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Introduction

Let $X$ be a compact Riemann surface of genus $g$ and let $Y$ be a
divisor of $X$ consisting of $m$ distinct points $p_{1},$ $\cdots,$ $p_{m}$ of X. We suppose
that $m\geqq 1$ and moreover $m\geqq 2$ when $g=0$ . We recall a fundamental fact
about linear differential equations with regular singularities; let $\Delta=$

$\{z\in C||z|<1\}$ be a unit disc in $C$ and let

(1) $\frac{d^{n}w}{dz^{n}}+a_{1}(z)\frac{d^{n-1}w}{dz^{n-1}}+\cdots+a_{n}(z)w=0$

be a linear differential equation of order $n$ where $a_{i}(z)$ is holomorphic in
$\Delta-\{0\}$ . The origin $0$ is said to be a regular singular point of the equa-
tion (1) if the functions $z^{i}a_{i}(z)(i=1,2, \cdots, n)$ are holomorphic at $0$ . It
is well known that this is equivalent to the condition that the equation
(1), multiplied by $z^{n}$ , can be written in the form

(2) $(z\frac{d}{dz})^{n}w+b_{1}(z)(z\frac{d}{dz})^{n-1}w+\cdots+b_{n}(z)w=0$

where $b_{i}(z)(i=1, \cdots, n)$ are holomorphic at $0$ . Using this fact, we define
a linear differential equation on a compact Riemann surface $X$ of order
$n$ with regular singularities along $Y$ as follows; let $X=\bigcup_{j=1}^{N}U_{j}$ be a
sufficiently fine finite open coordinate covering of $X$ such that $p_{j}\in U_{j}$

$(j=1, \cdots, m)$ and $z_{j}(p_{j})=0$ for $j=1,$ $\cdots,$ $m$ and $z_{j}$ is nowhere zero in $U_{j}$

for $j=m+1,$ $\cdots,$ $N$. In each neighbourhood $U_{j}$ we consider a linear
differential equation

(3) $(z_{j}\frac{d}{dz_{j}})^{n}w+b_{j,1}(z_{j})(z_{f}\frac{d}{dz_{\dot{f}}})^{n-1}w+\cdots+b_{j,n}(z_{j})w=0$
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where $b_{j.k}(z_{;})(k=1, \cdots, n)$ are holomorphic in $U_{j}$ . A linear differential
equation on $X$ of order $n$ with regular singularities along $Y$ is, by de-
finition, a collection of the equations (3) which are compatible in the sense
that any two of them have the same solutions on their common domain
of definition. T. Saito [2] decided the number of independent parameters
of linear differential equations on $X$ of order $n$ with regular singularities
along Y. In this note, we give another proof of the theorem of T. Saito
by using the notion of eulerian jet bundles.

\S 1. Let $z_{j}(d/dz_{\dot{f}})$ be the eulerian vector field on $U_{j}(j=1, \ldots, N)$ .
When $\varphi$ is a holomorphic function in $ U_{j}\cap U_{k}\neq\emptyset$ , by the chain rule of
differentiation, we have

$(z_{j}\frac{\varphi d}{dz_{\dot{f}}}\varphi\backslash =P_{\dot{g}k}^{(n)}(z)\left(\begin{array}{l}\varphi\\ z_{k}\frac{d}{dz_{k}}\varphi\\\vdots\\(z_{k}\frac{d}{dz_{k}})^{n}\varphi\end{array}\right)$

where $P_{\dot{g}k}^{(n)}(z)$ is the matrix-valued holomorphic functions in $U_{\dot{f}}\cap U_{k}$ , of
the form

(4) $P_{\dot{g}k}^{(n)}(z)=(_{0}^{1}00$ $\frac{z_{\dot{f}}}{z_{k}}\frac{dz_{k}}{dz_{j}}*(\frac{z_{j}}{z_{k}}\frac{dz_{k}}{dz_{j}})^{2}..(\frac{Z;}{z_{k}}\frac{dz_{k}}{dz_{;}})^{n}0]$

which satisfies the cocycle conditions
$P_{\dot{g}k}^{(n)}(z)P_{k\dot{g}}^{(n)}(z)=E_{n+1}$ on $U_{j}\cap U_{k}$

and

$P_{\dot{f}}^{(n)}(z)P_{\dot{g}k}^{(n)}(z)=P_{k}^{(n)}(z)$ on $U_{i}\cap U_{j}\cap U_{k}$ .
Thus the cocycle $\{P_{jk}^{(n)}(z)\}$ determines a holomorphic vector bundle $P_{Y}^{(n)}$ oi
rank $n+1$ , which is called the eulerian jet bundle associated to Y. From
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the form (4) of transition functions and the choice of the local coordinate
$z_{j}(j=1, \cdots, N)$ , it follows that the bundle $P_{Y}^{(n)}$ contains a subbundle
$(K\otimes[Y])^{\otimes n}$ of rank one where $K$ is the canonical bundle of $X$ and [Y]
is the line bundle associated to the divisor Y. On $U_{\dot{f}}$ , the sheaf $P(P_{Y}^{(n)})$

of germs of holomorphic sections of $P_{Y}^{(n)}$ is identified with $p_{U_{j}}^{n+1}$ and we
have a homomorphism

(5) $D^{n}$ : $\theta_{U_{j}}\rightarrow\theta(P_{Y}^{(n)})|_{U_{j}}=\theta_{U_{j}}^{n+1}$

$\varphi\mapsto\left(\begin{array}{l}\varphi\\ z_{\dot{g}}\frac{d}{dz_{j}}\varphi\\\vdots\\(z_{J}\frac{d}{dz_{j}})^{n}\varphi\end{array}\right)$ .

It follows that these homomorphisms are compatible in the sense that
any two of them define the same homomorphism in a common domain of
dePnition and define a sheaf homomorphism

$D^{n}$ ; $a_{X}\rightarrow p(P_{Y}^{(n)})$ .
By using the eulerian jet bundle associated to $Y$ and the formulation of
P. Deligne [1, p. 24], we can formulate the notion of linear differential
equations on $X$ of order $n$ with regular singularities along $Y$ as follows:

DEFINITION. A linear differential equation on $X$ of order $n$ with
regular singularities along $Y$ is a $P_{X}$-homomorphism

$E;\beta(P_{Y}^{(n)})\rightarrow\theta((K\otimes[Y])^{\otimes n})$

such that the restriction of $E$ to the subsheaf $P((K\otimes[Y])^{\otimes n})$ is the
identity: $E|_{((K\otimes[Y])}\emptyset n$

) $=identity$ . Then a holomorphic function $\varphi$ near $z$ is
a solution of the differential equation $E$ if $E(D^{n}(\varphi))=0$ .

REMARK. Let $z$ be a local coordinate of a small open neighbourhood
$U$. Then we can identify $\theta(P_{Y}^{(n)})|_{\sigma}$ with $p_{U}^{n+1}$ and the homomorphism
$D^{n}$ can be written in the form

$D^{n}$ : $\theta_{U}\rightarrow a_{U}^{n+1}$

$\varphi\mapsto t(\varphi,$ $z\frac{d}{dz}\varphi,$ $\cdots,$ $(z\frac{d}{dz})^{n}\varphi)$ .

By the choice of the local coordinate $z$ we can identify the locally free
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sheaf $P((K\otimes[Y])^{\otimes n})|_{\sigma}$ with $\rho_{\sigma}$ and the linear differential equation $E$ can
be written in the form

$E:d_{U}^{n+1}\rightarrow p_{U}$

${}^{t}(\varphi_{n}, \cdots, \varphi_{0})\mapsto\sum_{i=0}^{n}b_{i}(z)\varphi_{i}(z)$

where $b_{0}(z)=1$ . Then a solution $\varphi$ of $E$ in $U$ is a holomorphic function
in $U$ which satisfies

$(z\frac{d}{dz})^{n}\varphi+b_{1}(z)(z\frac{d}{dz})^{n-1}\varphi+\cdots+b_{n}(z)\varphi=0$ .
Thus our definition of linear differential equation $E$ on $X$ of order $n$ with
regular singularities along $Y$ is equivalent to the classical one.

\S 2. We show that the eulerian jet bundle $P_{Y}^{(n)}$ is decomposed into
a direct sum of line bundles.

THEOREM 1. We have

(6) $P_{Y}^{(n)}=1\oplus(K\otimes[Y])\oplus(K\otimes[Y])^{\otimes 2}\oplus\cdots\oplus(K\otimes[Y])^{\otimes n}$

where 1 is the trivial line bundle on $X$.
PROOF. We shall prove Theorem 1 by the induction on the number

$n$ . When $n=1$ , by (4) the transition function $P_{\dot{g}k}^{(1)}(z)$ has the folm

$P_{jk}^{(1)}(z)=\left(\begin{array}{lll}1 & & 0\\0 & \frac{z_{j}}{z_{k}} & \frac{dz_{k}}{dz_{\dot{f}}}\end{array}\right)$ in $U_{\dot{f}}\cap U_{k}$

which shows that $P_{Y}^{(1)}=1\oplus(K\otimes[Y])$ . Supposing that the statement is
true for $n-1$ , we shall show that it is true for $n$ . Since the line bundle
$(K\otimes[Y])^{\otimes n}$ is the subbundle of $P_{Y}^{(n)}$ and the transition function $P_{\dot{g}k}^{\{n)}(z)$ has
the form

$P_{;k}^{(n)}(z)=\left(\begin{array}{ll} & 0\\ & \vdots\\ & 0\\*\ldots*P_{jk}^{(n-1)}(\frac{z_{\dot{f}}}{z_{k}} & \frac{dz_{k}}{dz_{\dot{f}}})^{n}\end{array}\right)$

we have an exact sequence of vector bundles
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(7) $0\rightarrow(K\otimes[Y])^{\otimes n}\rightarrow P_{Y}^{(n)}\rightarrow P_{Y}^{(n-1)}\rightarrow 0$ .
Since $p(P_{Y}^{(n-1)})$ is locally free, (7) induces an exact $P_{X}$-sequence

(8)
$0\rightarrow \mathscr{G}aem(P_{Y}^{(n-1)}, (K\otimes[Y])^{\otimes n})\rightarrow \mathscr{F}_{a}.(P_{Y}^{(n-1)}\rightarrow\ovalbox{\tt\small REJECT}_{am(P_{Y}^{(n-1\rangle}},P_{Y}^{(n-1)})\rightarrow 0P_{Y}^{(n)})$

where $\ovalbox{\tt\small REJECT}_{ml}(V, W)$ is the sheaf of germs of local homomorphisms from
the sheaf of germs of holomolphic sections of a holomolphic vector bundle
$V$ to that of a holomorphic vector bundle $W$. Thus we have an exact
sequence of cohomology groups

(9) $H^{0}(X, \ovalbox{\tt\small REJECT}_{p\sim l}(P_{Y}^{(n-1)}, P_{Y}^{(n)}))\rightarrow^{\alpha}H^{0}(X, \mathscr{G}_{pm}(P_{Y}^{(n-1)}, P_{Y}^{(n-1)}))$

$\rightarrow H^{1}(X, \mathscr{G}_{em}(P_{Y}^{(n-1)}, (K\otimes[Y])^{\otimes n}))$ .
We denote by $\mathscr{L}$ the locally free sheaf of germs of holomolphic sections
of $K\otimes[Y]$ and by $\mathscr{L}^{\otimes n}$ the tensor product $ \mathscr{G}\otimes\cdots\otimes \mathscr{L}of_{-}\mathscr{G}with$ itself
$n$ times. From the assumption of the induction it follows that

(10) $\ovalbox{\tt\small REJECT}_{m}(P_{Y}^{(n-1)}, (K\otimes[Y])^{\otimes n})=\rho(P_{Y}^{(n-1)})^{*}\otimes Z^{\otimes n}$

$=[\rho\oplus \mathscr{L}\oplus\cdots\oplus \mathscr{L}^{\otimes(n-1)}]^{*}\otimes \mathscr{L}^{\otimes n}$

$==\mathscr{G}^{\otimes n}\oplus \mathscr{L}^{\otimes(n-1)}\oplus\cdots\oplus\xi \mathscr{L}$ .
As $X$ is compact, we can identify $H^{2}(X, Z)$ with $Z$ naturally and by this
identification we consider the Chern class $c(\sim \mathscr{G})$ of $\mathscr{L}$ as a rational
integer. Let $F$ be a holomorphic line bundle on $X$. Then it is known that
we have $H^{1}(X, \rho(F))=0$ if $c(F\otimes K^{*})>0$ . As for $\mathscr{L}^{\otimes k}=\rho((K\otimes[Y])^{\otimes k})$ ,
we have that

$c((K\otimes[Y])^{\otimes k}\otimes K^{*})=(k-1)(2g-2)+km>0$

because we suppose that $m\geqq 1$ and moreover $m\geqq 2$ when $g=0$ . Hence
we have

(11) $H^{1}(X, \mathscr{L}^{\otimes k})=0$ for $k=1,$ $\cdots,$ $n$ .
Thus, from (10) it follows that

$H^{1}(X, \mathscr{G}_{l},(P_{Y}^{(n-1)}, (K\otimes[Y])^{\otimes n}))=0$ .
This means that the homomorphism $\alpha$ in (9) is surjective; hence by the
standard argument we see that the exact sequence (9) splits and we have

$P_{Y}^{(n)}=P_{Y}^{\{n-1)}\oplus(K\otimes[Y])^{\otimes n}$
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$=1\oplus(K\otimes\{Y])\oplus\cdots\oplus(K\otimes[Y])^{\otimes n}$ .
This completes the induction. Q.E.D.

\S 3. From the definition of a linear differential equation with regular
singularities along $Y$, it follows the set of all linear differential equations
of order $n$ with regular singularities along $Y$ is the affine subspace $V$ of

$W=H^{0}(X, \ovalbox{\tt\small REJECT}_{*}(P_{Y}^{\langle n)}, (K\otimes[Y])^{\otimes n}))$

which consists of $EeW$ such that $E|_{(K\otimes[\gamma])}\emptyset \mathfrak{n}=identity$ . Since the exact
sequence (7) splits, the restriction mapping

$W=H^{0}(X, \ovalbox{\tt\small REJECT}(P_{Y}^{(n)}, (K\otimes[Y])^{\theta n}))\rightarrow H^{0}(X, g_{\sim}\swarrow((K\otimes[Y])^{\otimes n}))\simeq C$

is surjective. Thus $V$ is an affine subspace of $W$ of codimension one.
In a similar way to (10), by using Theorem 1, we have

$W=\bigoplus_{k=0}^{n}H^{0}(X, Z^{\otimes k})$ .
By the Riemann-Roch theorem we have

dim $H^{0}(X, \mathscr{L}^{\otimes k})$ -dim $H^{1}(X, \mathscr{L}^{\emptyset k})=c(\mathscr{G}^{\otimes k})-(g-1)$ .
Then, from (11) it follows that for $k\geqq 1$ , we have

dim $H^{0}(X, \mathscr{L}^{\otimes k})=kc(\mathscr{L})-(g-1)$

$=km+(2k-1)(g-1)$ .
Thus we have

dim $W=1+\sum_{k=1}^{n}$ dim $H^{0}(X, \mathscr{L}^{\otimes k})$

$=1+\frac{n(n+1)}{2}m+n^{2}(g-1)$ ;

hence we have

dim $V=\frac{n(n+1)}{2}m+n^{2}(g-1)$ .

Thus we obtain the following

THEOREM 2. Let $X$ be a compact Riemann surface of genus $g$ and
let $Y$ be a divisor of $X$ consrsting of $m$ distinct points of X. $We$

suppose that $m\geqq 1$ and moreover $m\geqq 2$ when $g=0$ . Then the number of
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independent parameters of linear differential equation on $X$ of order $n$

with regular singularities along $Y$ is equal to

$\frac{n(n+1)}{2}m+n^{2}(g-1)$ .
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