A Uniqueness Set for the Differential Operator $\Delta_z + \lambda^2$

Ryoko WADA and Mitsuo MORIMOTO

Sophia University

Introduction

We consider the Laplacian

$$\Delta_{z} = (\partial/\partial z_{1})^{2} + (\partial/\partial z_{2})^{2} + \cdots + (\partial/\partial z_{d+1})^{2}$$

in the complex d+1 space C^{d+1} . Let

$$M = \{z = (z_1, z_2, \dots, z_{d+1}) \in \mathbb{C}^{d+1}; z \neq 0, z^2 = 0\}$$

be the complex cone defined by the quadratic equation

$$z^2 = z_1^2 + z_2^2 + \cdots + z_{d+1}^2 = 0$$
.

Suppose λ is an arbitrary complex number. The first named author showed in [13] that the entire function f on C^{d+1} satisfying the differential equation

$$(0.1) \qquad (\Delta_s + \lambda^2) f = 0$$

is completely defined by its restriction values on the complex subvariety M. In this sense, we call the cone M a uniqueness set for the differential operator $\Delta_z + \lambda^2$.

We shall show in this paper that this phenomenon occurs locally at the origin. More precisely, we shall prove a semi-local version using the Lie ball.

Let $\widetilde{B}(r)$ be the Lie ball of radius r with center at the origin in C^{d+1} (see definition in §1). The space of holomorphic functions on $\widetilde{B}(r)$ is denoted by $\mathcal{O}(\widetilde{B}(r))$. We shall denote by $\mathcal{O}_{\lambda}(\widetilde{B}(r))$ the subspace of $\mathcal{O}(\widetilde{B}(r))$ defined by the differential equation (0.1). Remark that $\mathcal{O}_0(\widetilde{B}(r)) = \mathcal{O}_{\lambda}(\widetilde{B}(r))$ in our notation in our previous paper [8], [10], etc., and that $\mathcal{O}_0(\widetilde{B}(r))$ is the space of harmonic functions on the Lie ball $\widetilde{B}(r)$.

Let us consider the space of functions on $M \cap \widetilde{B}(r)$:

$$(0.2) \qquad \mathscr{O}(\widetilde{B}(r))|_{\mathtt{M}} = \{f|_{\mathtt{M} \cap \widetilde{B}(r)}; f \in \mathscr{O}(\widetilde{B}(r))\}.$$

We may call $\mathcal{O}(\tilde{B}(r))|_{H}$ the space of holomorphic functions on the truncated complex cone $M \cap \tilde{B}(r)$.

Our main result is that the restriction mapping is a linear topological isomorphism of $\mathcal{O}_{\lambda}(\widetilde{B}(r))$ onto $\mathcal{O}(\widetilde{B}(r))|_{\mathtt{M}}$ (Theorem 2.4). The global version in [13] corresponds to the case $r = \infty$.

Our method of proof relies heavily on the properties of spherical harmonics. If d=1, the situation becomes very simple and is studied in [7].

The first author described in [14] a uniqueness set for more general linear partial differential operators of the second order with constant coefficients.

The Fourier-Borel transformation P_{λ} has been studied in [2], [6], [10], [12], [13], etc. We will determine in the last section the inverse image of $\mathcal{O}_{\lambda}(\tilde{B}(r))$ by the transformation P_{λ} (Theorem 3.1).

§1. Preliminaries.

Let d be a positive integer and assume $d \ge 2$. $S = S^d = \{x \in \mathbf{R}^{d+1}; \|x\| = 1\}$ denotes the unit sphere in \mathbf{R}^{d+1} , where $\|x\|^2 = x_1^2 + x_2^2 + \cdots + x_{d+1}^2$. ds denotes the unique O(d+1) invariant measure on S with $\int_S 1 ds = 1$, where O(k) is the orthogonal group of degree k. $\|\cdot\|_2$ and $\|\cdot\|_\infty$ are the L^2 -norm and sup norm on S respectively. $H_{n,d}$ is the space of spherical harmonics of degree n in dimension d+1. For spherical harmonics, see Müller [11]. For $S_n \in H_{n,d}$, \widetilde{S}_n denotes the unique homogeneous harmonic polynomial of degree n on C^{d+1} such that $\widetilde{S}_n|_S = S_n$.

The Lie norm L(z) and the dual Lie norm $L^*(z)$ on C^{d+1} are defined as follows:

$$L(z) = L(x+iy) := [\|x\|^2 + \|y\|^2 + 2\{\|x\|^2 \|y\|^2 - (x\cdot y)^2\}^{1/2}]^{1/2}$$
 ,
$$L^*(z) = L^*(x+iy) := \sup\{|\xi\cdot z|; L(\xi) \le 1\}$$

$$= (1/\sqrt{2})[\|x\|^2 + \|y\|^2 + \{(\|x\|^2 - \|y\|^2)^2 + 4(x\cdot y)^2\}^{1/2}]^{1/2}$$
 ,

where $z, \xi \in C^{d+1}$, and $z \cdot \xi = z_1 \xi_1 + z_2 \xi_2 + \cdots + z_{d+1} \xi_{d+1}$, $x, y \in \mathbb{R}^{d+1}$, (see Drużkowski [1]). We put

$$\widetilde{B}(r)$$
:= $\{z \in \mathbb{C}^{d+1}; L(z) < r\}$ for $0 < r \le \infty$

and

$$\widetilde{B}[r]$$
:= $\{z \in C^{d+1}; L(z) \leq r\}$ for $0 \leq r < \infty$.

Note that $\widetilde{B}[0]$ is $\{0\}$. Let us denote by $\mathcal{O}(\widetilde{B}(r))$ the space of holomorphic functions on $\widetilde{B}(r)$. Then $\mathcal{O}(\widetilde{B}(r))$ is an FS space. $\mathcal{O}(\widetilde{B}(\infty)) = \mathcal{O}(C^{d+1})$ is the space of entire functions on C^{d+1} . Let us define

$$\mathcal{O}(\widetilde{B}[r]) := \inf_{r' > r} \lim_{\mathcal{O}(\widetilde{B}(r'))}$$
.

Then $\mathcal{O}(\widetilde{B}[r])$ is a DFS space. For $\lambda \in C$, we put $\mathcal{O}_{\lambda}(\widetilde{B}(r)) := \{ f \in \mathcal{O}(\widetilde{B}(r)); (\Delta_z + \lambda^2) f = 0 \}$ and $\mathcal{O}_{\lambda}(\widetilde{B}[r]) = \{ f \in \mathcal{O}(\widetilde{B}[r]); (\Delta_z + \lambda^2) f = 0 \}$, where $\Delta_z = (\partial/\partial z_1)^2 + (\partial/\partial z_2)^2 + \cdots + (\partial/\partial z_{d+1})^2$. $P_n(C^{d+1})$ denotes the space of homogeneous polynomials of degree n on C^{d+1} .

For r>0 we put

$$X_{r,L} \! := \! \{ f \in \mathcal{O}(C^{d+1}); \sup_{\mathbf{z} \in C^{d+1}} |f(\mathbf{z})| \! \exp(-rL(\mathbf{z})) \! < \infty \}$$
 .

Then $X_{r,L}$ is a Banach space with respect to the norm

$$||f||_{r,L} = \sup_{z \in C^{d+1}} |f(z)| \exp(-rL(z))$$
.

Define

$$ext{Exp}(\emph{\emph{C}}^{d+1}\!\!:(r\!:L))\!\!:=\! \min_{r'>r} X_{r',L} \qquad ext{for} \quad 0\! \le \! r\! <\! \infty \ ,$$
 $ext{Exp}(\emph{\emph{C}}^{d+1}\!\!:[r\!:L])\!\!:=\! \inf_{r'< r} X_{r',L} \qquad ext{for} \quad 0\! <\! r\! \le\! \infty \ .$

 $\operatorname{Exp}(C^{d+1};(r;L))$ is an FS space and $\operatorname{Exp}(C^{d+1};[r;L])$ is a DFS space. $\operatorname{Exp}(C^{d+1}) = \operatorname{Exp}(C^{d+1};[\infty;L])$ is called the space of entire functions of exponential type. $\operatorname{Exp}'(C^{d+1};(r;L))$ and $\operatorname{Exp}'(C^{d+1};[r;L])$ denote the spaces dual to $\operatorname{Exp}(C^{d+1};(r;L))$ and $\operatorname{Exp}(C^{d+1};[r;L])$ respectively.

 $\widetilde{S} = \{z \in C^{d+1}; z_1^2 + z_2^2 + \cdots + z_{d+1}^2 = 1\} \text{ is the complex sphere. We define } \operatorname{Exp}(\widetilde{S}: [r:L]) := \operatorname{Exp}(C^{d+1}: [r:L])|_{\widetilde{S}} \text{ and } \operatorname{Exp}(\widetilde{S}: (r:L)) := \operatorname{Exp}(C^{d+1}: (r:L))|_{\widetilde{S}}.$ We write $\operatorname{Exp}(\widetilde{S}: [\infty:L]) = \operatorname{Exp}(\widetilde{S})$ and $\operatorname{Exp}(\widetilde{S}: (0:L)) = \operatorname{Exp}(\widetilde{S}: (0))$. The topology of $\operatorname{Exp}(\widetilde{S}: [r:L])$ is defined to be the quotient topology $\operatorname{Exp}(C^{d+1}: [r:L])/\mathscr{I}_{\operatorname{exp}[r:L]}(C^{d+1})$, where we put $\mathscr{I}_{\operatorname{exp}[r:L]}(C^{d+1}) = \{f \in \operatorname{Exp}(C^{d+1}: [r:L]); f = 0 \text{ on } \widetilde{S}\}$. We also define the topologies of $\operatorname{Exp}(\widetilde{S}: (r:L)), \operatorname{Exp}(\widetilde{S})$ and $\operatorname{Exp}(\widetilde{S}: (0))$ similarly. $\operatorname{Exp}'(\widetilde{S}: [r:L]), \operatorname{Exp}'(\widetilde{S}: (r:L)), \operatorname{Exp}'(\widetilde{S})$ and $\operatorname{Exp}(\widetilde{S}: (0))$, respectively.

If f is a function or a functional on S, we denote by $S_n(f;)$ the n-th spherical harmonic component of f:

$$(1.1) \hspace{1cm} S_{\scriptscriptstyle n}(f;s) \!=\! N(n,\,d) \langle f,\, P_{\scriptscriptstyle n,d}(\ \cdot s) \rangle \hspace{1cm} \text{for} \hspace{0.2cm} s \in S \hspace{0.2cm} ,$$

where

(1.2)
$$N(n, d) = \dim H_{n,d} = \frac{(2n+d-1)(n+d-2)!}{n! (d-1)!}$$

and $P_{n,d}$ is the Legendre polynomial of degree n and of dimension d+1. We put $L_n(x) = ||x||^n P_{n,d}(\alpha \cdot x/||x||)$ for fixed $\alpha \in S$. Then L_n is the unique homogeneous harmonic polynomial of degree n with the following properties:

$$L_n(Ax) = L_n(x)$$
 for all $A \in O(d+1)$ such that $A\alpha = \alpha$.

$$L_n(\alpha) = 1$$
.

We see that $S_n(f;)$ belongs to $H_{n,d}$ for $n=0, 1, \cdots$.

Put $\Lambda_+ = \{(n, k) \in \mathbb{Z}_+^2; n \equiv k \pmod{2} \text{ and } n \geq k\}$, where $\mathbb{Z}_+ = \{0, 1, 2, \cdots\}$. For any $F \in \mathcal{O}(\widetilde{B}(r))$ we can determine uniquely $S_{n,k}(F;) \in H_{k,d}$ for every $(n, k) \in \Lambda_+$ in such a way that

(1.3)
$$F(z) = \sum_{(n,k) \in A_+} (\sqrt{z^2})^{n-k} \widetilde{S}_{n,k}(F;z) ,$$

where $z^2 = z_1^2 + z_2^2 + \cdots + z_{d+1}^2$, and the right hand side of (1.3) converges uniformly on every compact set of $\widetilde{B}(r)$. The $S_{n,k}(F; \cdot)$ is called the (n, k)-component of F (see [8] [9]).

Next we consider a complex cone M as follows:

$$M = \{z \in C^{d+1} \setminus \{0\}; z^2 = 0\}$$
.

M is identified with the cotangent bundle of S minus its zero section. $P_n(M)$ denotes the restriction to M of $P_n(C^{d+1})$. We put the subset N of M as follows:

$$N = \{z = x + iy \in M; ||x|| = ||y|| = 1\}$$
 ,

where $x, y \in \mathbb{R}^{d+1}$. The unit cotangent bundle to S is identified with the subset N and we have $N \simeq O(d+1)/O(d-1)$. dN denotes the unique O(d+1)-invariant measure on N with $\int_N 1 dN(z) = 1$. We define the inner product $\langle \varphi, \psi \rangle_N = \int_N \varphi(z) \overline{\psi(z)} dN(z)$ and the norm $\|\varphi\|_{N,2} = \langle \varphi, \varphi \rangle_N^{1/2}$. It is known that for any $f_n, g_n \in H_{n,d}$

$$\langle f_n, g_n \rangle_s = 2^{-2n} \frac{n! \ N(n, d) \Gamma((d+1)/2)}{\Gamma(n+(d+1)/2)} \langle \widetilde{f}_n, \widetilde{g}_n \rangle_N ,$$

where

$$\langle f, g \rangle_{s} = \int_{s} f(s) \overline{g(s)} ds$$
 ,

(see, for example [4] [5] [13]). $\| \cdot \|_{N,\infty}$ denotes the sup norm on N.

§2. Some properties of $\mathcal{O}_{\lambda}(\widetilde{B}(r))$.

THEOREM 2.1. Let $F \in \mathcal{O}_{\lambda}(\widetilde{B}(r))$ and $S_{n,k}$ be the (n, k)-component of F. Then we have

(2.1)
$$S_{n,k} = (i\lambda/2)^{n-k} \frac{\Gamma(k+(d+1)/2)}{\Gamma((n-k)/2+1)\Gamma((n+k+d+1)/2)} S_{k,k}$$

for $(n, k) \in \Lambda_+$ and

(2.2)
$$\limsup_{n\to\infty} ||S_{n,n}||_{\infty}^{1/n} \leq 1/r.$$

Conversely, if we are given a sequence of spherical harmonics $\{S_{n,k}\}_{(n,k)\in A_+}$ satisfying (2.1) and (2.2) and if we put for $z\in \widetilde{B}(r)$

(2.3)
$$F(z) = \sum_{(n,k) \in A_{+}} (\sqrt{z^{2}})^{n-k} \widetilde{S}_{n,k}(z) ,$$

then the right hand side of (2.3) converges uniformly and absolutely on every compact set of $\widetilde{B}(r)$ and F belongs to $\mathcal{O}_{\lambda}(\widetilde{B}(r))$. Furthermore we have

$$\widetilde{S}_{n,k}(z) = \widetilde{S}_{n,k}(F;z)$$
 for $(n, k) \in \Lambda_+$.

Remark the case $\lambda = 0$ is known (see [9]).

PROOF. By [8] Theorem 3.2 we have

$$\begin{array}{ll} (2.4) & \Delta_z F(z) = \sum\limits_{\substack{(n,k) \in A_+ \\ n > k}} \Delta_z ((\sqrt{z^2})^{n-k} \widetilde{S}_{n,k}(z)) \\ &= \sum\limits_{\substack{(n,k) \in A_+ \\ n > k}} (n-k)(n+k+d-1)(\sqrt{z^2})^{n-k-2} \widetilde{S}_{n,k}(z) \ . \end{array}$$

(2.4) gives us, for $0 \le k \le n-2$ with $n \equiv k \pmod{2}$,

$$(2.5) (n-k)(n+k+d-1)S_{n,k} = -\lambda^2 S_{n-2,k},$$

because $F \in \mathcal{O}_{\lambda}(\widetilde{B}(r))$ and $H_{n,d} \perp H_{m,d}$ if $n \neq m$. (2.1) follows from (2.5). (2.2) follows from [8] Theorem 3.2 (3.33), since $\limsup_{n\to\infty} ||f_n||_{\infty}^{1/n} = \limsup_{n\to\infty} ||f_n||_{\infty}^{1/n}$ if $f_n \in H_{n,d}$.

Conversely, suppose we are given a sequence $\{S_{n,k}\}$ satisfying (2.1) and (2.2). By (2.2) for any $\varepsilon > 0$ there exists a constant C_{ε} such that

$$\sup_{k \in \mathbb{Z}_+} ||S_{k,k}||_{\infty} \leq C_{\varepsilon} (r - \varepsilon)^{-k}.$$

By (2.1) and (2.6) we have for $(n, k) \in \Lambda_{+}$

(2.7)
$$||S_{n,k}||_{\infty} = (|\lambda|/2)^{n-k} \frac{\Gamma(k+(d+1)/2)||S_{k,k}||_{\infty}}{\Gamma((n-k)/2+1)\Gamma((n+k+d+1)/2)}$$

$$\leq (|\lambda|/2)^{n-k} \frac{C_{\mathfrak{s}}(r-\mathfrak{s})^{-k}}{\Gamma((n-k)/2+1)} .$$

From (2.7) we can see that $\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} (\sqrt{z^2})^{2l} \widetilde{S}_{k+2l,k}(z)$ converges uniformly and absolutely on every compact set of $\widetilde{B}(r)$ since the Šilov boundary of $\widetilde{B}(\rho)$ is $\{\rho e^{i\theta}s; \ 0 \le \theta < 2\pi, \ s \in S\}$ (see Hua [3]). So the right hand side of (2.3) converges uniformly and absolutely on every compact set of $\widetilde{B}(r)$. Therefore F belongs to $\mathscr{O}(\widetilde{B}(r))$ and $S_{n,k}(s) = S_{n,k}(F;s)$ for any $s \in S$. It is easy to show that $\Delta_s F = -\lambda^2 F$.

REMARK 2.2. In Theorem 2.1 the condition (2.2) can be replaced by the following conditions

$$(2.2') \qquad \qquad \limsup_{n \to \infty} \|\widetilde{S}_{n,n}\|_{N,2}^{1/n} \leq 2/r$$

or

(2.2")
$$\limsup_{n\to\infty} \|\widetilde{S}_{n,n}\|_{N,\infty}^{1/n} \leq 2/r ,$$

since for any $f_n \in H_{n,d}$ we have

$$\begin{split} \limsup_{n \to \infty} \|\widetilde{f}_n\|_{N,2}^{1/n} &= 2 \limsup_{n \to \infty} \|f_n\|_2^{1/n} = 2 \limsup_{n \to \infty} \|f_n\|_{\infty}^{1/n} \\ &= \limsup_{n \to \infty} \|\widetilde{f}_n\|_{N,\infty}^{1/n} \;, \end{split}$$

by (1.4) and the fact that $\widetilde{B}[2]\supset N$.

We recall the definition of the Bessel function of order ν , $\nu \neq -1$, -2, \cdots :

(2.8)
$$J_{\nu}(t) = \left(\frac{t}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(\nu+k+1)} \left(\frac{t}{2}\right)^{2k}.$$

COROLLARY 2.3. Let $F \in \mathcal{O}_{\lambda}(\widetilde{B}(r))$. Then we have for any $z \in \widetilde{B}(r)$

(2.9)
$$F(z) = \sum_{n=0}^{\infty} \rho_0^{(d-1)/2} \frac{J_{n+(d-1)/2}(\lambda \sqrt{z^2})}{J_{n+(d-1)/2}(\lambda \rho_0)} (\sqrt{z^2})^{-n-(d-1)/2} \widetilde{S}_n(F_{\rho_0}; z)$$

for every $\rho_0 \in C$ such that $0 < |\rho_0| < r$ and $J_{n+(d-1)/2}(\lambda \rho_0) \neq 0$ for any $n \in \mathbb{Z}_+$.

where

(2.10)
$$S_n(F_{\rho_0};s) = N(n,d) \int_{S} F(\rho_0 s') P_{n,d}(s' \cdot s) ds'.$$

PROOF. We put $S_{n,k}(F;s) = S_{n,k}(s)$. Then (2.1) gives

(2.11)
$$F(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} (\sqrt{z^2})^{2l} \left(\frac{i\lambda}{2}\right)^{2l} \frac{\Gamma(k+(d+1)/2)}{l! \Gamma(k+l+(d+1)/2)} \widetilde{S}_{k,k}(z) .$$

By (2.10) and (2.11) and the orthogonality of spherical harmonics we obtain

$$(2.12) S_k(F_{\rho_0};s) = S_{k,k}(s) \left\{ \sum_{l=0}^{\infty} \rho_0^{2l+k} \left(\frac{i\lambda}{2} \right)^{2l} \frac{\Gamma(k+(d+1)/2)}{l! \Gamma(1+k+(d+1)/2)} \right\}$$

because the right hand side of (2.11) converges uniformly on the sphere $\rho_0 S$. (2.8) and (2.12) imply

$$(2.13) \qquad \widetilde{S}_{k,k}(z) = \rho_0^{-k} \frac{(\lambda \rho_0/2)^{k+(d-1)/2}}{\Gamma(k+(d+1)/2)J_{k+(d-1)/2}(\lambda \rho_0)} \widetilde{S}_k(F_{\rho_0}; z) .$$

Q.E.D.

Our main theorem in this section is the following

THEOREM 2.4. (i) The restriction mapping $F \rightarrow F|_{\mathtt{M}}$ defines the following bijections:

$$(2.14) \alpha_{\lambda}: \mathcal{O}_{\lambda}(\widetilde{B}(r)) \longrightarrow \mathcal{O}(\widetilde{B}(r))|_{M} for any \lambda \in C.$$

(ii) If $f \in \mathcal{O}(\tilde{B}(r))|_{\mathfrak{M}}$ then $\alpha_{\lambda}^{-1}f$ can be expressed as follows:

$$(2.15) \alpha_{\lambda}^{-1}f(z) = \int_{N} f(\rho z'/2)K_{\lambda}(z, \overline{z}'/\rho)dN(z') for z \in \widetilde{B}(r) ,$$

where $L(z) < \rho < r$ and

(2.16)
$$K_{\lambda}(z, \xi) = \sum_{n=0}^{\infty} \{ N(n, d) \Gamma(n + (d+1)/2) (\lambda \sqrt{z^2/2})^{-n - (d-1)/2} \times J_{n+(d-1)/2} (\lambda \sqrt{z^2}) (z \cdot \xi)^n \}.$$

In particular, if $\lambda=0$ we have a "Poisson" formula:

(2.17)
$$\alpha_0^{-1} f(z) = \int_N f(\rho z'/2) \frac{(1 + \overline{z}' \cdot (z/\rho))}{(1 - \overline{z}' \cdot (z/\rho))^d} dN(z') .$$

(iii) α_{λ} is a linear topological isomorphism of $\mathscr{O}_{\lambda}(\widetilde{B}(r))$ onto $\mathscr{O}(\widetilde{B}(r))|_{\mathbf{M}}$

if we equip $\mathscr{O}(\widetilde{B}(r))|_{\mathtt{M}}$ with the topology of uniform convergence on every compact set of $\widetilde{B}(r) \cap M$.

We need the following lemma in order to prove the theorem.

LEMMA 2.5. For $F \in \mathcal{O}(\widetilde{B}(r))$ we have for any $z \in C^{d+1}$

(2.18)
$$\widetilde{S}_{n,n}(F;z) = N(n,d) \int_{N} F(\rho z'/2) \left(\overline{z}' \cdot \frac{z}{\rho}\right)^{n} dN(z'),$$

where ρ is any real number such that $0 < \rho < r$ and the right hand side of (2.18) is independent of ρ .

PROOF. Since $S_{n,n}(F;) \in H_{n,d}$ it is valid for any $s \in S$

(2.19)
$$S_{n,n}(F;s) = N(n,d) \int_{S} S_{n,n}(s') P_{n,d}(s \cdot s') ds'.$$

(2.19) and (1.4) give

(2.20)
$$S_{n,n}(F;s) = (N(n,d)/2^{n})^{2} \frac{n! \Gamma((d+1)/2)}{\Gamma(n+(d+1)/2)} \times \int_{N} \widetilde{S}_{n,n}(F;z') \overline{\widetilde{P}_{n,d}(z'\cdot s)} dN(z') = N(n,d) \int_{N} \widetilde{S}_{n,n}(F;z/2) (\overline{z}'\cdot s)^{n} dN(z'),$$

since $\widetilde{P}_{n,d}(z \cdot s) = \{2^n \Gamma(n+(d+1)/2)(z \cdot s)^n\}/\{n! \ N(n,d)\Gamma((d+1)/2)\}$ on N. If $z' \in N$, $(\overline{z}' \cdot z)^n$ is a homogeneous harmonic polynomial of degree n in z. Then we have by (2.20)

(2.21)
$$\widetilde{S}_{n,n}(F;z) = N(n,d) \int_{N} \widetilde{S}_{n,n}(F;z'/2) (\overline{z}' \cdot z)^{n} dN(z')$$
$$= N(n,d) \int_{N} \widetilde{S}_{n,n}(F;\rho z'/2) (\overline{z}' \cdot \frac{z}{\rho})^{n} dN(z') .$$

(2.18) follows from (2.21) because $\sum_{k=0}^{\infty} \widetilde{S}_{k,k}(F; \rho z'/2)$ converges to $F(\rho z'/2)$ on N and $P_n(M) \perp P_m(M)$ $(n \neq m)$ on N. (2.21) is independent of ρ and so is (2.18). Q.E.D.

PROOF OF THEOREM 2.4. (i) For any $\lambda \in C$ it is clear that $\mathcal{O}_{\lambda}(\widetilde{B}(r))|_{\mathtt{M}} \subset \mathcal{O}(\widetilde{B}(r))|_{\mathtt{M}}$. Let $F \in \mathcal{O}_{\lambda}(\widetilde{B}(r))$. Then for any $z \in M \cap \widetilde{B}(r)$ we have

(2.22)
$$F(z) = \sum_{n=0}^{\infty} \widetilde{S}_{n,n}(F;z) .$$

By (2.22) we have for any $z' \in N$

(2.23)
$$F(rz'/4) = \sum_{n=0}^{\infty} (r/4)^n \widetilde{S}_{n,n}(F;z'),$$

because $(r/4)N\subset \widetilde{B}(r)\cap M$. If $\alpha_{\lambda}(F)=0$ we have $\widetilde{S}_{n,n}=0$ on N by (2.23) and the orthogonality of homogeneous polynomials on N. So the spherical harmonic function $S_{n,n}=0$ by (1.4) and F=0 by (2.1). Therefore α_{λ} is injective.

Next for $f \in \mathcal{O}(\widetilde{B}(r))$ we define the function F as follows:

$$F(z) = \sum_{(n,k) \in A_+} (\sqrt{z^2})^{n-k} \widetilde{S}_{n,k}(z)$$
 ,

where

$$\widetilde{S}_{n,k}(z) = \frac{\Gamma(k + (d+1)/2)(i\lambda/2)^{n-k}}{\Gamma((n-k)/2+1)\Gamma((n+k+d+1)/2)} \widetilde{S}_{k,k}(f;z) .$$

As $f \in \mathcal{O}(\widetilde{B}(r))$, $\limsup_{n\to\infty} \|S_{n,n}\|_{\infty}^{1/n} = \limsup_{n\to\infty} \|S_{n,n}(f;)\|_{\infty}^{1/n} \leq 1/r$ by [8] Theorem 3.2. Hence by Theorem 2.1 $F \in \mathcal{O}_{\lambda}(\widetilde{B}(r))$ and $F|_{\mathtt{M}} = f|_{\mathtt{M}}$. Therefore α_{λ} is surjective.

(ii) Suppose $f \in \mathcal{O}(\widetilde{B}(r))|_{M}$. By the proof of surjectivity of α_{λ} in (i) and (2.18) we obtain for $z \in \widetilde{B}(r)$

$$(2.24) \hspace{1cm} lpha_{\lambda}^{-1} f(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left\{ (\sqrt{z^2})^{2l} (i \lambda/2)^{2l} rac{\Gamma(k+(d+1)/2)N(k,d)}{l! \; \Gamma(l+k+(d+1)/2)}
ight. \ imes \int_{N} f(
ho z'/2) \Big(\overline{z}' \cdot rac{z}{
ho} \Big)^k dN(z')
ight\} \; .$$

Now we have

$$(2.25) \quad K_{\it l}(z,\,\overline{z}'/\rho) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \, (\sqrt{z^2}\,)^{2l} (i\lambda/2)^{2l} \frac{\Gamma(k+(d+1)/2)N(k,\,d)(\overline{z}'\cdot(z/\rho))^k}{l!\,\,\Gamma(l+k+(d+1)/2)} \; .$$

So we have for $z \in \widetilde{B}(\rho)$

$$lpha_{\lambda}^{-1}f(z)\!=\!\int_{N}\!f(
ho z'/2)K_{\lambda}\!(z,\,ar{z}'/
ho)dN(z')$$
 ,

since the right hand side of (2.25) converges uniformly and absolutely on $\widetilde{B}[\rho-\varepsilon]\times N$ for any $\varepsilon>0$. Hence we get (2.15). In particular, we obtain (2.17) since $K_0(z, \overline{z}'/\rho) = \sum_{k=0}^{\infty} N(k, d)(\overline{z}' \cdot (z/\rho))^k$ and $\sum_{k=0}^{\infty} N(k, d)x^k = (1+x)(1-x)^{-d}$ for $x \in C$, |x| < 1 (see, for example Müller [11] Lemma 3).

(iii) It is clear that α_{λ} is continuous. Suppose that $\{f_{m}\}_{m \in \mathbb{Z}_{+}} \subset \mathscr{O}(\widetilde{B}(r))|_{\mathbb{M}}$ and $f_{m} \to 0$ in the topology of $\mathscr{O}(\widetilde{B}(r))|_{\mathbb{M}}$. By (2.15) we have for any ρ' with $0 < \rho' < r$

(2.26)
$$\alpha_{\lambda}^{-1} f_{\mathfrak{m}}(z) = \int_{N} f_{\mathfrak{m}}(\rho z'/2) K_{\lambda}(z, \overline{z}'/\rho) dN(z')$$

if $L(z) \leq \rho' < \rho < r$. By (2.25), it is true that

$$(2.27) \qquad \sup_{L(z) \leq \rho'} |K_{\lambda}(z, \overline{z}'/\rho)| \leq \sup_{L(z) \leq \rho'} \left\{ \sum_{n=0}^{\infty} N(n, d) \left| z \cdot \frac{\overline{z}'}{\rho} \right|^n \exp(|\lambda|^2 L(z)^2/4) \right\}.$$

(2.26) and (2.27) give that for any ρ' with $0 < \rho' < r$

$$(2.28) \qquad \sup_{L(z) \leq \rho'} |\alpha_{\lambda}^{-1} f_{m}(z)| \leq \sup_{\substack{L(z) \leq \rho' \\ z' \in N}} |f_{m}(\rho z'/2)| |K_{\lambda}(z, \overline{z}'/\rho)| \\ \leq \left(\exp \frac{|\lambda|^{2} \rho'^{2}}{4}\right) \frac{1 + \rho'/\rho}{(1 - \rho'/\rho)^{d}} \sup_{z \in (\rho/2)N} |f_{m}(z)|.$$

As $(\rho/2)N$ is the compact set of $\widetilde{B}(r)\cap M$ we get from (2.28)

(2.29)
$$\sup_{L(z) \leq \rho'} |\alpha_{\lambda}^{-1} f_{\mathfrak{m}}(z)| \longrightarrow 0 \quad (m \longrightarrow \infty).$$

(2.29) means that $\alpha_{\lambda}^{-1}f_{m}$ converges to 0 in the topology of $\mathcal{O}_{\lambda}(\widetilde{B}(r))$ as $m \to \infty$. Therefore α_{λ}^{-1} is continuous and α_{λ} is a linear topological isomorphism of $\mathcal{O}_{\lambda}(\widetilde{B}(r))$ onto $\mathcal{O}(\widetilde{B}(r))|_{\mathbb{H}}$ by (i). Q.E.D.

COROLLARY 2.6. If F belongs to $\mathcal{O}_{\lambda}(\tilde{B}(\rho))$ for $0 < \rho < r$ and $F|_{\mathbb{M}}$ belongs to $\mathcal{O}(\tilde{B}(r))|_{\mathbb{M}}$, then F belongs to $\mathcal{O}_{\lambda}(\tilde{B}(r))$.

§3. Fourier-Borel transformation.

The Fourier-Borel transformation P_{λ} for a functional $T \in \text{Exp}'(C^{d+1}: (0; L))$ is defined by

(3.1)
$$P_{\lambda}T(z) = \langle T_{\epsilon}, \exp(i\lambda \xi \cdot z) \rangle$$
 for $z \in C^{d+1}$,

where $\lambda \in C \setminus \{0\}$ is a fixed constant. In this section we will determine the functional space on \widetilde{S} whose image by P_{λ} coincides with $\mathcal{O}_{\lambda}(\widetilde{B}(r))$. Our main theorem in this section is the following

Theorem 3.1. The transformation P_{λ} establishes linear topological isomorphisms

(3.2)
$$P_{i}: \operatorname{Exp}'(\widetilde{S}: [|\lambda| r/2: L]) \xrightarrow{\sim} \mathscr{O}_{\lambda}(\widetilde{B}(r)) \quad (0 < r \leq \infty) ,$$

(3.3)
$$P_{\lambda}: \operatorname{Exp}'(\widetilde{S}; (|\lambda| r/2; L)) \xrightarrow{\sim} \mathcal{O}_{\lambda}(\widetilde{B}[r]) \quad (0 \leq r < \infty) .$$

In particular we have the following:

$$(3.4) P_2: \operatorname{Exp}'(\widetilde{S}; (0)) \xrightarrow{\sim} \mathcal{O}_2(\{0\}) .$$

We need the following lemma and theorem in order to prove Theorem 3.1.

Lemma 3.2. If S_n is the n-th spherical harmonic component of f', then

$$(3.5) f' \in \operatorname{Exp}'(\widetilde{S}: [r:L]) \longleftrightarrow \limsup_{n \to \infty} (\|S_n\|_{\infty}/n!)^{1/n} \leq 1/r ,$$

(3.6)
$$f' \in \operatorname{Exp}'(\widetilde{S}: (r:L)) \longleftrightarrow \limsup_{n \to \infty} (||S_n||_{\infty}/n!)^{1/n} < 1/r ,$$

(3.7)
$$f' \in \operatorname{Exp}'(\widetilde{S}:(0)) \longleftrightarrow \lim \sup_{n \to \infty} (\|S_n\|_{\infty}/n!)^{1/n} < \infty.$$

THEOREM 3.3 (Martineau [6]). The transformation P_{λ} establishes linear topological isomorphisms

(3.8)
$$P_2: \operatorname{Exp}'(C^{d+1}: [r:L]) \xrightarrow{\sim} \mathscr{O}(\widetilde{B}^*(r/|\lambda|)),$$

(3.9)
$$P_{i}: \operatorname{Exp}'(C^{d+1}:(r;L)) \xrightarrow{\sim} \mathscr{O}(\widetilde{B}^{*}[r/|\lambda|]).$$

$$(3.10) P_{\lambda}: \operatorname{Exp}'(\mathbb{C}^{d+1}; (0; L)) \xrightarrow{\sim} \mathscr{O}(\{0\}) ,$$

where $\tilde{B}^*(A) = \{z \in C^{d+1}; L^*(z) < A\}$ and $\tilde{B}^*[A] = \{z \in C^{d+1}; L^*(z) \leq A\}.$

Lemma 3.2 can be proved in the same way as in the proof of [10] Theorem 6.1.

PROOF OF THEOREM 3.1. Let f' be in $\operatorname{Exp}'(\widetilde{S}:[|\lambda|r/2:L])$. For any $z \in \widetilde{B}^*(r/2)$ $P_{\lambda}f'(z)$ is well-defined and $P_{\lambda}f' \in \mathcal{O}_{\lambda}(\widetilde{B}^*(r/2))$ because $\operatorname{Re}|i\lambda\xi\cdot z| \leq |\lambda| |\xi\cdot z| \leq |\lambda| L(\xi)L^*(z)$. Furthermore $P_{\lambda}f'(z)$ is well-defined for $z \in \widetilde{B}(r) \cap M$ since $L^*(z) = L(z)/2$ for $z \in M$. If we put $S_n(s) = S_n(f'; s)$, we have for $z \in M \cap \widetilde{B}(r)$

(3.11)
$$P_{\lambda}f'(z) = \sum_{n=0}^{\infty} \int_{S} S_{n}(s) \frac{(i\lambda z \cdot s)^{n}}{n!} ds$$

because $(s \cdot z)^n \in H_{n,d}$ if $z \in M$. Here we consider the following function:

(3.12)
$$G(z) = \sum_{n=0}^{\infty} (i\lambda/2)^n \frac{\Gamma((d+1)/2)}{\Gamma(n+(d+1)/2)} \widetilde{S}_n(z)$$
 for $z \in \mathbb{C}^{d+1}$.

By (3.5)

$$\limsup_{n o\infty} \left\{rac{|i\lambda/2|^n \Gamma((d+1)/2)}{\Gamma(n+(d+1)/2)}\|S_n\|_\infty
ight\}^{1/n}{\le}1/r$$
 ,

so G belongs to $\mathcal{O}_0(\widetilde{B}(r))$ by (2.1) and (2.2). For $z \in M$ and $\alpha \in S$ it is true that

$$(3.13) \qquad \int_{S} P_{n,d}(\alpha \cdot s)(s \cdot z)^{n} ds = \frac{(z \cdot \alpha)^{n}}{N(n,d)} = \frac{1}{N(n,d)C_{n,n}} \widetilde{P}_{n,d}(z \cdot \alpha) ,$$

where $C_{n,n}=2^n\Gamma(n+(d+1)/2)/(N(n,d)\Gamma((d+1)/2)n!)$ is the coefficient of the n-th term of $P_{n,d}$. Since $\{P_{n,d}(\alpha \cdot)\}_{\alpha \in S}$ spans $H_{n,d}$, (3.11), (3.12) and (3.13) imply

$$(3.14) P_{\lambda}f' = G \text{on} M \cap \widetilde{B}(r) .$$

By (3.14) and Corollary 2.6 we can see that $P_{\lambda}f' \in \mathcal{O}_{\lambda}(\tilde{B}(r))$. Suppose $P_{\lambda}f'=0$. Then by (3.12) and (3.14) we have

$$(3.15) \qquad \sum_{n=0}^{\infty} (i\lambda/2)^n \frac{\Gamma((d+1)/2)}{\Gamma(n+(d+1)/2)} \widetilde{S}_n(z) = 0 \quad \text{on} \quad M \cap \widetilde{B}(r) .$$

(3.15) gives $\tilde{S}_n=0$ on N since $P_n(M) \perp P_m(M)$ on N $(n \neq m)$ and $S_n=0$ by (1.4). Therefore f'=0 and P_{λ} is one-to-one.

For $F \in \mathcal{O}_{\lambda}(\tilde{B}(r))$ put $S_n(s) = \{\Gamma(n + (d+1)/2)/((i\lambda/2)^n\Gamma((d+1)/2))\} \times S_{n,n}(F;s)$. (2.2) and (3.5) imply that $f' = \sum_{n=0}^{\infty} S_n$ belongs to $\text{Exp}'(\tilde{S}: [|\lambda|r/2:L])$. By (3.12) and (3.14) we see

(3.16)
$$P_{\lambda}f'(z) = F(z) \quad \text{on} \quad M \cap \widetilde{B}(r) .$$

From Theorem 2.4 we conclude that $F=P_{\lambda}f'$ and P_{λ} is surjective.

Suppose $\{f'_m\}_{m\in \mathbb{Z}_+}\subset \operatorname{Exp}'(\widetilde{S}:[|\lambda|r/2:L])$ and $f'_m\to 0$ in the topology of $\operatorname{Exp}'(\widetilde{S}:[|\lambda|r/2:L])$ $(m\to\infty)$. $\operatorname{Exp}'(\widetilde{S}:[|\lambda|r/2:L])\subset \operatorname{Exp}'(C^{d+1}:[|\lambda|r/2:L])$ and by (3.8), $P_\lambda f'_m$ converges to 0 on every compact set of $\widetilde{B}^*(r/2)$ uniformly when $m\to\infty$. Since $\widetilde{B}^*(r/2)\cap M=\widetilde{B}(r)\cap M$, $\alpha_\lambda(P_\lambda f'_m)$ converges to 0 in the topology of $\mathscr{O}(\widetilde{B}(r))|_M$. Hence $P_\lambda f'_m\to 0$ in the topology of $\mathscr{O}_\lambda(\widetilde{B}(r))$ from Theorem 2.4 (iii). Therefore P_λ is a continuous mapping of $\operatorname{Exp}'(\widetilde{S}:[|\lambda|r/2:L])$ onto $\mathscr{O}_\lambda(\widetilde{B}(r))$. $\operatorname{Exp}'(\widetilde{S}:[|\lambda|r/2;L])$ and $\mathscr{O}_\lambda(\widetilde{B}(r))$ being FS spaces, P_λ^{-1} is also continuous by the closed graph theorem and we obtain (3.2).

By using (3.6), (3.7), (3.9) and (3.10) we can prove (3.3) and (3.4) similarly. Q.E.D.

References

[1] L. Drużkowski, Effective formula for the crossnorm in the complexified unitary spaces, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat., 16 (1974), 47-53.

- [2] M. HASHIZUME, A. KOWATA, K. MINEMURA and K. OKAMOTO, An integral representation of an eigenfunction of the Laplacian on the Euclidean space, Hiroshima Math. J., 2 (1972), 535-545.
- [3] L.K. Hua, Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, Moscow, 1959 (in Russian); Translations of Math. Monographs, 6, Amer. Math. Soc., 1963.
- [4] K. II, On a Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku Math. J., 38 (1986), 57-69.
- [5] G. LEBEAU, Fonctions harmoniques et spectre singulier, Ann. Sci. École Norm. Sup. (4), 13 (1980), 269-291.
- [6] A. MARTINEAU, Équations différentielles d'ordre infini, Bull. Soc. Math. France, 95 (1967), 109-154.
- [7] M. Morimoto, A generalization of the Fourier-Borel transformation for the analytic functionals with non convex carrier, Tokyo J. Math., 2 (1979), 301-322.
- [8] M. Morimoto, Analytic functionals on the Lie sphere, Tokyo J. Math., 3 (1980), 1-35.
- [9] M. Morimoto, Hyperfunctions on the Sphere, Sophia Kokyuroku in Mathematics, 12, Sophia Univ. Dept. Math., Tokyo, 1982 (in Japanese).
- [10] M. Morimoto, Analytic functionals on the sphere and their Fourier-Borel transformations, Complex Analysis, Banach Center Publications, 11, PWN-Polish Scientific Publishers, Warsaw, 1983, 223-250.
- [11] C. MÜLLER, Spherical Harmonics, Lecture Notes in Math., 17, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- [12] R. WADA, The Fourier-Borel transformations of analytic functionals on the complex sphere, Proc. Japan Acad. Ser. A, 61 (1985), 298-301.
- [13] R. WADA, On the Fourier-Borel transformations of analytic functionals on the complex sphere, Tôhoku Math. J., 38 (1986), 417-432.
- [14] R. WADA, A uniqueness set for linear partial differential operators of the second order, to appear in Funkcial. Ekvac.

Present Address:
DEPARTMENT OF MATHEMATICS
SOPHIA UNIVERSITY
KIOICHO, CHIYODA-KU, TOKYO 102
AND
DEPARTMENT OF MATHEMATICS
SOPHIA UNIVERSITY
KIOICHO, CHIYODA-KU, TOKYO 102