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Introduction
We consider the Laplacian
A, =(0/02,)*+(0/02,)* + « + » +(0/024+1)°
in the complex d-+1 Space Cé**, Let
M={z=(2,, 2, **°, 24+,) € C*; 2#0, 2°=0}
be the complex cone defined by the quadratic equation
=2 +zi+ - +25.,=0.

Suppose A is an arbitrary complex number. The first named author
showed in [13] that the entire function f on C*** satisfying the differential
equation

0.1 (A, +2)f=0

is completely defined by its restriction values on the complex subvariety
M. In this sense, we call the cone M a uniqueness set for the differential
operator A,-+\2

We shall show in this paper that this phenomenon occurs locally at
the origin. More precisely, we shall prove a semi-local version using the
Lie ball.

Let B(r) be the Lie ball of radius » with center at the origin in
C** (see definition in §1). The space of holomorphic functions on B(r)
is denoted by <~(B(r)). We shall denote by <(B(r)) the subspace of
(B(r)) defined by the differential equation (0.1). Remark that C(Br)=
Os(B(r) in our notation in our previous paper [8], [10], etc., and that
Z(B(r)) is the space of harmonic functions on the Lie ball B(»).

Let us consider the space of functions on M N B(r):
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(0.2) BN u={flunsw; £ € AB@)} .

We may call £/(B(r))|x the space of holomorphic functions on the truncated

complex cone MnN B(r).

Our main result is that the restriction mapping is a linear topological
isomorphism of <(B(r)) onto &(B(r))|x (Theorem 2.4). The global version
in [13] corresponds to the case r=co.

Our method of proof relies heavily on the properties of spherical
harmonies. If d=1, the situation becomes very simple and is studied in

[71.
The first author described in [14] a uniqueness set for more general
linear partial differential operators of the second order with constant

coefficients.
The Fourier-Borel transformation P, has been studied in [2], [6], [10],

[12], [1~3], etc. We will determine in the last section the inverse image
of Z(B(r)) by the transformation P; (Theorem 3.1).

§1. Preliminaries.

Let d be a positive integer and assume d=2. S=8’={x e R*"; ||z||=1}
denotes the unit sphere in R¢*!, where ||z||*=2}+ a3+ - - +a%,,. ds denotes

the unique O(d+1) invariant measure on S with \ 1ds=1, where O(k) is

the orthogonal group of degree k. | |, and || HS.,, are the L*-norm and
sup norm on S respectively. H,, is the space of spherical harmonics of
degree n in dimension d+41. For spherical harmonies, see Miller [11].
For S,eH,,, S, denotes the unique homogeneous harmonic polynomial of

degree m on C**! such that S,|;=S,.
The Lie norm L(z) and the dual Lie norm L*(z) on C%*' are defined

as follows:
L(z)= L(x+iy): =[ll«|*+ |yl +2{||z]* ¥ > — (= - ¥)°}*] ,

L*(z)=L*(x+1y):=sup{l¢ - 2|; L(&) =1}
=@/ 2)[|l=l+ gl + {2l — ¥l + 4 - ») 3],

where 2z,£€C%, and 2z-&=2z&+286+ *+2inbir, @ YER™, (see
Druzkowski [1]). We put

B(r):={ze C**; L(z)<r} for 0<r=<oco

and
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Blrl:={zeC*; Lz)<r} for 0<r<o .

Note that B[0] is {0}. Let us denote by <*B(r)) the space of holomor-
phic functions on B(r). Then < (B(r)) is an FS space. A(B(c0))=(C**H)
is the space of entire functions on C?*. Let us define

& (Blr]:=ind lim Z(B(r")) .

Then ~(B[r]) is a DFS space. For neC, we put &(Br)):={f € A(B(r));
(A, +\)f=0} and 2 B[r])={f e Z(B[r]); (A, +N\)f=0}, where A,=(5/32,)+
(0/02)* 4+ + + +(8/02441):.  P,(C**") denotes the space of homogeneous poly-
nomials of degree n on C?%*.

For »r>0 we put

X, p:={f e Z(C**); sup |f(2)|lexp(—rL(z)) < oo} .

Then X, , is a Banach space with respect to the norm
Al 2= sup |f(2)lexp(—rL(2)) .

Define
Exp(C**: (r: L)):=projlim X, , for 0=r<e,

r'>r

Exp(C***: [»: L]): ——1nd<11mX, for 0<r=c .
Exp(C**': (r: L)) is an FS space and Exp(Cé*: [r: L]) is a DFS space.
Exp(C**")=Exp(C**": [c: L]) is called the space of entire functions of
exponential type. Exp’(C?*': (r: L)) and Exp’(C**': [»: L]) denote the spaces
dual to Exp(C**': (r: L)) and Exp(C%*': [r: L]) respectively.

S={zeC*; 22 +22+- ++2%,,=1} is the complex sphere. We define
Exp(S: [: L)): =Exp(C**: [’r L)z and Exp(S: : (r: L)):=Exp(C***: (r: L))l3.
We write Exp(S [eo: L) =Exp(S) and Exp(S: (0: L))= Exp(S: (0)). The
topology of Exp(S: [r: L]) is defined to be the quotient topology Exp(Cé+:
[r: LD/ Fezotr:2a(C*), where we put Fupr,.1(C*+)={f € Exp(C**": [r: LD;
JS=0 on S} We also define the topologles of Exp(S: ('r L)), Exp(S) and
Exp(S: (0)) similarly. Exp’(S:[»: L]), Exp (S: (»: L)), Exp (S) and Exp’ (S )
denote the spaces dual to Exp(S:[r:L]), Exp(S: (s L)), Exp(S) and
Exp(S: (0)), respectively.

If f is a function or a functional on S, we denote by S.(f; ) the
n-th spherical harmonic component of f:

1.1) S.(f; 8)=N(n, d){f, P,o( +s)) for seS,
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where

=di _@n+d—1)(n+d—2)!
(1.2 N(n, d)y=dim H, ,= R

and P,, is the Legendre polynomial of degree » and of dimension d+1.
We put L,(x)=||||"P, - «/||x||) for fixed «a€S. Then L, is the unique
homogeneous harmonic polynomial of degree » with the following
properties:

L. (Ax)=L.(x) for all AeO(d+1) such that Aa=«a.
L.(a)=1.
We see that S,(f; ) belongs to H,, for n=0,1, ---.
Put 4, ={(n, k)€ Z%; n=k (mod 2) and n=k}, where Z,={0, 1,2, ---}.

For any Fe~(B(r)) we can determine uniquely S, . (F; )€ H,, for every
(n, k) € 4, in such a way that

(1.3) Fo)= 3, /Z)*S,.u(F2,

where #z*=2+2:+---+22,,, and the right hand side of (1.3) converges
uniformly on every compact set of B(r). The S,.(F; ) is called the
(m, k)-component of F' (see [8] [9]).

Next we consider a complex cone M as follows:

M={z e C**'\{0}; 2*°=0} .

M is identified with the cotangent bundle of S minus its zero section.
P (M) denotes the restriction to M of P,(C**"). We put the subset N of
M as follows:

N={z=x+1y e M; ||| =|lyll=1} ,
where z, ¥y € R**'. The unit cotangent bundle to S is identified with the
subset N and we have N=0(d+1)/0O(d—1). dN denotes the unique O(d+1)-
invariant measure on N with | 1dN(z)=1. We define the inner product
(P, ¥On= SN @(2)y(2)dN(z) and tlllve norm ||@||y.=<{p, @>¥*. It is known that
for any f,, 9.€H,,

_mn! Nv, L (@+1)/2) (7

T'(n+(d+1)/2) G

(1'4) <f'n.’ gn>S=2

" where
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S 9s=|_fog@ds ,
(see, for example [4] [5] [13]). || ||v, denotes the sup norm on N.

§2. Some properties of Z(B(r)).

THEOREM 2.1. Let Fe 2(B(r)) and S, be the (n, k)-component of F.
Then we have

PP Lk+(d+1)/2)
2.1) S N s e S T B AT T3

Jor (n, k)e A, and
2.2 lim sup||S, .||¥"<1/r .
Conversely, if we are givem a sequence of spiw'r'ica,l~ harmonics
{Sui}nmea, satisfying (2.1) and (2.2) and if we put for z< B(r)
(2.3) F@y= 3, 025)*8,.@=,

(nfyedy

then the right hand side of (2.8) converges unifo'r:mly and absolutely on
every compact set of B(r) and F belongs to «(B(r)). Furthermore we
have

8.:2)=8,.F;2) for (mk)ed,.
Remark the case A=0 is known (see [9]).

Proor. By [8] Theorem 8.2 we have

2.4) AF@= 5 AZ)*8,.)
= 2. (—k)mtk+d—1D0Z) 8, 4() .

(2.4) gives us, for 0sk=n—2 with n=Fk (mod 2) ,
(2.5) (m—k)(n+k+d—1)S, .= —NS, 2k »

because F e &(B(r)) and H, ;, L H, ,if n#m. (2.1) follows from (2.5). (2.2)
follows from [8] Theorem 8.2 (8.88), since lim sup,_...|| f,||%" =1im sup,_...|| f.]|2
if f,eH,,.

Conversely, suppose we are given a sequence {S,,} satisfying (2.1)
and (2.2). By (2.2) for any &>0 there exists a constant C, such that
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(2.6) sup ||S; il =C.(r—e)~* .
keZy

By (2.1) and (2.6) we have for (n, k)€ 4,

n— I'(k+(d+1)/2)||Sk,ele
2.7 S, ille=(\|/2)" % 2
@D 15ello=(In/2) T'((n—k)/2+ 1) (n+k+d+1)/2)
at__ Cr—e)™*
S (n|/2)** . .
=(/2) I'(n—k)/24+1)
From (2.7) we can see that >, >, 2 )”S'H,,,,,(z) converges uniformly
and absolutely on every compact set of B(r) since the Silov boundary of
B(o) is {pe'’s; 0=<6<2r, sc S} (see Hua [3]). So the right hand side of
(2.3) converges uniformly and absolutely on every compact set of B@).
Therefore F belongs to < (B(r)) and S, ,(s)=S, :(F;8) for any seS. It
is easy to show that A,F= —\F. Q.E.D.

REMARK 2.2. In Theorem 2.1 the condition (2.2) can be replaced by
the following conditions

2.2) lim sup ||S, ./|l¥:<2/r
or
2.2") lim sup |5, .|[¥.=2/r ,

n->00

since for any f,€ H,; we have
lim sup || . ||%% =2 lim sup || £,/[¥*=2 lim sup || £, /|4
=lim sup || £,/I¥% ,
by (1.4) and the fact that B[2]DN.

We recall the definition of the Bessel function of order v, v+
_1’ ._.2, cee?

H0~(2) S ie)

COROLLARY 2.8. Let Fe(B(r)). Then we have for any z e B(r)

3 —v/2 Ians@—np(WV 2) T \—n—(d—D/2J
(2.9) F(z)= 3, p{*~"/atid=uh (V2% ) "G (Fyy; 2)
"Z}’ i ot ia-02N00) ) fo

for every p,€C such that 0<|0,|<r and J.iu_nrN0)#0 for any neZ,.
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where

2.10) S.(Fo )=Nm, d) | FlosP, (6 - 9)ds’ .

ProOF. We put S, .(F;8)=S, .(s). Then (2.1) gives

k+@d+1)/2) &
1) T'(k+1+(d+1)/2) Sua(@) -

By (2.10) and (2.11) and the orthogonality of spherical harmonics we
obtain

@1)  F@)=3 go(u/zz').ﬂ( ‘; X

I(k+(d+1)/2) }
N T(A+k+(d+1)/2)

because the right hand side of (2.11) converges uniformly on the sphere
0,S. (2.8) and (2.12) imply

@12)  SulFri 8)=Sua(e) {3 ot ()"

2.18 3 = o5* (N0/2)F+ -0 12 §(F 2.
213 ) O e A+ /2T e a0 ®)
(2.9) follows from (2.8), (2.11) and (2.13). Q.E.D.

Our main theorem in this section is the following

THEOREM 2.4. (i) The restriction mapping F— F|, defines the
Jollowing bijections:

(2.14) az: PB@r)) — 2 (B(r)|u fo')' any 1eC.

(ii) If fe 2 (B())|y then ai'f can be expressed as follows:
@15)  aiif)=| for2K( ZI0dANE)  for zeBr),
where L(z) < p<r and

(2.16) Kz &)=3, (N, )T (n-+(@d+1)/2)0/ FF 2) -0
X Jn+(d-—1)/2(>"]/;?)(z * E)n} .

In particular, if x=0 we have a “Poisson” formula:

@.17) a'fR)=|_fod/2 ((11 +2 ((z/ "))))d AN .

(i) a; 18 a linear topological isomorphism of Z(B(r)) onto & (B())|u



100 RYOKO WADA AND MITSUO MORIMOTO

if we equip 0’(?(7’))|,, with the topology of uniform convergence on every
compact set of B(r)N M.

We need the following lemma in order to prove the theorem.

LEMMA 2.5. For Fe ©o(B()) we have for any z¢C**
2.18) 8..F; =N, d) | Foz/2)(z - 2YdNG) ,
¥ 2

where p 18 any real number such that 0<p<r and the right hand side
of (2.18) is independent of p.

ProOOF. Since S, .F; )eH,, it is valid for any se€S

2.19) SunlF; )= N, @) | S, n()P,uls-8)ds’ -
(2..19) and (1.4) give
(2.20) Sua(F; )= (N(m, d)/2"Y = ('n’;f((‘fl: 11))//2))

b XN S, .(F; 2)P, (2’ - 8)dN(2")
=N, &) |_5..(F; 2/2)@ - 9"dNE) ,

since P, (z-8)={2"I"(n+(d+1)/2)(z-8)"}/{n! N(n, d)I'(d+1)/2)} on N. If
2 eN, (Z'-2)" is a homogeneous harmonic polynomial of degree n in z.
Then we have by (2.20)

(2.21) S, .(F;2)=Nn, d) SN S,..(F; 2[2)@ - 2)"dN(2)
. o . ’ 5. % * ’
= N(n, d) SN 3, (F; p2'/2)(7 p) AN() .

(2.18) follows from (2.21) because >i., §,,,,,(F; pz'[2) converges to F'(0z'/2)
on N and P,(M).LP,. (M) (n#m) on N. (2.21) is independent of o and
so is (2.18). Q.E.D.

~PROOF OF ~THEOREM 2.4. (i)~ For any aeC it is cleaf that
OBy (B(r)|u. Let Fe7(B(r)). Then for any ze MNB(r) we
have

(2.22) F(2)= 5::3 S, (F:2).
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By (2.22) we have for any 2’e N
(2.23) Faz|4)=3, /45, (F; 2)
n=0

because (r/A)NcBr)nM. If a,(F)=0 we have S,,=0 on N by (2.23)
and the orthogonality of homogeneous polynomials on N. So the spheri-
cal harmonic function S,,=0 by (1.4) and F'=0 by (2.1). Therefore a;
is injective.

Next for fe &~(B(r)) we define the function F as follows:

F@= > (7 " *S,.:(2) ,
(n,Eyeay
where

§ (e L(k+(d+1)/2)(n/2)"* & (r
Sk = k2 + DI (4 b+ AT D/2) Sealf3 2) -

As fe Z2(B()), lim sup,.. [|S, . |[¥"=lim sup,.. | S,..(f; ) [i*<1/r by [8]
Theorem 8.2. Hence by Theorem 2.1 F e #%(B(r)) and Fl,=f|x. There-
fore a; is surjective.

(ii) Suppose fe & (B(r))y. By the proof of surjectivity of a; in (i)
and (2.18) we obtain for z ¢ B(r)

etg o jona L+ (d+1)/2)N(k, d)
RGN I IO+ k+@+1)/2)

x SN Foz12)(7 - _;-)"dN(z')} .

Ms
Ms

(2.24) az'f(@)=

k

1l
o

]

I
=3

Now we have

£ o/ Fyiney L+ @+ D2)NE d)E - (2/0)*

(2.25) K2 7'/0)=2, 3, I r+k+(d+1)/2)

So we have for ze B(0)

@)=\ for/DKz,710dNE) ,

since the right hand side of (2.25) converges uniformly and absolutely on
ﬁ[p—s]xN for any ¢>0. Hence we get (2.15). In particular, we obtain
(2.17) since Kz, Z'/0) = Do Nk, d)F - (z/0))* and 35, Nk, d)a*=
1+2)1—2)"% for x€C, |x|<1 (see, for example Miiller [11] Lemma 3).

(iii) It is clear that «; is continuous. Suppose that {f.}mez, C
O (B@)|x and f,—0 in the topology of ~(B(r)lx. By (2.15) we have
for any o’ with 0<o’'<r
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(2.26) arfu@=|_fuo7/DK (2 7/0)INE)

if L@ <p’'<p<r. By (2.25), it is true that

@) gup IKits 7o) gup {E N, d)]z- T exprrLerve}
(2.26) and (2.27) give that for any o’ with 0<p'<7

@28 SR, lVuOIS Sup .07 DK F o)

L(z)so’
hte" ) Ltee
s(exp i MENCIR

As (o/2)N is the compact set of B(»r)N M we get from (2.28)
(2.29) sup,laz“f..(Z)I——'O (m— o) .

(2.29) means that a; 1f,,, converges to 0 in the topology of (B(r)) as
m— oo. Therefore a;' is continuous and ¢; is a linear topological isomor-
phism of Z(B(r)) onto & (B(r))|x by (i). Q.E.D.

COROLLARY 2.6. If F belongs to~ﬁz(§(p)) for 0<p<r and F|, belongs
to &(B())|y, then F belongs to (B(r)).

§3. Fourier-Borel transformation.

The Fourier-Borel transformation P, for a functional 7 e Exp’(C%*:
(0; L)) is defined by

8.1) P,T(2)={T., exp(iré - 2)) for ze(Cit,

where A € C\{0} is a fixed constant. In this section we will determine the
functional space on S whose image by P, coincides with Z(B(r)). Our
main theorem in this section is the following

‘ THEOREM 3.1. The transformation P, establishes linear topological
1somorphisms

(3.2 P Exp’(S: [\ r/2: L) —> o B(r)) (0<r=<),

(3.3) P;: Exp'(S; (A r/2: L)) —> Z(Blr]) 0=r<).

In particular we have the following:
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(3.4) P Exp'(S: (0)) — 20D .

We need the following lemma and theorem in order to prove
Theorem 3.1.

LEMMA 8.2. If S, is the n-th spherical harmonic component of f',
then

(3.5) f eExp'(S: [r: L]) =— lim sup(||S,/l/n1)""<1/r
(8.6) F e Exp/'(S: (r: L)) = lim_iup(HS,JIm/n!)1’"<1/'r ,
3.7 f’ e Exp'(S: (0) =——1im sup(||S,|l/n )" <o .

THEOREM 3.3 (Martineau [6]). The transformation P, establishes linear
topological isomorphisms

(3.8) P;: Exp'(C**': [r: Ll) — & (B*(r/I\) ,
(3.9) P Exp’(C**: (r: L)) — 2 (B*[r/\]) »
(8.10) P,: Exp’(C**: (0: L)) — 2 {0}) ,

where B*(A)={z € C**'; L*(2)< A} and B*[A]l={z € C**'; L*(2)< A}.

Lemma 3.2 can be proved in the same way as in the proof of [10]
Theorem 6.1.

PROOF OF THEOREM 3.1. Let f’ be in Exp’(S:[|n|7/2: L]). For any
z € B*(r/2) P,f'(2) is well-defined and P,f’ € «7(B*(r/2)) because Re|iré - z|<
nlle - 2| S W L(E)L*(2). Furthermore P,f'(z) is well-defined for ze B(r)NM
since L*(z)=L(2)/2 for ze M. If we put S,(s)=S,(f’;s), we have for
ze Mn Br)

(3.11) Pf@=3 Ss S,,(s)—@z‘—'%-;—fl:ds

n=

because (s-2)"€ H,; if z€e M. Here we consider the following function:

8.12) G@)= z‘_’__’j (in/2)" F(’; (f &‘B@z) () for zeCi+.

By (3.5)
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jan/2]" I ((d+1)/2) S Yn <1/r
Fn+@+02) | Aof "t

so G belongs to Z,(B(r)) by (2.1) and (2.2). For zeM and acS it is
true that

lim sup {

n—oo

ﬁn,d(z * a) ’

. . 2)B = (z -a)" = 1
@18) | Poda-a)e-ards= o Bt

where C, ,.=2"I"(n+(d+1)/2)/{(N(n, d)I"((d+1)/2)n!) is the coefficient of the
n-th term of P,,. Since {P, @ )}.es Spans H,,; (3.11), (3.12) and (3.13)
imply .

(3.14) P,f'=G on MNB®).

By (3.14) and Corollary 2.6 we can see that P,f’e &(B()).
Suppose P,f'=0. Then by (3.12) and (3.14) we have

S (v oy L(@+1)/2) & .\_ =
(8.15) é(mﬂ) Tt @20/2) S.(2)=0 on MnNB(r).
(3.15) gives S,=0 on N since P,(M)LP,(M) on N (n#m) and S,=0 by
(1.4). Therefore f'=0 and P, is one-to-one.

For Feo(B(r) put 8.(s)={n+ (@d+1)/2)/(GN2)"T((d + 1)/2))} X
S, .(F;8). (2.2) and (38.5) imply that f'=>.2,S, belongs to Exp’(S:
[In[7/2: L]). By (3.12) and (3.14) we see

(8.16) P.f'(2)=F(z) on MnB®x) .

From Theorem 2.4 we conclude that F'=P,f’ and P, is surjective.
Suppose { f;},,ez+CExp’(§: [Ixfr/2: L]) and f,—0 in the topology of
Exp’(S: []A|7/2: L]) (m— ). Exp'(S: [[A|7/2: L]) cExp’(C**: [|\|7/2: L]) and
by (3.8), P.f. converges to 0 on every compact set of B*(»/2) uniformly
when m— . Since B*(r/2) N M=B(r)N\M, a,(P.f.) converges to 0 in the
topology of & (B(r))|y. Hence P,f.,—0 in the topology of <7 (B(r)) from
Theorem 2.4 (iii). Therefore P, is a continuous mapping of Exp’(S:
[N 7/2: L)) onto & B(r)). Exp’(S: [In7/2; L]) and «7(B(r)) being F'S spaces,
! is also continuous by the closed graph theorem and we obtain (3.2).
By using (8.6), (8.7), (3.9) and (38.10) we can prove (3.3) and (3.4)
similarly. Q.E.D.
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