
TOKYO J. MATH.
VOL. 10, No. 1, 1987

Isogenies between Algebraic Surfaces with Geometric Genus One

David R. MORRISON*

Princeton University
(Communicated by K. Ogiue)

The classical theory of the Albanese variety provides a geometric
interpretation of first cohomology groups of complex projective varieties
in the following way: a variety $X$ and its Albanese variety Alb(X) have
isomorphic first cohomology groups, and there is a mapping $X\rightarrow Alb(X)$

inducing this isomorphism, the formation of which is functorial for maps
between complex varieties.

This note develops the beginnings of an analogous theory for second
cohomology groups of algebraic surfaces with geometric genus one.
Specifically, we show that to any such surface is associated a so-called
K3 surface, whose transcendental second cohomology is isomorphic to
that of the original surface. This isomorphism is not in general given
by a mapping from the surface to its associated K3 surface, but one can
hope (and the Hodge conjecture would imply) that it is induced by a
correspondence between the two surfaces. We use the term isogeny to
denote a correspondence giving such an isomorphism. We have elsewhere
$[5, 7]$ given constructions of isogenies between algebraic surfaces with
geometric genus one and their associated K3 surfaces in several particular
cases.

If we require that the isomorphism between second transcendental
cohomology groups preserve both the intersection pairings and the integral
Hodge structures, then most algebraic surfaces with geometric genus one
have a unique associated K3 surface (see Theorem 1 for the precise
statement). However, even when the associated K3 surface is not unique,
a theorem of Mukai [8] guarantees the existence of an isogeny between
any pair of associated K3 surfaces; hence, any algebraic surface with
geometric genus one has a unique isogeny class of associated $K3$ sur-
faces.

The ”functoriality property” of our construction should be the follow-
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ing: if $X_{1}$ and $X_{2}$ are algebraic surfaces with geometric genus one and
$Y_{1}$ and $Y_{2}$ are the associated K3 surfaces, then every isogeny between

$X_{1}$ and $X_{2}$ is induced by an isogeny between $Y_{1}$ and Y. We prove this
in section 3 under the additional hypothesis that there exist isogenies
between $X_{1}$ and $Y_{1}$ and between $X_{2}$ and $Y_{2}$ ; the general case would be a
consequence of the Hodge conjecture for products of surfaces.

\S 1. Hodge theory on a product of surfaces.

By an algebraic surface, we mean a smooth projective variety of
dimension 2 over the complex numbers. An algebraic surface $X$ has a
N\’eron-Severi group (the group of cohomology classes of line bundles)
$NS(X)\subset H^{2}(X, Z)$ , and a transcendental lattice $T(X, Z)=H^{2}(X, Z)/NS(X)$ .
We identify $T(X, Z)$ with the orthogonal complement (with respect to
the intersection pairing) of $NS(X)/(tors)$ inside $H^{2}(X, Z)/(tors)$ ; the in.
tersection pairing then restricts to a nondegenerate integral symmetric
bilinear form on $T(X, Z)$ . We let $NS(X, Q)$ and $T(X, Q)$ denote $NS(X)\otimes Q$

and $T(X, Z)\otimes Q$ , respectively. The bilinear form on $T(X, Z)$ determines
a natural isomorphism of rational Hodge structures $\alpha_{X}:T(X, Q)\rightarrow$

$T(X, Q)^{*}(-2)$ , where $V(n)$ denotes the $n^{th}$ Tate twist of the rationa]

Hodge structure $V$.
For any complex projective variety $Z$, let $Hdg(Z)$ denote the $Q$.

algebra of rational Hodge classes on $Z$, that is,

$Hdg(Z)=(\oplus H^{i}(Z, Q))\cap(\oplus H^{p,p}(Z))$ .
$Hdg(Z)$ is a Q-subalgebra of the cohomology algebra $\oplus H^{i}(Z, Q)$ , and the
Lefschetz $(1, 1)$ theorem says that $NS(Z, Q)=Hdg(Z)\cap H^{2}(Z, Q)$ . We $1e\{$

$Alg(Z)$ denote the Q-subalgebra of $Hdg(Z)$ generated by classes of algebrait
cycles and $Div(Z)$ denote the Q-subalgebra of $Alg(Z)$ generated by
$NS(Z, Q)$ and the fundamental class $\xi_{Z}\in H^{0}(Z, Q)$ . (Elements of $Div(Z$

are called Q-linear combinations of complete intersections on $Z.$ )
If $Z=X\times Y$ is a product, the Hodge cycles on the Kunneth com.

ponents may be described by using the natural isomorphism

$H^{p,p}(X\times Y)\cap(H^{2}(X, Q)\otimes H^{j}(Y, Q))\simeq Hom_{Hod}(H^{i}(X, Q)^{*},$ $H^{j}(Y, Q)(p))$ ,

where $Hom_{Hod}$ denotes morphisms of rational Hodge structures. If $Z=$

$x\times Y$ is a product of two algebraic surfaces, we define the Hodge
Kunneth-Transcendence group of $X$ and $Y$ by

HKT(X, $Y$) $=Hdg(X\times Y)\cap(T(X, Q)\otimes T(Y, Q))$

$\simeq Hom_{Hod}(T(X, Q)^{*},$ $T(Y, Q)(2))$ .
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(This is a slight modification of a definition of Okamoto [10].) For any
algebraic cycle $W$ on $X\times Y$, we let $[W]_{HKT}$ denote the HKT-component
of the cohomology class of $W$, regarded as a morphism of rational Hodge
structures $[W]_{HKT}:T(X, Q)^{*}\rightarrow T(Y, Q)(2)$ , and let $[W]_{tran\epsilon}=[W]_{HKT}(-2)\circ$

$\alpha_{X}:T(X, Q)\rightarrow T(Y, Q)$ be the induced morphism of rational Hodge struc-
tures. (We extend this notation by Q-linearity to $Alg(X\times Y).$ )

LEMMA (Lieberman [3], Okamoto [10]). Let $X$ and $Y$ be algebraic
surfaces. For each $\alpha\in Hdg(X\times Y)$ there exists some $\beta\in Div(X\times Y)$ such
that $\alpha-\beta\in HKT(X, Y)$ .

PROOF. The lemma follows immediately from the following formula:

$Hdg(X\times Y)\cap(H^{i}(X, Q)\otimes H^{j}(Y, Q))$

$=\left\{\begin{array}{ll}(NS(X, Q)\otimes NS(Y, Q))\oplus HKT(X, Y) & if i=j=2\\Div(X\times Y)\cap(H^{i}(X, Q)\otimes H^{j}(X, Q)) & otherwise.\end{array}\right.$

This is straightforward to check, except in the cases $|i-j|=2,$ $i+j=4$ :
in those cases, one must use the hard Lefschetz theorem on $X$ or Y.
For example, if $i=1$ and $j=3$ , let $\lambda$ be the class of an ample divisor on
$Y$, and let $\xi_{X}\in H^{0}(X, Q)$ be the fundamental class of $X$. Then by hard
Lefschetz, cup product with $\xi_{X}X\lambda$ gives an isomorphism

$H^{1}(X, Q)\otimes H^{i}(Y, Q)\rightarrow^{\sim}H^{1}(X, Q)\otimes H^{3}(Y, Q)(1)$

which preserves the Hodge structure, and hence induces an isomorphism

$Hom_{Hod}(H^{1}(X, Q)^{*},$ $H^{1}(Y, Q)(1))\rightarrow^{\sim}Hom_{Hod}(H^{1}(X, Q)^{*},$ $H^{3}(Y, Q)(2))$ .
Thus, every $\alpha\in Hdg(X\times Y)\cap(H^{1}(X, Q)\otimes H^{3}(Y, Q))$ is of the form $\alpha=$

$(\xi_{X}\times\lambda)\cup\gamma$ for some $\gamma\in Hdg(X\times Y)\cap(H^{1}(X, Q)\otimes H^{1}(Y, Q))\subset Div(X\times Y)$ ;
since $\xi_{X}\times x\in Div(X\times Y)$ as well, we have $\alpha\in Div(X\times Y)$ . The other case
is similar. Q.E.D.

DEFINITION. Let $X$ and $Y$ be algebraic surfaces. A cohomological
isogeny between $X$ and $Y$ is an isomorphism of rational Hodge structures
$T(X, Q)\rightarrow T(Y, Q)$ . An isogeny between $X$ and $Y$ is an irreducible algebraic
cycle $W\subset X\times Y$ such that $[W]_{tran\epsilon}:T(X, Q)\rightarrow T(Y, Q)$ is a cohomological
isogeny. We say that an isogeny or cohomological isogeny is stric $t$ if
it maps the intersection form on $T(X, Q)$ to the intersection form on
$T(Y, Q)$ , and is integral if it is compatible with an isomorphism of
integral Hodge structures $T(X, Z)\rightarrow T(Y, Z)$ .

[We wish to warn the reader that the term ”isogeny”, when applied
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in particular to $K3$ surfaces, has several conflicting definitions in the
literature. Let $X$ and $Y$ be algebraic K3 surfaces. Inose [1] uses the
term “isogeny” to mean a rational map of finite degree between $X$ and
$Y$ (when the Picard numbers of $X$ and $Y$ are both 20). Shafarevich [12
uses the term ”isogeny” to mean an isomorphism $H^{2}(X, Q)\rightarrow H^{2}(Y,$ $Q_{J}^{\backslash }$

preserving the Hodge structures and the intersection pairings. Muka:
[8] uses the term ”isogeny” to mean an algebraic cycle on $X\times Y$ whose
cohomology class is a Shafarevich-isogeny. In the terminology of this
paper, an Inose-isogeny is an isogeny, a Mukai-isogeny is a Q-linear com.
bination of strict isogenies and algebraic cycles $W$ such that $[W]_{tran}.=0$

and a Shafarevich-isogeny restricts to a strict cohomological isogeny. $(A$

previous paper of the author [6] used the term “isogeny” to denote a
strict cohomological isogeny between an algebraic K3 surface and an
abelian surface.)]

If $X$ and $Y$ are algebraic surfaces with geometric genus one, ther
every morphism of rational Hodge structures $T(X, Q)\rightarrow T(Y, Q)$ is eithe]

the zero map or an isomorphism. Thus, all non-zero elements of
HKT(X, Y) become cohomological isogenies after twisting by $-2$ anc
composing with $\alpha_{X}$ . Moreover, by the Lieberman-Okamoto lemma, every
algebraic cycle on $X\times Y$ is homologically equivalent (mod torsion) to $\epsilon$

Q-linear combination of complete intersections and isogenies. The Hodge
conjecture for $X\times Y$ is thus equivalent to the statement: “every coho.
mological isogeny between $X$ and $Y$ is induced by a Q-linear combinatior
of isogenies between $X$ and Y.”

\S 2. Associated K3 surfaces.

A lattice is a free Z-module $L$ of finite rank, together with a non.
degenerate integral symmetric bilinear form $b:L\times L\rightarrow Z$. A lattice is
even if $b(v, v)\in 2Z$ for all $v\in L$ , and is unimodular if the discriminant of
$b$ is $\pm 1$ . If $T$ and $L$ are lattices, a primitive embedding of $T$ into $I$

is an injective Z-linear map $\psi;T\rightarrow L$ which preserves the bilinear formf
such that $coker(\psi)$ is free; if $\psi$ is also surjective, it is called an isometrz.
between $T$ and $L$ .

For any algebraic surface $X$, the intersection pairing $b$ $give_{\backslash }$

$H^{2}(X, Z)/(tors)$ the structure of a lattice, which is unimodular by Poincari
duality. The Wu formula says that $b(v, v)+b(v, c_{1}(X))\in 2Z$ for an3
$v\in H^{2}(X, Z)$ . Thus, since $T(X, Z)\subset c_{1}(X)^{\perp},$ $T(X, Z)$ is an even lattice.

If $Y$ is an algebraic K3 surface (that is, a simply-connected comple $>$

algebraic surface with $c_{1}(Y)=0)$ , then $H^{2}(Y, Z)$ is an even unimodula]
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lattice, which has signature $(3, 19)$ by the Hodge index theorem. This
implies (by a theorem of Milnor) that the isometry class of the lattice
$H^{2}(Y, Z)$ does not depend on the algebraic K3 surface $Y$; we fix one lattice
$\Lambda$ in this isometry class and call it the $K3$ lattice.

THEOREM 1. Let $X$ be an algebraic surface with geometric genus one.
(i) There ex’ists an algebraic $K3$ surface $Y$ and a stric $t$ integral

cohomological isogeny between $X$ and Y. (We call $Y$ an associated K3
surface of $X.$ )

(ii) If the minimal model of $X$ is neither a $K3$ surface nor a loga-
rithmic transform of an elliptic $K3$ surface, then any two associated $K3$

surfaces of $X$ are isomorphic.

For the proof, we need to analyze the bilinear form on $T(X, Z)$ .
LEMMA 1. Let $X$ be an algebraic surface whose minimal model is

either a $K3$ surface or a logarithmic transform of an elliptic $K3$ surface.
Then there exists a primitive embedding $\phi:T(X, Z)\rightarrow\Lambda$ .

PROOF: Since $T(X, Z)$ is a birational invariant, we may assume with-
out loss of generality that $X$ is minimal. The lemma is trivial in the
case that $X$ is a $K3$ surface, for there exists an isometry $\sigma:H^{2}(X, Z)\rightarrow\Lambda$ ,
and $\phi=\sigma|_{T(X,Z)}$ is a primitive embedding.

Suppose that $X$ is a logarithmic transform of an elliptic K3 surface.
(Our proof in this case is actually an application of Nikulin’s technique
of discriminant-forms [9], as modified by Looijenga-Wahl [4] in the non-
even case, but it is easier to give a direct argument than to set up the
machinery.) Let $L_{1}$ denote the lattice $H^{2}(X, Z)/(tors)$ , and let $b_{1}$ denote
the bilinear form on $L_{1}$ . Choose $e\in L_{1}$ such that the Z-span of $e$ is a
primitive sublattice of $L_{1}$ which contains the class of the fiber of the
elliptic pencil $|E|$ on $X$, and let $f\in L_{1}$ be the class of some fixed multi-
section of $|E|$ (which exists since $X$ is algebraic). Then there exist
integers $k,$ $m$ , and $n$ with $m\neq 0$ such that $c_{1}(X)\equiv ke$ mod torsion, and
the intersection matrix of $e$ and $f$ is

$\left(\begin{array}{ll}0 & m\\m & n\end{array}\right)$ .

Let $M_{1}$ be the Z-span of $e$ and $f$ in $L_{1}$ , and $N=M_{1}^{\perp}$ . Note that $ M_{1}\subset$

$NS(X)/(tors)$ so that $T(X, Z)\subset N$, and this inclusion is primitive.
Define a lattice $M_{2}$ of rank 2 by means of a basis $x$ and $y$ such that

the bilinear form has matrix
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$\left(\begin{array}{ll}0 & m\\m & n-km^{2}\end{array}\right)$

with respect to this basis, and let $b_{2}$ denote the induced bilinear form
on $M_{2}\oplus N$. Let

$L_{2}=\{(\alpha x+\beta y)+z\in(M_{2}\oplus N)\otimes Q|\alpha e+\beta f+z\in L_{1}\}$ ,

and consider a pair of elements $u_{i}=\alpha_{i}x+\beta_{i}y+z_{i}\in L_{2}$ for $i=1,2$ with
corresponding elements $v_{i}=\alpha_{i}e+\beta_{i}f+z_{i}\in L_{1}$ . Then $b_{1}(v_{i}, e)=\beta m$ is an
integer, so that

$b_{2}(u_{1}, u_{2})=b_{1}(v_{1}, v_{2})-km^{2}\beta_{1}\beta_{2}$

is also an integer, and $b_{2}$ makes $L_{2}$ into a lattice. Moreover,

$b_{2}(u_{1}, u_{1})=b_{1}(v_{1}, v_{1})+b_{1}(v_{1}, c_{1}(X))-km\beta_{1}(m\beta_{1}+1)$ .
Now $b_{1}(v_{1}, v_{1})+b_{1}(v_{1}, c_{1}(X))$ is even by the Wu formula, and $km\beta_{1}(m\beta_{1}+1)$

is an even integer since $m\beta_{1}\in Z$. Thus, $b_{2}(u_{1}, u_{1})\in 2Z$ so that $L_{2}$ is an
even lattice.

Since $M_{1}$ and $M_{2}$ both have signature $(1, 1)$ , the signature of $L_{2}$ coin-
cides with that of $L_{1}$ , which is $(3, 19)$ . Moreover, $[L_{1}:M_{1}\oplus N]=[L_{2}:M_{2}\oplus N]$

by construction, so that $L_{2}$ is unimodular (since $L_{1}$ is unimodular). Hence,
$L_{2}$ is an even unimodular lattice of singnature $(3, 19)$ , so that there exists
an isometry $\sigma:L_{2}\rightarrow\Lambda$ by Milnor’s theorem. Since $T(X, Z)\subset N\subset L_{2}$ , we
may restrict $\sigma$ to $T(X, Z)$ , which gives a primitive embedding

$\sigma|_{T(X,Z)}Q.E.D$ .$ T(X, Z)\rightarrow\Lambda$ .
A minimal surface $X$ with geometric genus one satisfies $c_{1}^{2}(X)=$

$q(X)=0$ if and only if $X$ if a K3 surface or a logarithmic transform of
an elliptic K3 surface.

LEMMA 2. Let $X$ be an algebraic surface with geometric genus one,
whose minimal model is neither a $K3$ surface nor a logarithmio trans-
form of an elliptic $K3$ surface. Then there is a primitive embedding
$\phi:T(X, Z)\rightarrow\Lambda$ . Moreover, if $\phi_{1},$ $\phi_{2}:T(X, Z)\rightarrow\Lambda$ are two primitive em-
beddings, there is an isometry $\sigma:\Lambda\rightarrow\Lambda$ such that $\phi_{2}=\sigma\circ\phi_{1}$

PROOF. As in the proof of Lemma 1, we may assume that $X$ is
minimal. We first show that there is a unimodular lattice $L$ of rank at
most 20, and a primitive embedding $\psi:T(X, Z)\rightarrow L$ . By Noether’s formula,
$b_{2}(X)=22-8q(X)-c_{1}^{2}(X)$ , so that if $c_{1}^{2}(X)\geqq 2$ or $q(X)\geqq 1$ , we may take
$L=H^{2}(X, Z)$ . Our hypothesis on $X$ guarantees that either $c_{1}^{2}(X)\geqq 1$ or
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$q(X)\geqq 1$ . In the remaining case $c_{1}^{2}(X)=1,$ $q(X)=0$ , we take $ L=(c_{1}(X))^{\perp}\subset$

$H^{2}(X, Z)$ ; this has rank 20, is unimodular since $c_{1}^{2}(X)=1$ , and contains
$T(X, Z)$ .

Let $\alpha_{X}:T(X, Z)\rightarrow Hom(T(X, Z),$ $Z$ ) be the map induced by the bilinear
form on $T(X, Z)$ . The existence of $\psi$ implies that the finite abelian
group $coker(\alpha_{X})$ has at most rank$(\psi(T(X, Z))^{\perp})\leqq 20-rank(T(X, Z))$ gen-
erators; but then since rank $(\Lambda)=22$ , the Nikulin embedding theorem [9]
implies that there is a primitive embedding $\phi;T(X, Z)\rightarrow\Lambda$ , and that any
two such differ by an isometry between $\Lambda$ and $\Lambda$ . Q.E.D.

PROOF OF THEOREM 1. (i) Let $\phi\ddagger T(X, Z)\rightarrow\Lambda$ be the primitive em-
bedding constructed in Lemmas 1 and 2. We give $\Lambda$ a Hodge structure
$\Lambda_{c}=\Lambda^{2,0}\oplus\Lambda^{1,1}\oplus\Lambda^{0,2}$ by requiring that $\phi$ be a morphism of Hodge structures,
and $(im(\phi))^{\perp}\otimes C\subset\Lambda^{1,1}$ . By the surjectivity of the period map for algebraic
K3 surfaces [2], there is a K3 surface $Y$ and an isomorphism of integral
Hodge structures $\alpha:H^{2}(Y, Z)\rightarrow\Lambda$ (with respect to our chosen Hodge
structure on $\Lambda$), which is also an isometry. Then $\alpha(T(Y, Z))=\phi(T(X, Z))$

so that $\alpha^{-1}\circ\phi:T(X, Z)\rightarrow T(Y, Z)$ gives the required strict integral coho-
mological isogeny.

(ii) Suppose that the minimal model of $X$ is neither a K3 surface
nor a logarithmic transform of an elliptic K3 surface. Let $Y_{i}$ be an
algebraic K3 surface and $\beta_{i}:T(X, Z)\rightarrow T(Y_{i}, Z)$ be a strict integral coho-
mological isogeny for $i=1,2$ , and choose an isometry $\alpha_{i}:H^{2}(Y_{l}, Z)\rightarrow\Lambda$ .
Then $\alpha_{i}\circ\beta_{i}:T(X, Z)\rightarrow\Lambda$ is a primitive embedding for $i=1,2$ ; by Lemma
2, there is some isometry $\sigma:\Lambda\rightarrow\Lambda$ such that $\sigma\circ\alpha_{1^{\circ}}\beta_{1}=\alpha_{2}\circ\beta_{2}$ . Let $\gamma=$

$\alpha_{2}^{-1}\circ\sigma\circ\alpha_{1}:H^{2}(Y_{1}, Z)\rightarrow H^{2}(Y_{2}, Z)$ . Then $\gamma|_{T(Y_{1},Z)}=\beta_{2}\circ\beta_{1}^{-1}$ is an isomorphism
of Hodge structures, which implies that $\gamma$ is itself an isomorphism of
Hodge structures. Since $\gamma$ is also an isometry, by the global Torelli
theorem for algebraic K3 surfaces [11], $Y_{1}$ is isomorphic to $Y_{2}$ . Q.E.D.

\S 3. Composition of isogenies.

Let $X,$ $Y$, and $Z$ be algebraic surfaces, and let $U\subset X\times Y$ and $ V\subset$

$Y\times Z$ be isogenies. Define the composite isogeny $V\circ U$ to be the image
of the fiber product $\{(u, v)\in U\times V|pr_{2}(u)=pr_{1}(v)\}$ under projection to
$X\times Z$.

LEMMA 3. If $U\subset X\times Y$ and $V\subset Y\times Z$ are isogenies, then $[VoU]_{tran\epsilon}=$

$[V]_{trans}\circ[U]_{tran\epsilon}$ ; in particular, $V\circ U$ is an isogeny.

PROOF. Let $\xi_{X}\in H^{0}(X, Q)$ and $\xi_{Z}\in H^{0}(Z, Q)$ be the fundamental classes,
and let $[Y]\in H_{4}(Y, Q)$ be the fundamental class in homology. $V\circ U$ may
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be regarded as the projection to $X\times Z$ of the cycle $(U\times Z)\cap(X\times V)$ or
$X\times Y\times Z$. Thus, $[V\circ U]_{HKT}$ is the HKT-part of the projection to $X\times\angle^{\prime}$

of the cohomology class $([U]_{HKT}\times\xi_{Z})\cup(\xi_{X}\times[V]_{HKT})$ . Now the cup product
map

$(T(X, Q)\otimes T(Y, Q)\otimes H^{0}(Z, Q)\otimes(H^{0}(X, Q)\otimes T(Y, Q)\otimes T(Z, Q))$

$\rightarrow T(X, Q)\otimes H^{4}(Y, Q)\otimes T(Z, Q)$

is simply induced by the cup product $T(Y, Q)\otimes T(Y, Q)\rightarrow H^{4}(Y, Q)$ , while
the projection to $X\times Z$ is induced by evaluating this cup product on the
fundamental homology class [Y]. This evaluation gives the intersectior
pairing on $T(Y, Q)$ , so that when $[V\circ U]_{HKT}$ is regarded as a homomorphisrr
$T(X, Q)^{*}\rightarrow T(Y, Q)(2)$ , we have

$[V\circ U]_{HKT}=[V]_{HKT}\circ\alpha_{Y}(2)\circ[U]_{HKT}$ .
But then

$[V\circ U]_{tran}.=[V]_{HKT}(-2)\circ\alpha_{Y^{\circ}}[U]_{HKT}(-2)\circ\alpha_{X}$

$=[V]_{tran}$. o $[U]_{tran}$. . Q.E.D.

From this lemma we immediately deduce the following ”functoriality
property” of our construction.

COROLLARY. Let $X_{i}$ be an algebraic surface $w^{\prime}\dot{b}th$ geometric genug
one, $Y_{i}$ be an associated $K3$ surface of $X_{i}$ , and suppose that there exists
a strict integral isogeny between $X_{l}$ and $Y_{i}$ for $i=1,2$ . (For example,
$X_{i}$ may be an abelian surface $[13, 5]$ or a Todorov surface [7].) Then
any isogeny between $X_{1}$ and $X_{2}$ is induced by an isogeny between $Y_{1}$ and
$Y_{2}$ .

As a consequence of this corollary, the problem of constructing
isogenies between algebraic surfaces with geometric genus one can be
divided into two parts: constructing a strict integral isogeny between a
given surface and its associated K3 surface(s), and constructing all iso.
genies between algebraic K3 surfaces. In the cases in which the associated
K3 surface is not unique, to solve the first problem it is in fact sufficient
to construct a strict integral isogeny between the given surface and any
one of its associated K3 surfaces, as is shown by the following theorem
of Mukai.

THEOREM (Mukai [8]). Let $Y_{1}$ and $Y_{2}$ be algebraic $K3$ surfaces, and
let $\alpha:T(Y_{1}, Z)\rightarrow T(Y_{2}, Z)$ be a strict integral cohomological isogeny. Then
there is an algebraic Q-cycle $W\in H^{4}(Y_{1}\times Y_{2}, Q)$ , such that $[W]_{tran}.=\alpha$ .
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COROLLARY Let $X$ be an algebraic surface with geometric genus one.
(i) There is a unique strict integral isogeny class of associated $K3$

surfaces of $X$.
(ii) If $Y_{1}$ and $Y$ are associated $K3$ surfaces of $X$ and there exists

a strict integral isogeny between $X$ and $Y_{1}$ , then there exists a strict
integral isogeny between $X$ and $Y_{2}$ .

The first part follows from Mukai’s theorem combined with Theorem
1, while the second part also requires Lemma 3.
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