Minimal Tori in S^3 Whose Lines of Curvature Lie in S^2

Dedicated to Professor Morio Obata on his 60th birthday

Kotaro YAMADA

Keio University
(Communicated by M. Obata)

Introduction

Let $\varphi: \Sigma \to S^s$ be a minimal immersion of a compact orientable surface Σ into the unit 3-sphere S^s . It is valuable to study the set of such immersions with Σ of given genus. For example, when Σ is of genus 0, i.e., Σ is the 2-sphere, φ must be the totally geodesic immersion of S^s into S^s [3] [1] [4].

Assume Σ is the torus. In this case, there is the well-known minimal isometric *embedding* of the flat square torus $S^1(1/\sqrt{2}) \times S^1(1/\sqrt{2})$ into S^8 called the Clifford immersion. Though there are many minimal immersions of the torus into S^8 , they are not embedded. Thus, it is conjectured that the only minimal embedding of the torus into S^8 is the Clifford one [7].

To study this, we consider minimal immersions of a torus into S^{s} having the following property:

(*) Each line of curvature of the immersions lies in some totally geodesic 2-sphere in S^3 .

The main theorem of this paper is the following:

THEOREM. (1) There exist infinitely many minimal immersions of the torus into S^3 satisfying (*).

(2) A minimal immersion of the torus into S^s satisfying (*) is not an embedding provided that it is congruent with the Clifford one.

§ 1. Preliminaries.

Let $\varphi: \Sigma \to S^8$ be a smooth immersion of a surface into the unit 3-Received June 16, 1986

Revised October 31, 1986

The author would like to thank Dr. Osamu Kobayashi and the referee for their useful comments.

sphere. The first fundamental form of φ is the induced metric $g = \varphi^*\langle , \rangle$, where \langle , \rangle is the standard metric of S^3 . The second fundamental form h of φ is defined as $h(X, Y) = -\langle \overline{\mathbf{V}}_X \nu, Y \rangle$ for all vectors X and Y tangent to φ , where ν is the unit normal vector field of φ and $\overline{\mathbf{V}}$ is the canonical connection of S^3 .

The existence of isothermal coordinates shows us that there exist local coordinates (u, v) of Σ in which g is written as

$$(1.1) g = e^{\sigma}(du^2 + dv^2) ,$$

where σ is a smooth function of u and v. Write the second fundamental form in these coordinates as

$$(1.2) h = Ldu^2 + 2Mdudv + Ndv^2,$$

where L, M and N are functions of u and v.

The mean curvature of φ is the function H on Σ defined by

(1.3)
$$H = \frac{1}{2}e^{-\sigma}(L+N)$$

in the present isothermal coordinates. The immersion φ is called *minimal* when H is identically 0, i.e., N=-L in (1.2).

In these coordinates, the equation of Gauss is

(1.4)
$$-\frac{1}{2}e^{-\sigma}\Delta\sigma = (LN - M^2)e^{-2\sigma} + 1 \text{ , where } \Delta = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \text{ .}$$

Consider the complex function f of z=u+iv

$$f(z) = M + iN.$$

When φ is minimal, the equation of Codazzi holds if and only if f is a holomorphic function of z.

§2. Fundamental equation.

Suppose $\varphi: \Sigma \to S^s$ be a minimal immersion of the torus. On taking the universal cover of Σ , φ is lifted to the minimal immersion $\widetilde{\varphi}: \mathbb{R}^2 \to S^s$. Since the induced metric $\widetilde{g} = \widetilde{\varphi}^* \langle , \rangle$ is conformal to the flat metric of \mathbb{R}^2 [2], there exist global coordinates (u, v) in which the first fundamental form is

$$\widetilde{g} = e^{\sigma}(du^2 + dv^2) ,$$

where σ is a smooth function on R^2 which is invariant by the deck

transformations of the cover $\mathbb{R}^2 \to \Sigma$, i.e., σ is a doubly periodic function. The second fundamental form of $\widetilde{\varphi}$ is written as (1.2), where L, M and N are also doubly periodic functions defined on \mathbb{R}^2 .

Since $\widetilde{\varphi}$ is minimal, the doubly periodic function f in (1.5) is holomorphic on the whole complex plane. Hence by Liouville's theorem, L, M and N must be constant on \mathbb{R}^2 . Then, by a suitable change of coordinates, we may assume the second fundamental form is diagonalized as

$$h=L(du^2-dv^2)$$
,

where L is a positive constant. Replacing u, v and σ by u/\sqrt{L} , v/\sqrt{L} and $\sigma + \log L$ respectively, we have the first fundamental form (2.1) and the second fundamental form

$$(2.2) h = du^2 - dv^2.$$

By (2.1) and (2.2), the equation of Gauss (1.4) becomes

$$\Delta \sigma = -4 \sinh \sigma .$$

Conversely, by the fundamental theorem of the theory of surfaces [5], we have the following proposition:

PROPOSITION 2.1. (1) If $\varphi: \Sigma \to S^3$ is a minimal immersion of the torus, and $\widetilde{\varphi}: \mathbb{R}^2 \to S^3$ is the lift of φ to the universal cover of Σ , then there exist coordinates (u, v) of \mathbb{R}^2 in which the first and the second fundamental forms of $\widetilde{\varphi}$ are written as (2.1) and (2.2) respectively, and the function σ in (2.1) satisfies (2.3).

(2) If a smooth function σ on \mathbb{R}^2 satisfies (2.3), then there exists a minimal immersion $\varphi_{\sigma} \colon \mathbb{R}^2 \to S^3$ whose first and the second fundamental forms are (2.1) and (2.2) respectively. Moreover, such an immersion is unique up to congruence.

REMARK. Even if σ in (2.3) is doubly periodic, the corresponding immersion φ_{σ} is not necessarily doubly periodic. To study minimal immersions of the torus into S^3 , we must search for doubly periodic solutions of (2.3) whose corresponding immersions are also doubly periodic.

The trivial solution of (2.3) is $\sigma=0$. In this case, the corresponding minimal immersion φ_0 is an isometric minimal immersion of \mathbb{R}^2 with flat metric which is written explicitly as

$$\varphi_{0}(u, v) = \left(\frac{1}{\sqrt{2}}\cos\sqrt{2}u, \frac{1}{\sqrt{2}}\sin\sqrt{2}u, \frac{1}{\sqrt{2}}\cos\sqrt{2}v, \frac{1}{\sqrt{2}}\sin\sqrt{2}v\right)$$

$$\in S^{3}$$

where $S^8 = \{(x^0, x^1, x^2, x^3) \in \mathbb{R}^4; \sum_{i=0}^8 (x^i)^2 = 1\}$. Since φ_0 is doubly periodic, it gives the minimal isometric immersion of the flat torus \mathbb{R}^2/Γ into S^8 , where Γ is the lattice on \mathbb{R}^2 generated by $\{(0, \sqrt{2\pi}), (\sqrt{2\pi}, 0)\}$. This immersion is called the *Clifford immersion*, which has the following properties:

- (1) It is the only isometric minimal immersion of the flat torus into S^{s} up to congruence.
 - (2) The immersion is one-to-one, i.e., it is an embedding.
 - (3) The area of the immersed torus is $2\pi^2$.
- (4) The immersion is given by the first eigenfunctions of the laplacian of R^2/Γ . In other words, the first eigenvalue of the laplacian of R^2/Γ is 2.

§3. Lines of curvature.

Suppose $\varphi: \mathbb{R}^2 \to S^8$ be a minimal immersion with the first and the second fundamental forms (2.1) and (2.2) respectively.

Vector fields $\partial/\partial u$ and $\partial/\partial v$ give the principal directions of h, and their integral curves are the lines of curvature of φ . Let

$$c_{\mathbf{u}}(v) = \varphi(u, v), \qquad c_{\mathbf{v}}(u) = \varphi(u, v).$$

Then curves c_* and c_* in S^* are lines of curvature of φ parametrized by v and u respectively. The following lemma is easy to show.

LEMMA 3.1. (1) The curve c_u has the curvature

$$\kappa_{\mathbf{u}} = \frac{1}{2} e^{-\sigma/2} \{ (\partial_{\mathbf{u}} \sigma)^2 + 4e^{-\sigma} \}^{1/2}$$

and the torsion

$$\tau_{u} = e^{-\sigma/2} \left[\left\{ \partial_{v} \left(\frac{e^{-\sigma/2} \partial_{u} \sigma}{2 \kappa_{u}} \right) \right\}^{2} + \left\{ \partial_{v} \left(\frac{e^{-\sigma}}{\kappa_{u}} \right) \right\}^{2} \right]^{1/2}.$$

(2) The curve c, has the curvature

$$\kappa_v = \frac{1}{2} e^{-\sigma/2} \{ (\partial_v \sigma)^2 + 4e^{-\sigma} \}^{1/2}$$

and the torsion

$$\tau_{\rm v}\!=\!e^{-\sigma/2}\!\!\left[\left.\left\{\partial_{\rm u}\!\left(\frac{e^{-\sigma/2}\partial_{\rm v}\sigma}{2\kappa_{\rm v}}\right)\right\}^2\!+\!\left\{\partial_{\rm u}\!\left(\frac{e^{-\sigma}}{\kappa_{\rm v}}\right)\right\}^2\right]^{\!1/2}\,.$$

LEMMA 3.2. Each line of curvature of φ lies in some totally geodesic

2-sphere in S^s if and only if σ is the following form:

(3.2)
$$\sigma(u, v) = \log\{U(u) + V(v)\}^2,$$

where U and V are smooth functions on R.

PROOF. Suppose σ is as in (3.2). So, it is an easy consequence of Lemma 3.1 that τ_u and τ_v are identically 0 for any u and v. Then each c_u and c_v lies in some totally geodesic 2-sphere in S^3 .

Conversely, if each τ_u is identically 0, $\partial_v(e^{-\sigma}/\kappa_u)$ must be identically 0. Hence $4(e^{\sigma}\kappa_u)^2 = (\partial_u e^{\sigma/2})^2 + 4$ must depend only on u. Let $\partial_u e^{\sigma/2} = U(u)$. Then $e^{\sigma/2} = U(u) + V(v)$ for some function V(v) and the conclusion follows.

PROPOSITION 3.3. Let $\varphi: \mathbb{R}^2 \to S^8$ be a minimal immersion with the first and the second fundamental forms (2.1) and (2.2) respectively. Then each line of curvature of φ lies in some totally geodesic 2-sphere in S^8 if and only if $\sigma(u, v)$ depends only on one variable u or v.

PROOF. If σ depends only on u or v, c_u and c_v are curves without torsion because of Lemma 3.1.

Assume each c_u or c_r lies in a totally geodesic S^2 . Then σ is written as (3.2). Substituting (3.2) in (2.3), we have

$$U''(U+V)+V''(U+V)-(U')^2-(V')^2=1-(U+V)^4$$
 ,

where U'=dU/du, V'=dV/dv, etc. Differentiating this equation by u and v,

$$U'''V' + U'V''' = -12(U+V)^2U'V'$$
.

If $U'V'\neq 0$, then

$$\left(\frac{U'''}{U'}\right) + \left(\frac{V'''}{V'}\right) = -12(U+V)^2$$
.

Differentiating the above, we obtain U'V'=0. So, U'V' must be identically 0. Hence U or V is a constant function.

§4. Differential equation.

In this section, we construct a family of minimal immersions of R^2 into S^3 whose lines of curvature lie in some totally geodesic 2-spheres in S^3 .

Let $\varphi: \mathbb{R}^2 \to S^8$ be one of such immersions. So, by Propositions 2.1 and 3.3, there exist coordinates (u, v) of \mathbb{R}^2 with the following properties:

(1) The first fundamental form of φ is

$$(4.1) g = e^{\sigma}(du^2 + dv^2),$$

(2) the second fundamental form of φ is

$$(4.2) h = du^2 - dv^2,$$

- (3) the function σ depends only on v, and
- (4) the function $\sigma(v)$ satisfies the ordinary differential equation:

$$\frac{d^2\sigma}{dv^2} = -4 \sinh \sigma.$$

The equation (4.3) has an integral:

$$\frac{1}{2}\left(\frac{d\sigma}{dv}\right)^2+4\cosh\sigma=4\alpha$$
,

where α is an integral constant. Then for each $\alpha \in [1, \infty)$, there exists a unique solution σ_{α} such that:

$$\frac{1}{2} \left(\frac{d\sigma_{\alpha}}{dv} \right)^2 + 4 \cosh \sigma_{\alpha} = 4\alpha ,$$

(4.5)
$$\sigma_{\alpha}(0) = \log a$$
, where $a = \alpha + \sqrt{\alpha^2 - 1}$,

$$\frac{d^2\sigma_{\alpha}}{dv^2}(0) \leq 0.$$

LEMMA 4.1. The solutions $\{\sigma_{\alpha}; \alpha \in [1, \infty)\}$ have the following properties:

$$\sigma_1 = 0.$$

(2) For each $\alpha \in (1, \infty)$, σ_{α} is a periodic function with period

$$T(lpha) = rac{2}{\sqrt{a}} \int_0^{\pi/2} rac{dx}{\sqrt{1 - (1 - a^{-2})\sin^2 x}}$$
 .

(3)
$$\sigma_{\alpha}(v) = \sigma_{\alpha}(-v) , \quad \frac{d\sigma_{\alpha}}{dv}(v) = -\frac{d\sigma_{\alpha}}{dv}(-v) .$$

$$-\log a \leq \sigma_a \leq \log a.$$

(5)
$$\sigma_{\alpha}$$
 is simply decreasing on $\left[0, \frac{T(\alpha)}{2}\right]$ and increasing on $\left[\frac{T(\alpha)}{2}, T(\alpha)\right]$.

PROOF. (1) and (3) are immediate consequences of (4.4).

Figure 1 is the phase curve of the solution σ_{α} of the equation (4.4). The tangent vectors $(d\sigma_{\alpha}/dv, d^2\sigma_{\alpha}/dv^2)$ of this curve never vanishes, so σ_{α} is periodic with period

$$T(lpha) = \int_0^{T(lpha)} dv = -2 \int_{\log a}^{-\log a} rac{d\sigma_lpha}{d\sigma_lpha/dv} \ = 2 \int_{-\log a}^{\log a} rac{d\sigma}{\sqrt{8(lpha - \cosh \sigma)}} \ = rac{2}{\sqrt{a}} \int_0^{\pi/2} rac{dx}{\sqrt{1 - (1 - lpha^{-2})\sin^2 x}} \; ,$$

and thus (2) is proved.

By Figure 1, (4) and (5) are also proved.

By Proposition 1.1, there exists the immersion φ_{α} of \mathbb{R}^2 into S^3 defined by (4.1), (4.2) and $\sigma = \sigma_{\alpha}$. Since $\sigma_1 = 0$, the immersion φ_1 is the Clifford immersion.

REMARK. Though the period of the Clifford immersion in the direction v is $\sqrt{2}\pi$, $\lim_{\alpha\downarrow 1} T(\alpha) = \pi$. This shows that the Clifford immersion is isolated in the family $\{\varphi_{\alpha}\}$ as an immersion of the torus.

Consider the lines of curvature of φ_{α} ,

$$c_u^{lpha}(v)\!=\!arphi_{lpha}\!(u,\,v)$$
 , $c_v^{lpha}\!(u)\!=\!arphi_{lpha}\!(u,\,v)$.

Since they lie in some totally geodesic 2-spheres in S^3 , we may consider each of c_u^{α} and c_v^{α} as a curve in $S^2 \subset \mathbb{R}^3$. By Lemma 3.1, we obtain the

following lemma.

Lemma 4.2. (1) c_r^a is the curve in S^2 with the curvature

$$\kappa_{\bullet}^{\alpha} = \sqrt{2\alpha e^{-\sigma_{\alpha}} - 1}$$
.

- (2) c_*^{α} is a small circle with radius $e^{\sigma_{\alpha}/2}/\sqrt{2\alpha}$ in \mathbb{R}^s .
- (3) φ_{α} gives a minimal immersion of the cylinder whose fundamental domain is

$$\left\{(u, v); 0 \leq u < \sqrt{\frac{2}{\alpha}}\pi\right\} \subset \mathbf{R}^2$$
.

(4) c_n^{α} is the curve in S^2 with the curvature

$$\kappa_u^{\alpha} = e^{-\sigma_{\alpha}}$$
.

- (5) The curves c_u^{α} are congruent with each other.
- §5. Existence of minimal tori.

In this section, we prove the first part of the main theorem.

Let σ_{α} and φ_{α} be as in the previous section. Then by Lemma 4.2(3), φ_{α} gives an immersion of the cylinder.

Assume φ_{α} gives an immersion of the torus and c_{u}^{α} never closes up in S^{3} . Then the image of c_{u}^{α} is dense in the image of φ_{α} . On the other hand, the image of c_{u}^{α} lies in some totally geodesic 2-sphere, then the image of φ_{α} lies in the 2-sphere. This is impossible. Hence φ_{α} gives an immersion of the torus if and only if the curve c_{u}^{α} is closed with some integral times of the period of σ_{α} .

The first part of the main theorem is an immediate consequence of the following proposition:

PROPOSITION 5.1. There exist countably many α 's in $(1, \infty)$ such that the curve c_u^{α} is closed with period $k_{\alpha}T(\alpha)$ for some positive number $k_{\alpha} \ge 2$.

We shall prove this later.

Take $\alpha \in (1, \infty)$, and let $T = T(\alpha)$ and $\sigma = \sigma_{\alpha}$. Consider $c = c_{u}^{\alpha}|_{[0,T(\alpha)]}$ as a curve in $S^{2} \subset \mathbb{R}^{3}$. Let $\kappa = \kappa_{u}^{\alpha} = e^{-\sigma}$ be the curvature of c as the curve in S^{2} and $\tilde{\kappa} = \sqrt{\kappa^{2} + 1}$ that of c as the curve in \mathbb{R}^{3} . In the rest of this section, we take the arc length s as the parameter of c instead of c. To begin with, we have the following lemma:

LEMMA 5.2.

(1) Length of
$$c = \int_0^T e^{\sigma/2} dv = \pi$$
.

$$\int_0^\pi \kappa ds = \pi.$$

$$\int_0^\pi \tilde{\kappa} ds < 2\pi .$$

PROOF. Since $||dc/dv|| = e^{\sigma/2}$,

length of
$$c = \int_0^T e^{\sigma/2} dv$$

$$= 2 \int_{-\log a}^{\log a} \frac{e^{\sigma/2} d\sigma}{\sqrt{8(\alpha - \cosh \sigma)}} \qquad \text{(by (4.4))}$$

$$= \pi ,$$

then (1) is proved.

Similarly, (2) is true because

$$\int_{0}^{\pi} \kappa ds = \int_{0}^{T} e^{-\sigma} e^{\sigma/2} dv$$

$$= 2 \int_{-\log a}^{\log a} \frac{e^{-\sigma/2} d\sigma}{\sqrt{8(\alpha - \cosh \sigma)}}$$

$$= -2 \int_{\log a}^{-\log a} \frac{e^{\rho/2} d\rho}{\sqrt{8(\alpha - \cosh \rho)}}$$

$$= \pi$$

Finally, by Lemma 5.2,

$$\int_0^\pi \tilde{\kappa} ds = \int_0^\pi \sqrt{\kappa^2 + 1} ds$$
 $< \int_0^\pi \kappa ds + \int_0^\pi ds$
 $= 2\pi$,

so (3) is proved.

This lemma leads the following:

LEMMA 5.3. If the curve c is closed with period k_{α} -times that of the period of the metric $e^{-\sigma/2}$, then $k_{\alpha} \ge 2$.

PROOF. If $k_{\alpha} = 1$, the total curvature of the closed curve c as a curve in R^s is

$$\int_0^\pi \tilde{\kappa} ds < 2\pi$$

by Lemma 5.1. On the other hand, by Fenchel's theorem [5], the total curvature of a closed space cannot be less than 2π . This is impossible.

Let e (resp. n) be the unit tangent vector (resp. the unit normal vector) of c as a curve in S^2 . So, (c(s), e(s), n(s)) forms the moving frame of R^3 along c. Define $F(\alpha)$ to be the orthogonal matrix which changes the frame (c(0), e(0), n(0)) to $(c(\pi), e(\pi), n(\pi))$. So $F(\alpha)$ is a continuous curve in SO(3) parametrized by $\alpha \in (1, \infty)$.

Each orthogonal matrix $A \in SO(3)$ is conjugate to a matrix

$$R(heta) = egin{pmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

Let $\theta(\alpha)$ be a continuous function such that $F(\alpha)$ is conjugate to $R(\theta(\alpha))$. In terms of F, the curve c is closed with period k_{α} -times that of the metric $e^{\sigma/2}$ if and only if $F(\alpha)^{k_{\alpha}}$ is the identity matrix. This condition is equivalent to

$$(5.1) k_{\alpha}\theta(\alpha) \equiv 0 \mod 2\pi.$$

To prove Proposition 5.1, we see the behavior of the curve $F(\alpha)$ when α tends to 1 and ∞ .

LEMMA 5.4.

$$\lim_{\alpha\downarrow 1}\theta(\alpha)=\sqrt{2}\pi.$$

$$\lim_{\alpha \to \infty} \theta(\alpha) = \pi.$$

PROOF. The curve c converges to the small circle with radius $1/\sqrt{2}$ in \mathbb{R}^3 as $\alpha \downarrow 1$.

Behavior of c when α tends to 0 and ∞ .

FIGURE 2

By Lemma 5.2, the length of c is π independent of α , so the angle between (c(0), e(0), n(0)) and $(c(\pi), e(\pi), n(\pi))$ tends to $\sqrt{2\pi}$ as $\alpha \downarrow 1$ (Figure 2). Then (1) is true.

To prove (2), we consider c as a curve in R^3 such that $c(\pi/2)$ is the north pole (0, 0, 1) of the unit sphere, and E denotes the equator of the unit sphere as in Figure 3. Let ρ be a small positive number. So the curve $c_0 = c|_{[0,\pi/2-\rho]}$ and $c_1 = c|_{[\pi/2+\rho,\pi]}$ converge to the great circles in S^2 with length $\pi/2-\rho$ as $\alpha\uparrow\infty$ because σ tends to ∞ and $\kappa=e^{-\sigma}$ tends uniformly to 0.

Let \tilde{c} be the orthogonal projection of $c|_{[\pi/2-\rho,\pi/2+\rho]}$ to the plane containing E, and \tilde{k} the total curvature of \tilde{c} . For sufficiently small ρ , \tilde{k} is nearly equal to the total curvature of $c|_{[\pi/2-\rho,\pi/2+\rho]}$. Then by Lemma 5.2 and the fact that the curvature of c is concentrated in $s=\pi/2$ as $\alpha\uparrow\infty$, we have

$$\lim_{\alpha \uparrow \infty} \widetilde{k} = \pi + \delta(\rho)$$
 ,

where $\lim_{\rho\downarrow 0} \delta(\rho) = 0$. So the rotation number of \tilde{c} tends to $1/2 + \delta'(\rho)$ as $\alpha\uparrow\infty$, where $\lim_{\rho\downarrow 0} \delta' = 0$.

Hence, the curve c converges to a curve consisting of two great arcs of length $\pi/2$ which meet at north pole with angle π . This shows that $\lim_{\alpha\uparrow\infty}\theta(\alpha)=\pi$ and (2) is proved.

PROOF OF PROPOSITION 5.1. By Lemma 5.4, there exist countably many α 's in $(1, \infty)$ such that $\theta(\alpha)/2\pi$ are rational numbers. For such α , the lines of curvature c are closed in $[0, k_{\alpha}\pi]$. Moreover, by Lemma 5.3, $k_{\alpha} \ge 2$.

§6. Proof of non-embeddedness.

In this section, we prove the last part of the main theorem. This

is the immediate consequence of the following proposition.

PROPOSITION 6.1. If the curve c in the previous section is closed in S^2 with period k-times that of its metric, where $k \ge 2$, then c must have a self-intersection.

PROOF. Assume c has no self-intersection. So, c bounds a simply connected domain Ω of S^2 such that the normal vector field of c is the inward normal of $\partial\Omega$. By Gauss-Bonnet theorem for a domain of a surface [5], we have

$$\int_{arrho} 1 dv + \int_{arrho_{arrho}} \kappa ds = 2\pi$$
 ,

where dv is the canonical area element of S^2 . On the other hand, the total curvature of $\partial \Omega$ is

$$\int_{so} \kappa ds = k \int_0^{\pi} \kappa ds = k\pi$$
 ,

because of Lemma 5.2(3). Then,

Area of
$$\Omega = \int_{\Omega} 1 dv = (2-k)\pi \leq 0$$
.

This is impossible.

This completes the proof of the main theorem.

References

- [1] F.J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and extension of Bernstein's theorem, Ann. of Math., 84 (1966), 277-292.
- [2] M.S. Berger, On the conformal equivalence of compact 2-manifolds, J. Math. Mech., 19 (1969), 13-18.
- [3] H. Hopf, Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr., 4 (1951), 232-249.
- [4] H.B. LAWSON, JR., Complete minimal surfaces in S3, Ann. of Math., 92 (1970), 335-374.
- [5] M. SPIVAK, A Comprehensive Introduction to Differential Geometry, vols. I-V, Publish or Perish, Berkeley, 1970.
- [6] H.C. Wente, Counterexample to a conjecture of H. Hopf, Pacific J. Math., 83 (1986), 193-243.
- [7] S-T. YAU, Problem section, Seminar on Differential Geometry, Princeton Univ. Press, 1982, 669-706.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND TECHNOLOGY
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU, YOKOHAMA 223