of $\tilde{\varphi}$ are written as (2.1) and (2.2) respectively, and
the function $a$ in (2.1) satisfies (2.3).

(2) If a smooth function $a$ on $R^{2}$ satisfies (2.3), then there exists a
minimal immersion $\varphi_{\sigma}:R^{2}\rightarrow S^{8}$ whose first and the second fundamental
forms are (2.1) and (2.2) respectively. Moreover, such an immersion is
unique up to congruence.

REMARK. Even if $a$ in (2.3) is doubly periodic, the corresponding
immersion $\varphi_{\sigma}$ is not necessarily doubly periodic. To study minimal im-
mersions of the torus into $S^{8}$ , we must search for doubly periodic solutions
of (2.3) whose corresponding immersions are also doubly periodic.

The trivial solution of (2.3) is $a=0$ . In this case, the corresponding
minimal immersim $\varphi_{0}$ is an isometric minimal immersion of $R^{2}$ with flat
metric which is written explicitly as

$\varphi_{0}(u, v)=(\frac{1}{\sqrt{2}}\cos\sqrt{2}u,$ $\frac{1}{\sqrt{2}}\sin\sqrt{2}u,\frac{1}{\sqrt{2}}\cos\sqrt{2}v,$ $\frac{1}{\sqrt 2}$ sin $\sqrt{2}v)$

$eS^{8}$ ,
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where $S^{\epsilon}=\{(x^{0}, x^{1}, x^{f}, x^{\prime})eR^{4};\sum_{=0}^{\epsilon}(x)^{2}=1\}$ . Since $\varphi_{0}$ is doubly periodic, il
gives the minimal isometric immersion of the flat torus $ R^{2}/\Gamma$ into $S_{l}$

where $\Gamma$ is the lattice on $R^{2}$ generated by $\{(0, \sqrt{2}\pi)(\sqrt{2}\pi, 0)\}$ . Thif
immersion is called the Cliford immersion, which has the following
properties:

(1) It is the only isometric minimal immersion of the flat toruf
into $S^{\epsilon}$ up to congruence.

(2) The immersion is one-to-one, i.e., it is an embedding.
(3) The area of the immersed torus is $2\pi^{2}$ .
(4) The immersion is given by the first eigenfunctions of the laplacian

of $ R^{2}/\Gamma$ . In other words, the first eigenvalue of the laplacian of $ R^{2}/\Gamma$

is 2.

\S 3. Lines of curvature.

Suppose $\varphi:R^{2}\rightarrow S^{t}$ be a minimal immersion with the first and the
second fundamental forms (2.1) and (2.2) respectively.

Vector fields $\partial/\partial u$ and $\partial/\partial v$ give the principal directions of $h$ , and
their integral curves are the lines of curvature of $\varphi$ . Let

(3.1) $c_{u}(v)=\varphi(u, v)$ , $c_{*}(u)=\varphi(u, v)$ .
Then curves $c$. and $c$. in $S^{\epsilon}$ are lines of curvature of $\varphi$ parametrized by
$v$ and $u$ respectively. The following lemma is easy to show.

LEMMA 3.1. (1) The curve $c$. has the curvature

$\kappa.=\frac{1}{2}e^{-\sigma/2}\{(\partial_{l}a)^{2}+4e^{-\sigma}\}^{1/2}$

and the torsion

$\tau_{l}=e^{-\sigma/2}[\{\partial_{v}(\frac{e^{-\sigma/2}\partial.a}{2\kappa_{*}})\}^{2}+\{\partial.(\frac{e^{-\sigma}}{\kappa})\}^{*}]^{1/2}$ .
(2) The curve $c_{v}$ has the curvature

$\kappa.=\frac{1}{2}e^{-\sigma/l}\{(\partial_{v}\sigma)^{2}+4e^{-\sigma}\}^{1/2}$

and the torsion

$\tau_{l}=e^{-\sigma/2}[\{\partial.(\frac{e^{-\sigma/2}\partial_{l}\sigma}{2\kappa_{*}})\}^{2}+\{$ $\partial.(\frac{e^{-\sigma}}{\kappa_{*}})\}^{g}]^{1/2}$ .
LEMMA 3.2. Each $l\ell ine$ of curvature of $\varphi$ lies in some totally geodesic
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2-sphere in $S^{s}$ if and only if $\sigma$ is the following form:
(3.2) $\sigma(u, v)=\log\{U(u)+V(v)\}^{2}$ ,

where $U$ and $V$ are smooth functions on $R$ .
PROOF. Suppose $a$ is as in (3.2). So, it is an easy consequence of

Lemma 3.1 that $\tau_{u}$ and $\tau_{v}$ are identically $0$ for any $u$ and $v$ . Then each
$c_{u}$ and $c_{v}$ lies in some totally geodesic 2-sphere in $S^{8}$ .

Conversely, if-each $\tau_{u}$ is identically $0,$ $\partial_{v}(e^{-\sigma}/\kappa_{u})$ must be identically
$0$ . Hence $4(e^{\sigma}\kappa_{u})^{2}=(\partial_{u}e^{\sigma/2})^{2}+4$ must depend only on $u$ . Let $\partial_{u}e^{\sigma/2}=U(u)$ .
Then $e^{\sigma/2}=U(u)+V(v)$ for some function $V(v)$ and the conclusion follows.

$\square $

PROPOSITION 3.3. Let $\varphi:R^{2}\rightarrow S^{8}$ be a minimal immersion with the
first and the second fundamental forms (2.1) and (2.2) respectively. Then
each line of curvature of $\varphi$ lies in some totally geodesic 2-sphere in $S^{8}$

if and only if $\sigma(u, v)$ depends only on one variable $u$ or $v$ .
PROOF. If $\sigma$ depends only on $u$ or $v,$ $c_{u}$ and $c_{v}$ are curves without

torsion because of Lemma 3.1.
Assume each $c_{u}$ or $c_{v}$ lies in a totally geodesic $S^{2}$ . Then $\sigma$ is written

as (3.2). Substituting (3.2) in (2.3), we have

$U^{\prime}(U+V)+V^{\prime\prime}(U+V)-(U’)^{2}-(V)^{2}=1-(U+V)^{4}$ ,

where $U’=dU/du,$ $V’=dV/dv$ , etc. Differentiating this equation by $u$ and $v$ ,

$U’ V’+U’ V’=-12(U+V)^{2}U’ V’$ .
If $U’ V^{\prime}\neq 0$ , then

$(\frac{U’}{U^{\prime}’})+(\frac{V^{\prime\prime}}{V’})=-12(U+V)^{2}$ .

Differentiating the above, we obtain $U^{\prime}V^{\prime}=0$ . So, $U^{\prime}V^{\prime}$ must be identical-
ly $0$ . Hence $U$ or $V$ is a constant function. $\square $

\S 4. Differential equation.

In this section, we construct a family of minimal immersions of $R^{2}$

into $S^{8}$ whose lines of curvature lie in some totally geodesic 2-spheres in
$S$ .

Let $\varphi:R^{2}\rightarrow S^{\epsilon}$ be one of such immersions. So, by Propositions 2.1 and
3.3, there exist coordinates $(u, v)$ of $R^{2}$ with the following properties:
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(1) The first fundamental form of $\varphi$ is

(4.1) $g=e^{\sigma}(du^{2}+dv^{2})$ ,

(2) the second fundamental form of $\varphi$ is

(4.2) $h=du^{2}-dv^{2}$ ,

(3) the function $\sigma$ depends only on $v$ , and
(4) the function $\sigma(v)$ satisfies the ordinary differential equation:

(4.3) $\frac{d^{2}\sigma}{dv^{2}}=-4$ sinh $\sigma$ .
The equation (4.3) has an integral:

$\frac{1}{2}(\frac{d\sigma}{dv})^{2}+4$ cosh $\sigma=4\alpha$ ,

where $\alpha$ is an integral constant. Then for each $\alpha e[1, \infty$ ), there exists
a unique solution $\sigma_{\alpha}8uch$ that:

(4.4) $\frac{1}{2}(\frac{d\sigma_{\alpha}}{dv})^{2}+4$ cosh $\sigma_{\alpha}=4\alpha$ ,

(4.5) $\sigma_{\alpha}(0)=\log a$ , where $a=\alpha+\sqrt{\alpha^{2}-1}$ ,

(4.6) $\frac{d^{2}\sigma_{\alpha}}{dv^{2}}(0)\leqq 0$ .
LEMMA 4.1. The solutions $\{\sigma_{\alpha};\alpha e[1, \infty)\}$ have the following proper-

ties:

(1) $\sigma_{1}=0$ .
(2) For each a $e(1, \infty),$ $\sigma_{a}$ is a periodic function with period

$T(\alpha)=\frac{2}{\sqrt{a}}\int_{0}^{\pi/2}\frac{dx}{\sqrt{1-(1-a^{-2})\sin^{2}x}}$ .

(3) $\sigma_{\alpha}(v)=\sigma_{\alpha}(-v)$ , $\frac{d\sigma_{\alpha}}{dv}(v)=-\frac{d\sigma_{\alpha}}{dv}(-v)$ .
(4) $-\log a\leqq\sigma_{\alpha}\leqq\log a$ .
(5) $\sigma_{a}$ is simply decreasing on $[0,$ $\frac{T(\alpha)}{2}]$ and increasing on $[\frac{T(\alpha)}{2},$ $T(a)]$ .
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PROOF. (1) and (3) are immediate consequences of (4.4).

FIGURE 1

Figure 1 is the phase curve of the solution $\sigma_{\alpha}$ of the equation (4.4). The
tangent vectors $(da_{\alpha}/dv, d^{2}\sigma_{\alpha}/dv^{2})$ of this curve never vanishes, so $\sigma_{\alpha}$ is
periodic with period

$T(a)=\int_{0}^{T(\alpha)}dv=-2\int_{\log a}^{-\log a}\frac{da_{\alpha}}{da_{\alpha}/dv}$

$=2\int_{-\log a}^{\log a}\frac{d\sigma}{\sqrt{8(\alpha-\cosh a)}}$

$=\frac{2}{\sqrt{a}}\int_{0}^{\pi/2}\frac{dx}{\sqrt{}\overline{1-(1-a^{-2})\sin^{2}x}}$ ,

and thus (2) is proved.
By Figure 1, (4) and (5) are also proved. $\square $

By Proposition 1.1, there exists the immersion $\varphi_{\alpha}$ of $R^{2}$ into $S^{\epsilon}$ de-
fined by (4.1), (4.2) and $\sigma=\sigma_{\alpha}$ . Since $a_{1}=0$ , the immersion $\varphi_{1}$ is the
Clifford immersion.

REMARK. Though the period of the Clifford immersion in the direc-
tion $v$ is $\sqrt{2}\pi,$ $\lim_{\alpha\downarrow 1}T(a)=\pi$ . This shows that the Clifford immersion is
isolated in the family $\{\varphi_{\alpha}\}$ as an immersion of the torus.

Consider the lines of curvature of $\varphi_{\alpha}$ ,

$c_{u}^{\alpha}(v)=\varphi_{\alpha}(u, v)$ , $c_{v}^{\alpha}(u)=\varphi_{\alpha}(u, v)$ .
Since they lie in some totally geodesic 2-spheres in $S^{8}$ , we may consider
each of $c_{u}^{\alpha}$ and $c_{v}^{\alpha}$ as a curve in $S^{2}\subset R^{8}$ . By Lemma 3.1, we obtain the



222 KOTARO YAMADA

following lemma.

LEMMA 4.2. (1) $c_{v}^{\alpha}$ is the curve in $S^{2}$ with the curvature
$\kappa^{\alpha}=\sqrt{2\alpha e^{-\sigma_{\alpha}}-1}$ .

(2) $c_{*}^{\alpha}$ is a small circle with radius $e^{\sigma_{\alpha}/2}/\sqrt{2\alpha}$ in $R^{\epsilon}$.
(3) $\varphi_{\alpha}$ gives a minimal immersion of the cylinder whose funda-

mental domain is

$\{(u, v);0\leqq u<\sqrt{\frac{2}{\alpha}}\pi\}\subset R^{2}$ .

(4) $ c_{l}^{\alpha}i\epsilon$ the curve in $S^{2}$ with the curvature

$\kappa_{*}^{\alpha}=e^{-\sigma_{\alpha}}$ .
(5) The curves $c_{u}^{\alpha}$ are congruent with each other.

\S 5. Existence of minimal tori.

In this section, we prove the first part of the main theorem.
Let $\sigma_{\alpha}$ and $\varphi_{\alpha}$ be as in the previous section. Then by Lemma 4.2 (3),

$\varphi_{\alpha}$ gives an immersion of the cylinder.
Assume $\varphi_{\alpha}$ gives an immersion of the torus and $c_{l}^{\alpha}$ never closes up

in $S^{8}$ . Then the image of $c_{\iota}^{\alpha}$ is dense in the image of $\varphi_{\alpha}$ . On the other
hand, the image of $c_{u}^{\alpha}$ lies in some totally geodesic 2-sphere, then the
image of $\varphi_{\alpha}$ lies in the 2-sphere. This is impossible. Hence $\varphi_{\alpha}$ gives an
immersion of the torus if and only if the curve $c^{\alpha}$ is closed with some
integral times of the period of $\sigma_{\alpha}$ .

The first part of the main theorem is an immediate consequence of
the following proposition:

PROPOSITION 5.1. There exist countably many $\alpha’ s$ in $(1, \infty)$ such
that the curve $c_{u}^{\alpha}$ is closed with period $k_{\alpha}T(a)$ for some $posit\dot{j}ve$ number
$k_{\alpha}\geqq 2$ .

We shall prove this later.
Take $\alpha\in(1, \infty)$ , and let $T=T(\alpha)$ and $\sigma=\sigma_{\alpha}$ . Consider $c=c_{u}^{\alpha}|_{[0,T(\alpha)]}$ as

a curve in $S^{2}\subset R^{B}$. Let $\kappa=\kappa_{l}^{\alpha}=e^{-\sigma}$ be the curvature of $c$ as the curve
in $S^{2}$ and $\tilde{\kappa}=\sqrt{\kappa^{2}+1}$ that of $c$ as the curve in $R^{\epsilon}$ . In the rest of this
section, we take the arc length $s$ as the parameter of $c$ instead of $v$ .
To begin with, we have the following lemma:



MINIMAL TORI 223

LEMMA 5.2.

(1) Length of $ c=\int_{0}^{T}e^{\sigma/2}dv=\pi$ .
(2) $\int_{0}^{n}$ $ rcds=\pi$ .
(3) $\int_{0}^{\pi}\tilde{\kappa}ds<2\pi$ :

PROOF. Since $||dc/dv||=e^{\sigma/2}$ ,

length of $c=\int_{0}^{T}e^{\sigma/z}dv$

$=2\int_{-\log a}^{\log a}\frac{e^{\sigma/z}d\sigma}{\sqrt 8(a-\cosh\sigma)}$ (by (4.4))

$=\pi$ ,
then (1) is proved.

Similarly, (2) is true because

$\int_{0}^{\pi}\kappa ds=\int_{0}^{T}e^{-\sigma}e^{\sigma/2}dv$

$=2\int_{-\log a}^{\log a}\frac{e^{-\sigma/l}da}{\sqrt 8(a-\cosh\sigma)}$

$=-2\int_{\log a}^{-\log a}\frac{e^{\rho/2}d\rho}{\sqrt 8(a-\cosh\rho)}$

$=\pi$ .
Finally, by Lemma 5.2,

$\int_{0}^{x}\tilde{\kappa}ds=\int_{0}^{\pi}\sqrt{\kappa^{2}+1}ds$

$<\int_{0}^{\pi}\kappa ds+\int_{0}^{\pi}ds$

$=2\pi$ ,
so (3) is proved. $\square $

This lemma leads the following:

LEMMA 5.3. If the curve $c$ is closed with period $k_{\alpha}$-times that of the
period of the metric $e^{-\sigma/2}$ , then $k_{\alpha}\geqq 2$ .

PROOF. If $k_{\alpha}=1$ , the total curvature of the closed curve $c$ as a curve
in $R^{\epsilon}$ is

$\int_{0}^{\pi}\tilde{\kappa}ds<2\pi$
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by Lemma 5.1. On the other hand, by Fenchel’s theorem [5], the tota
curvature of a closed space cannot be less than $ 2\pi$ . This is impossible. $[$

Let $e$ (resp. n) be the unit tangent vector (resp. the unit norma
vector) of $c$ as a curve in $S^{2}$ . So, $(c(s), e(s),$ $n(s))$ forms the $movin\{$

frame of $R^{\epsilon}$ along $c$ . Define $F(a)$ to be the orthogonal matrix whicl
changes the frame $(c(O), e(O),$ $n(O))$ to $(c(\pi), e(\pi),$ $n(\pi))$ . So $F(a)$ is $i$

continuous curve in SO(3) parametrized by $a\in(1, \infty)$ .
Each orthogonal matrix $A$ $eSO(3)$ is conjugate to a matrix

$R(\theta)=\left(\begin{array}{lll}cos\theta & -sin\theta & 0\\sin\theta & cos\theta & 0\\0 & 0 & 1\end{array}\right)$ .

Let $\theta(a)$ be a continuous function such that $F(a)$ is conjugate to $R(\theta(a))$

In terms of $F$, the curve $c$ is closed with period $k_{\alpha}$-times that of tht
metric $e^{\sigma/2}$ if and only if $F(a)^{k_{\alpha}}$ is the identity matrix. This conditioI
is equivalent to
(5.1) $k_{\alpha}\theta(a)\equiv 0$ mod $ 2\pi$ .

To prove Proposition 5.1, we see the behavior of the curve $F(a$

when $\alpha$ tends to 1 and $\infty$ .
LEMMA 5.4.

(1) $\lim_{\alpha\downarrow 1}\theta(\alpha)=\sqrt{2}\pi$ .
(2)

$\lim_{\alpha\uparrow\infty}\theta(a)=\pi$ .
PROOF. The curve $c$ converges to the small circle with radius $1/\sqrt{2}$

in $R^{B}$ as $a\downarrow 1$ .

$\alpha\downarrow 1$ $\alpha\uparrow\infty$

Behavior of $c$ when $\alpha$ tends to $0$ and $\infty$ .
FIGURE 2
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By Lemma 5.2, the length of $c$ is $\pi$ independent of $a$ , so the angle
between $(c(O), e(O),$ $n(O))$ and $(c(\pi), e(\pi),$ $n(\pi))$ tends to $\sqrt{2}\pi$ as $a\downarrow 1$

(Figure 2). Then (1) is true.

FIGURE 3

To prove (2), we consider $c$ as a curve in $R^{s}$ such that $c(\pi/2)$ is the
north pole $(0,0,1)$ of the unit sphere, and $E$ denotes the equator of the
unit sphere as in Figure 3. Let $\rho$ be a small positive number. So the
curve $c_{0}=c|_{[0,\pi/2-\rho]}$ and $c_{1}=c|_{[\pi/2+\rho,\pi]}$ converge to the great circles in $S^{2}$ with
length $\pi/2-\rho$ as $ a\uparrow\infty$ because $a$ tends to $\infty$ and $\kappa=e^{-\sigma}$ tends uniformly
to $0$ .

Let $ c\sim$ be the orthogonal projection of $c|_{[\pi/2-\rho,\pi/2+\rho]}$ to the plane con-
taining $E$, and $ k\sim$ the total curvature of $ c\sim$ . For sufficiently small $\rho,\tilde{k}$

is nearly equal to the total curvature of $c|_{[\pi/2-\rho,\pi/2+\rho]}$ . Then by Lemma
5.2 and the fact that the curvature of $c$ is concentrated in $s=\pi/2$ as
$ a\uparrow\infty$ , we have

$\lim_{\alpha\uparrow\infty}\tilde{k}=\pi+\delta(\rho)$ ,

where $\lim_{\rho\downarrow 0}\delta(\rho)=0$ . So the rotation number of $ c\sim$ tends to $1/2+\delta’(\rho)$ as
$\alpha\uparrow\infty$ , where $\lim_{\rho\downarrow 0}\delta^{\prime}=0$ .

Hence, the curve $c$ converges to a curve consisting of two great arcs
of length $\pi/2$ which meet at north pole with angle $\pi$ . This shows that
$\lim_{\alpha\uparrow\infty}\theta(a)=\pi$ and (2) is proved. $\square $

PROOF OF PROPOSITION 5.1. By Lemma 5.4, there exist countably
many $a’ s$ in $(1, \infty)$ such that $\theta(a)/2\pi$ are rational numbers. For such $\alpha$ ,
the lines of curvature $c$ are closed in $[0, k_{\alpha}\pi]$ . Moreover, by Lemma 5.3,
$k_{\alpha}\geqq 2$ .

\S 6. Proof of non-embeddedness.

In this section, we prove the last part of the main theorem. This
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is the immediate consequence of the following proposition.

PROPOSITION 6.1. If the curve $c$ in the previous section is closed $i7|$

$S^{2}$ with period k-times that of its metric, where $k\geqq 2$ , then $c$ must $hav($

a self-intersection.
PROOF. Assume $c$ has no self-intersection. So, $c$ bounds a simply

connected domain $\Omega$ of $S^{2}$ such that the normal vector field of $c$ is the
inward normal of $\partial\Omega$ . By Gauss-Bonnet theorem for a domain of ’

surface [5], we have

$\int_{\rho}1dv+\int_{\partial\rho}\kappa ds=2\pi$ ,

where $dv$ is the canonical area element of $S^{2}$ . On the other hand, the
total curvature of $\partial\Omega$ is

$\int_{\partial O}\kappa d\epsilon=k\int_{0}^{\pi}\kappa ds=k\pi$ ,

because of Lemma 5.2 (3). Then,

Area of $\Omega=\int_{\rho}1dv=(2-k)\pi\leqq 0$ .
This is impossible. $\subset$

This completes the proof of the main theorem.
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