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Introduction

In 1880 Appell introduced four types of hypergeometric functions
$F_{1},$ $F_{2},$ $F_{3}$ and $F_{4}$ of two variables. These are generalizations of the Gauss
hypergeometric function $F(\alpha, \beta, \gamma, x)$ . There are several generalizations
of the elliptic modular function $\lambda(\tau)$ or H. A. Schwarz’s theory [14] using
Appell’s $F_{1}$

, (see E. Picard $[8, 9]$ , T. Terada [17], P. Deligne and G. D.
Mostow [2], H. Shiga $[12, 13]$). But there are no remarkable generaliza-
tions using $F_{2},$ $F_{8}$ and $F_{4}$ .

In this paper we shall investigate an automorphic function of two
variables derived from $F_{2}(\alpha, \beta, \beta, \gamma, \gamma^{\prime}, x, y)$ with $\alpha=\beta=\beta=1/2$ and $\gamma=$

$\gamma^{\prime}=1$ . To make the situation clear, let us recall what $\lambda(\tau)$ is. Consider
the family $\mathscr{G}_{0}^{-}$ of the following elliptic curves $C(x)$ :

$C(x):w^{2}=u(u-1)(u-x)$ , $xeP_{1}(C)-\{0,1, \infty\}$ .
Let $\{\gamma_{1}, \gamma_{2}\}$ be a basis of $H_{1}(C(\lambda), Z)$ and assume that the intersection
multiplicity $\gamma_{1}\cdot\gamma_{2}=-1$ . And let $\omega$ be a holomorphic l-form on $C(x)$ . Then
the periods $\eta=\int_{\gamma_{i}}\omega(i=1,2)$ satisfy the following differential equation:

$\lambda(1-\lambda)\frac{d^{2}z}{dx^{2}}+(1-2\lambda)\frac{dz}{dx}-\frac{1}{4}z=0$ .
This is the Gauss differential equation with $\alpha=\beta=1/2$ and $\gamma=1$ . For the
family $\llcorner \mathscr{F}_{0}$ , we define the period map $\tau$ on the parameter space $P_{1}-\{0,1, \infty\}$

by $\tau(\lambda)=\eta_{1}(\lambda)/\eta_{2}(x)$ . Then we have the following:
(1) The image of $\tau$ is contained in upper half plane $H$.
(2) The inverse map $\lambda=\lambda(\tau)$ of $\tau$ is a single-valued holomorphic

function on $H$ mapped to $P_{1}-\{0,1, \infty\}$ , and it is an automorphic function
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relative to the modular group $\Gamma(2)$ which $\dot{r}s$ the principal congruence
subgroup of level 2.

(3) The map $\lambda$ induces a biholomorphic equivalence between $(H/\Gamma(2))^{*}$

and $P_{1}(C)$ , where $(H/\Gamma(2))^{*}$ denotes the compactification of the space $H/\Gamma(2)$

which is obtained by attaching three cusp points $\{0,1, \infty\}$ .
We shall show, using some properties of the period map for a family

of certain elliptic K3 surfaces, the properties similar to the above (1), (2)

and (3) for $F_{2}(1/2,1/2,1/2,1,1, x, y)$ .
Now, we sketch our method. The function $F_{2}(1/2,1/2,1/2,1,1, x, y)$

is represented by the following double integral:

$F_{2}(\frac{1}{2},$ $\frac{1}{2},$ $\frac{1}{2},1,1,$ $x,$ $y)=\frac{1}{\pi^{2}}\int_{0}^{1}\int_{0}^{1}\frac{dudv}{\sqrt uv(1-u)(1-v)(1-xu-yv)}$ .

So we consider the following surface:

(0.1) $w^{2}=uv(1-u)(1-v)(1-xu-yv)$ ,

and the 2-form:

(0.2) $\varphi=\frac{du\wedge dv}{\sqrt uv(1-u)(1-v)(1-xu-yv)}$ ;

where the parameters $(x, y)$ move in the domain $\Lambda$ :

$\Lambda=\{(x, y)eC^{2}:xy(1-x)(1-y)(1-x-y)\neq 0\}$ ,

(see \S 1, (1.5), (1.5’) and Figure 1.1).

We compactify the surface (0.1) in a certain fibre space and denote
it by $S(x, y)$ . The surface $S(x, y)$ has 11 normal two-dimensional singu-
larities: one of them is of type $A_{8}$ and the others are of type $A_{1}$ . Let
$\tilde{S}(x, y)$ be the minimal nonsingular model of $S(x, y)$ , let $\mu:\tilde{S}(x, y)\rightarrow S(x, y)$

be the resolution map and put $\psi=\mu^{*}\varphi$ . The surface $\tilde{S}(\lambda)(x=(x, y)e\Lambda)$

is an elliptic K3 surface with 5 singular fibres of type $I_{0}^{*},$ $I_{0}^{*},$ $I_{2},$ $I_{2},$ $I_{2}^{*};$

and the 2-form $\psi$ is a non-vanishing holomorphic 2-form on $\tilde{S}(x, y)$ (see

\S 2, Propositions 2.1, 2.2). Since $H_{2}(\tilde{S}(\lambda), Z)$ is a free Z-module of rank
22, we have a basis $\{\Gamma_{1}(\lambda), \cdots, \Gamma_{22}(\lambda)\}$ of $H_{2}(\tilde{S}(x), Z)$ . And we can always
take eighteen of them as algebraic cycles, so let us say that they are
$\Gamma_{f}(\lambda),$ $\cdots,$

$\Gamma_{22}(\lambda)$ . Therefore if we put $\eta(\lambda)=\int_{\Gamma(\lambda)}\psi(i=1, \cdots, 22)$ , then

we have $\eta(\lambda)\equiv 0(i=5, \cdots, 22)$ . Hence we define the period map $\Phi_{1}$ for
$\backslash Z=\{\tilde{S}(\lambda);\lambda\in\Lambda\}$ by

$\Phi_{1};\Lambda\in\lambda\mapsto(\eta_{1}(x):\eta_{2}(\lambda):\eta_{3}(x):\eta_{4}(x))eP_{8}(C)$ .
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In order to describe the image of the period map $\Phi_{1}$ , we change the
coordinateI by the following formula:

$(\eta_{1}, \cdots, \eta_{4})=(\eta_{1}^{\prime}, \cdots, \eta_{4}^{\prime})P$ ,

where $P$ is the regular matrix given by (4.11). We consider the quotient
space $\Lambda/\sim$ of the parameter space $\Lambda$ , where the equivalent relation $\sim$ is
defined by the condition $\tilde{S}(\lambda)\cong u\tilde{S}(x^{\prime})$ which is an isomorphism as elliptic
surfaces (see (5.5), (5.6)).

Then we investigate the following ”exact” period map

$\Phi:\Lambda/\sim\ni\lambda->(\frac{\eta_{1}(x)}{\eta_{2}(x)},$ $\frac{\eta_{4}(x)}{\eta_{2}(x)},$ $\frac{\eta_{3}^{\prime}(x)}{\eta_{2}(x)})\in C^{3}$ .
But, in order to study the inverse map of $\Phi$ we must extend the domain
$\Lambda/\sim$ to $\Lambda_{0}/\sim$ (see \S 6, (6.2)).

The following are our main results.
(1) The image of $\Phi$ is contained in the Cartesian product space

$H\times H$ of the upper half plane $H$ (Theorem 4.1).
(2’) The inverse map $\Psi$ of $\Phi$ is a single-valued holomorphic map

on $H\times H$, and it is automorphic relative to the semi-direct product group
$\Gamma=\langle f\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ , where $\langle c\rangle$ is the group generated by the involution
$C\ddagger(z_{1}, z_{2})\mapsto(z_{2}, z_{1})$ and $\Gamma_{1,2}$ is the modular group generated by two modular
transformations $z\mapsto z+2$ and $z\mapsto-1/z$ , i.e.,

$\Gamma_{1,2}=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL(2, Z):ab\equiv 0,$ $cd\equiv 0(mod 2)\}/\pm I$ (Theorem 5.1).

(3) The map $\Psi$ induces a biholomorphic equivalence between
$(H\times H/\Gamma)^{*}$ and $(\Lambda_{0}/\sim)^{*}\cong P_{2}(C)$ (Theorem 6.1), where $($ $)^{*}$ is a certain
compactificat,ion defined in \S 6 (see (6.4), (6.7)).

REMARK. On the boundary of $(\Lambda_{0}/\sim)^{*},\tilde{S}(x)$ is not a K3 surface but
is in general a rational elliptic surface with singular fibres $I_{0}^{*},$ $I_{0}^{*}$ . If we
restrict the period map there, the image of $\Phi$ is isomorphic to the upper
half plain $H$, and its inverse is given by the lambda function which is
an elliptic modular function (see Table 6.1 and Appendix).

We wish to find out a useful modular function of several variables
in some way.
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\S 1. Appell $s$ hypergeometric function $F_{2}$ .
We quote from T. Kimura [3] some results about $F_{2}$ . $F_{2}(\alpha,$ $\beta,$ $\beta^{\prime},$ $\gamma$ ,

$\gamma^{\prime},$

$x,$ $y$) is defined by the following hypergeometric series of two vari.
ables:

(1.1) $F_{2}(\alpha, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, x, y)=\sum_{n,n=0}^{\infty}\frac{(\alpha,m+n)(\beta,m)(\beta^{\prime},n)}{(1,m)(1,n)(\gamma,m)(\gamma,n)}x^{*}y^{n}$ ,

where $(a, k):=a(a+1)\cdots(a+k-1)$ for $k=1,2,$ $\cdots;(a, 0):=1$ for $a\neq 0$ .
We can see that if the parameters $\alpha,$ $\beta,$ $\beta^{\prime},$ $\gamma,$

$\gamma^{\prime}$ are neither $0$ nol

negative integers, then $F_{2}$ is not a polynomial in $x,$ $y$ and the domain oi
convergence is $\{(x, y)eC^{2}:|x|+|y|<1\}$ . And if the parameters satisfy $th\in$

conditions ${\rm Re}\beta>0,$ ${\rm Re}\beta^{\prime}>0,$ ${\rm Re}(\gamma-\beta)>0$ and ${\rm Re}(\gamma^{\prime}-\beta^{\prime})>0,$ $F_{2}$ has $a\iota l$

Euler integral representation:

(1.2) $F_{2}(\alpha, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, x, y)=\Pi(\beta, \beta’, \gamma, \gamma^{\prime})\int_{0}^{1}\int_{0}^{1}u^{\beta-1}v^{\beta^{\prime}-1}(1-u)^{\gamma-\theta-l}$

$\times(1-v)^{\gamma^{\prime}-\beta^{\prime}-l}(1-xu-yv)^{-a}dudv$ ,

where $\Pi(\beta, \beta^{\prime}, \gamma, \gamma^{\prime})=\Gamma(\gamma)\Gamma(\gamma^{\prime})/(\Gamma(\beta)\Gamma(\beta^{\prime})\Gamma(\gamma-\beta)\Gamma(\gamma^{\prime}-\beta^{\prime}))$ and $\Gamma$ indicates
the gamma function.

Hence $F_{2}(1/2,1/2,1/2,1,1, x, y)$ is represented by the following double
integral:

(1.3) $F_{2}(\frac{1}{2},$ $\frac{1}{2},$ $\frac{1}{2},1,1,$ $x,$ $y)=\frac{1}{\pi^{2}}\int_{0}^{J}\int_{0}^{1}\frac{dudv}{\sqrt uv(1-u)(1-v)(1-xu-yv)}$ .

This satisfies the following Appell’s hypergeometric differential equa.
tion:
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(1.4) $\left\{\begin{array}{l}x(1-x)\frac{\partial^{2}z}{\partial x^{2}}-xy\frac{\partial^{2}z}{\partial x\partial y}+(1-2y)\frac{\partial z}{\partial x}-\frac{1}{2}y\frac{\partial z}{\partial y}-\frac{1}{4}z=0\\y(1-y)\frac{\partial^{2}z}{\partial y^{2}}-xy\frac{\partial^{2}z}{\partial x\partial y}+(1-2x)\frac{\partial z}{\partial y}-\frac{1}{2}x\frac{\partial z}{\partial x}-\frac{1}{4}z=0\end{array}\right.$

The dimension of the solution space of (1.4) is four and solutions are in
general multi-valued analytic functions in the following domain $\Lambda$ :

(1.5) $\Lambda=\{(x, y)\in C^{2}:xy(1-x)(1-y)(1-x-y)\neq 0\}$ .
From here on we study the following surfaces:

(1.6) $w^{2}=uv(1-u)(1-v)(1-xu-yv)$ ,

and the following 2-form:

(1.7) $\varphi=\frac{du\wedge dv}{\sqrt{uv(1-u)(1-v)(1-xu-yv)}}$ ;

where parameters $(x, y)$ move in the domain $\Lambda$ . But, we regard the
space $\Lambda$ as the following subset of $P_{2}(C)$ :

(1.5’) $\Lambda=\{(\xi_{0}\ddagger\xi_{1}\ddagger\xi_{2});\xi_{0}\xi_{1}\xi_{2}(\xi_{0}-\xi_{1})(\xi_{0}-\xi_{2})(\xi_{0}-\xi_{1}-\xi_{2})\neq 0\}$ ,

and regard the surfaces (1.6) as follows:

(1.6’) $w^{2}=uv(1-u)(1-v)(\xi_{0}-\xi_{1}u-\xi_{2}v)$ ;

where $(\xi_{0};\xi_{1};\xi_{2})$ are homogeneous coordinates of $P_{2}(C)$ and we set $(x, y)=$

$(\xi_{1}/\xi_{0}, \xi_{2}/\xi_{0})$ . Moreover, note that $\Lambda$ is denoted as follows

(1.7) $\Lambda=P_{2}(C)-\bigcup_{k=0}^{b}L_{k}$ ,

FIGURE 1.1
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where $L=\{\xi=0\}(i=0,1,2),$ $L_{2+j}=\{\xi_{0}-\xi_{j}=0\}(j=1,2),$ $L_{\epsilon}=\{\xi_{0}-\xi_{1}-\xi_{2}=0\}$

(see Figure 1.1).

\S 2. Minimal nonsingular model of $S(\lambda)$ .
We shall construct a certain compactification of the surface (1.6).

For two manifolds $W_{0}=P_{2}(C)\times C_{0},$ $W_{1}=P_{2}(C)\times C_{1}$ , where $C_{0},$ $C_{1}$ are complex
number planes $C$, we form their union $W=W_{0}\cup W_{1}$ by identifying
$(\zeta_{0}:\zeta_{1}:\zeta_{2})\times ueW_{0}$ with $(\zeta_{0}^{\prime}:\zeta_{1}^{\prime};\zeta_{2}^{\prime})\times u^{\prime}eW_{1}$ if and only if

$\zeta_{0}=\zeta_{0}^{\prime}$ , $\zeta_{1}=\zeta_{1}$ , $\zeta_{2}=u^{2}\zeta_{2}^{\prime}$ , $uu^{\prime}=1$ .
And we define

$\Delta=C_{0}\cup C_{1}$ ,

where we identify $ueC_{0}$ with $u^{\prime}eC_{\iota}$ if and only if $uu^{\prime}=1$ . By the pro.
jection from $W$ onto $\Delta,$ $W$ is a fibre bundle with the fibres $P_{2}(C)$ ovel
$P_{1}(C)$ . We define a compactification of the surface (1.6) as follows:

(2.1) $\left\{\begin{array}{ll}\zeta_{0}\zeta_{2}^{2}=u(1-u)\zeta_{1}(\zeta_{0}-\zeta_{\iota})(\zeta_{0}-xu\zeta_{0}-y\zeta_{1}) & in W_{0},\\\zeta_{0}\zeta_{2}^{f}=u’(u’-1)\zeta_{1}^{\prime}(\zeta_{0}^{\prime}-\zeta_{1}^{\prime})(\zeta_{0}^{\prime}u’-x\zeta_{0}^{\prime}-y\zeta_{1}^{\prime}u^{\prime}) & in W_{1}.\end{array}\right.$

We denote the surface (2.1) by $S(\lambda)$ or $S(x, y)$ , where we put $\lambda=$

$(\xi_{0}\xi_{1}:\xi_{2}),$ $(x, y)=(\xi_{1}/\xi_{0}, \xi_{2}/\xi_{0})$ and the parameters move in the domain $1$

$((1.5), (1.5’))$ as in \S 1.
Putting $v=\zeta\sqrt{}\zeta_{0},$ $w=\zeta_{2}/\zeta_{0},$ $v^{\prime}=\zeta_{1}^{\prime}/\zeta_{0}^{\prime},$ $w^{\prime}=\zeta_{2}^{\prime}/\zeta_{0}^{\prime}$ in (2.1), we have tht

following equations:

(2.2) $\left\{\begin{array}{l}w^{2}=uv(1-u)(1-v)(1-xu-yv)\\w^{\prime 2}=u^{\prime}v^{\prime}(u’-1)(1-v^{\prime})(u^{\prime}-x-yu’ v^{\prime})\end{array}\right.$

We use the following notations in order to investigate the minima
nonsingular model $\tilde{S}=\tilde{S}(\lambda)$ of $S=S(\lambda)$ :

$\pi^{\prime}:S\rightarrow\Delta$ projection,
$\pi:\tilde{S}\rightarrow\Delta$ projection,

$u_{1}=0,$ $u_{2}=1,$ $u_{3}=\frac{1-y}{x},$ $u_{4}=\frac{1}{x},$ $ u_{f}=\infty$ .
We can easily Iee that the fibre $\pi^{-1}(u)$ is a nonIingular elliptic $curv\langle$

for every $u$ except $u(i=1, \cdots, 5)$ . Hence the surface $\tilde{S}$ is an algebrai $($

elliptic surface, and $\tilde{S}$ has the global holomorphic section $L=\{\zeta_{1}=\zeta_{2}=\zeta_{1}^{\prime}=$

$\zeta_{2}^{\prime}=0\}$ . That is, $\tilde{S}$ is a basic member. Following Kodaira [4], we $describ\langle$
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types of singular fibres. The surface $\tilde{S}$ has 11 singular points $P_{u}(\neq P_{14}, P_{24})$

shown in Figure 2.1 on the fibres $\pi^{\prime-1}(u_{i})(i=1, \cdots, 5)$ in the hyperplane
$\{w=w^{\prime}=0\}$ .

FIGURE 2.1

They are rational double points, and every point except $P_{65}$ is of type
$A_{1}$ and $P_{6\theta}$ is of type $A_{8}$ . We carry out resolution of these singularities
by blowing up along each curve $\pi^{\prime-1}(u_{i})(i=1, \cdots, 5)$ . Note that $P_{14}=$

$(0:1:0)\times 0$ and $P_{u}(0:1:0)\times 1$ are not singular points, but if we put $u=0$ ,
1 in (2.1), rational curves $\Theta_{14}=\{\zeta_{0}=0, u=0\},$ $\Theta_{2}=\{\zeta_{0}=0, u=1\}$ occur and
they meet $\pi^{\prime-1}(u_{1}),$ $\pi^{\prime-1}(u_{2})$ transversely at $P_{14},$ $P_{24}$ respectively. We obtain
the following singular fibres $\pi^{-1}(u)(i=1, \cdots, 5)$ :

$\pi^{-1}(u)=2\Theta_{i0}+\Theta_{i1}+\Theta_{2}+\Theta_{l3}+\Theta_{u}$ $(i=1,2)$ ,

where $\Theta_{\dot{u}}(i=1,2;j=0,1, \cdots, 4)$ are nonsingular rational curves with
$\Theta_{i\dot{g}}^{2}=-2(i=1,2;j=0,1, \cdots, 4)$ and $\Theta_{0}\cdot\Theta_{ik}=1(i=1,2;k=1, \cdots, 4)$ ;

$\pi^{-1}(u)=\Theta_{i0}+\Theta_{1}$ $(i=3,4)$ ,

where $\Theta_{ij}(i=3,4;j=0,1)$ are nonsingular rational curves with $\Theta_{ij}^{2}=-2$

$(i=3,4;j=0,1)$ and $\Theta_{i0}\cdot\Theta_{1}=q_{i}+q^{\prime}$ ( $q_{i}$ and $q^{\prime}$ indicate two different points)
$(i=3,4)$ ;

$\pi^{-1}(u_{f})=2\Theta_{f0}+\Theta_{b1}+\Theta_{b2}+2\Theta_{f3}+2\Theta_{u}+\Theta_{bb}+\Theta_{b6}$ ,

where $\Theta_{\iota J}(j=0,1, \cdots, 6)$ are nonsingular rational curves with $\Theta_{b\dot{g}}^{2}=-2$

$(j=0,1, \cdots, 6)$ and $\Theta_{60}\cdot\Theta_{61}=\Theta_{60}\cdot\Theta_{b2}=\Theta_{b0}\cdot\Theta_{f3}=\Theta_{b3}\cdot\Theta_{u}=\Theta_{u}\cdot\Theta_{bb}=\Theta_{u}\cdot\theta_{f6}=1$ ;
where $\Theta\cdot\Theta$

’ denotes the intersection number of two curves $\Theta$ and $\Theta^{\prime}$ , and
$\Theta^{2}$ denotes $\Theta\cdot\Theta$ . Every component of each singular fibre does not have
intersections excepting those aforementioned, and all those intersections
are transverse.
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Therefore $\pi^{-1}(u_{1})$ and $\pi^{-1}(u_{2})$ are singular fibres of type $I_{0}^{*},$ $\pi^{-1}(u_{3})$

and $\pi^{-1}(u_{4})$ are of type $I_{2}$ and $\pi^{-1}(u_{\epsilon})$ is of type $I_{2}^{*}$ . We note that each
singular fibre has only one component, say $\Theta_{i1}(i=1, \cdots, 5)$ , which intersects
the section $L$ .

Let $\tilde{S}=\tilde{S}(x)$ be the elliptic surface obtained by the above resolution,
then by the above argument, we obtain the following.

PROPOSITION 2.1. The elliptie surface $(\tilde{S}, \pi, \Delta)$ is a basic member
and it has five singular fibres of type $I_{0}^{*},$ $I_{0}^{*},$ $I_{2},$ $I_{2}$ and $I_{2}^{*}$ .

REMARK 2.1. From the equations (2.2), the functional invariant $X$
of $\tilde{S}$ is represented by the following functions:

$\left\{\begin{array}{l}\ovalbox{\tt\small REJECT}(u)=\frac{4\{x^{2}u^{2}+(xy-2x)u+y^{2}-y+1\}}{27y^{2}(1-xu)^{2}(y-1+xu)^{2}}\\\ovalbox{\tt\small REJECT}(u’)=\frac{4\{(y^{2}-y+1)u^{2}+(xy-2x)u^{\prime}+x^{2}\}^{8}}{27y^{2}u^{2}(u-x)^{2}((y-1)u’+x)^{2}}\end{array}\right.$

Hence $\ovalbox{\tt\small REJECT}$ is regular at points $u=0,1$ and has poles of order 2 at $u=$

$1/x,$ $(1-y)/x,$ $\infty$ .
Next, let us show that $\tilde{S}$ is a K3 surface. By K3 surface, we mean

a two-dimensional compact complex manifold with the canonical bundle
$K=0$ and the first betti number $b_{1}=0$ . Let $\mu:\tilde{S}\rightarrow S$ be the resolution
map, and we define the 2-form $\psi$ on $\tilde{S}$ by

(2.3) $\psi=\mu^{*}\varphi$ ,

where $\varphi=(du\wedge dv)/w=-(du^{\prime}\wedge dv^{\prime})/w^{\prime}$ .
PROPOSITION 2.2. The 2-form $\psi$ is a non-vanishing holomorphic 2-

form on $\tilde{S}$ and consequently $\tilde{S}$ is a $K3$ surface.
PROOF. By elementary calculation, we can easily see that $\psi$ is a

non-vanishing holomorphic 2-form on $\tilde{S}$. Therefore the canonical bundle
$K$ of $\tilde{S}$ is trivial and we obtain $p_{g}=\dim H^{0}(\tilde{S}, P(K))=1$ . The Euler
number $c_{2}=x(\tilde{S})$ of $\tilde{S}$ is

$c_{2}=\chi(\tilde{S})=\sum_{i=1}^{f}\chi(\pi^{-1}(u_{l}))=6+6+2+2+8=24$ .
Moreover we have $c_{1}^{2}=0$ for elliptic surfaces. By the Noether formula:

$c_{1}^{2}+c_{2}=12(p_{g}-q+1)$

we obtain $q=0$ . Hence we get $b_{1}=0$ , consequently, $\tilde{S}$ is a K3 surface.
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REMARK 2.2. We note that $\tilde{S}$ is the minimal nonsingular model of
$S$ from Proposition 2.2 and recall that twofold coverings of $P_{2}$ branched
along a nonsingular curve of degree 6 are K3 surfaces.

\S 3. Monodromy of singular fibres and a basis of $H_{2}(\tilde{S}(\lambda), Z)$ .
In this section we shall investigate the monodromy of the singular

fibres of the elliptic surface $\tilde{S}(x)$ and construct a basis of $H_{2}(\tilde{S}(\lambda), Z)$ .
In \S 3 and \S 4, we use the following notation. Let $p,$ $q_{1},$ $\cdots,$ $q_{r}$ be

fixed points on $P_{1}(C)$ . We denote by $\epsilon(p, q_{l})(i=1, \cdots, r)$ the represen-
tative elements of $\pi_{1}(P_{1}-\{q_{1}, \cdots, q_{r}\}, p)$ going around only $q_{i}$ in the positive
sense. And by the product $\gamma_{1}\gamma_{2}$ we mean the composite of two arcs $\gamma_{1}$

and $\gamma_{2}$ in this order.
(I) By Kodaira ([4] \S 9), the normal form of monodromy of singular

fibres are given as the following table.

TABLE 3.1

But, in general, the monodromy representations are conjugate to the
normal forms in $SL(2, Z)$ . We fix parameters $(x_{f}y)=(-1, -1)$ and consider
the surface $\tilde{S}_{0}=\tilde{S}(-1, -1)$ . The surfaces $\tilde{S}_{0}$ is represented, using the
affine coordinates $(u, v, w)$ , as follows:

$\tilde{S}_{0}:w^{2}=uv(1-u)(1-v)(1+u+v)$ .
We set

(3.1) $\{$

$u_{1}=-2,$ $u_{2}=-1,$ $u_{3}=0,$ $u_{4}=1,$ $ u_{b}=\infty$ ,
$\iota\Delta=\Delta-\{u_{1}, u_{2}, u_{3}, u_{4}, u_{f}\}$ .

The types of singular fibres of $\tilde{S}_{0}$ are given as follows:

(3.2) $\left\{\begin{array}{l}\pi^{-1}(u_{1}),\pi^{-1}(u_{2})I_{2}\\\pi^{-1}(u_{\epsilon}),\pi^{-1}(u_{4})I_{0}^{*}\\\pi^{-1}(u_{b})\cdots\cdots\cdots\cdots\cdot I_{2}^{*}\end{array}\right.$

We take a general point $u_{0}$ in $\Delta$ , Iay $u_{0}=-3/2$ , and put $C=\pi^{-1}(u_{0})$ . Let
us consider the projection from $C$ onto v-sphere:

$p:C\rightarrow P_{1}(C)$ ,
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then $C$ is a double covering over $P_{1}(C)$ branched at the four points $v_{1}=0$ ,
$v_{2}=1/2,$ $v_{3}=1,$ $ v_{4}=\infty$ . Take a fixed point $v_{0}$ in v-sphere with ${\rm Im} v_{0}>0$ .
We choose a basiI $\{\gamma_{1}, \gamma_{2}\}$ of $H_{1}(C, Z)$ such that

$p(\gamma_{1})=\epsilon(v_{0}, v_{2})\epsilon(v_{0}, v_{t})$ ,
$p(\gamma_{2})=\{\epsilon(v_{0}, v_{8})\epsilon(v_{0}, v)\}^{-1}$ ,

and
$\gamma_{1}\cdot\gamma_{2}=-1$ ,

(see Figure 3.1).

( $v^{\prime}$ indicate the points on $C$ with $p(v^{\prime})=v(i=1,2,3,4)$)

FIGURE 3.1

Now, we put $\alpha=\epsilon(u_{0}, u)(i=1, \cdots, 5)$ and continue the above l-cycles
$\gamma_{1}$ and $\gamma_{2}$ analytically along the closed arcs $\alpha$ . Then $\alpha$ induces the
monodromy transformation $\alpha_{i}^{*}$ of $H_{\iota}(C, Z)$ . By elementary calculation
(see Appendix), we obtain the following:

(3.3) $\alpha_{1}^{*}=\left(\begin{array}{ll}1 & 0\\-2 & 1\end{array}\right)$ , $\alpha_{2}^{*}=\left(\begin{array}{ll}1 & 2\\0 & 1\end{array}\right)$ , $\alpha_{3}^{l}=\alpha_{4}^{*}=\left(\begin{array}{ll}-1 & 0\\0 & -1\end{array}\right)$ , $\alpha_{f}^{*}=\left(\begin{array}{ll}-3 & -2\\2 & 1\end{array}\right)$ .

Then it follows that

(3.4) $\alpha_{1}^{*}\alpha_{2}^{*}\alpha_{3}^{*}\alpha_{4}^{*}\alpha_{f}^{*}=1$ .
The transformations $\{\alpha^{*}\}$ define the homological invariant of the elliptic
surface $\tilde{S}_{0}$ .

(II) In order to define a basis $H_{2}(\tilde{S}_{0}, Z)$ , first we define a basis
$\{G_{1}, \cdots, G_{22}\}$ over $Q$ . Since $\tilde{S}_{0}$ is a K3 surface, $H_{2}(\tilde{S}_{0}, Q)$ is a 22-dimensional
vector space over $Q$ . We can choose 18 cycles of a basis of $H_{2}(\tilde{S}_{0},$

$Q_{J}^{\backslash }$

as algebraic cycles. Indeed, let $G,$ $\cdots,$ $G_{22}$ be such cycles, then it is
sufficient to define them as follows:

$G_{\epsilon}=\Theta_{10},$ $G_{6}=\Theta_{12},$ $G_{7}=\Theta_{13},$ $G_{8}=\Theta_{14},$ $G_{9}=\Theta_{20},$ $G_{10}=\Theta_{22}$ ,
$G_{11}=\Theta_{28},$ $G_{12}=\Theta_{u},$ $G_{18}=\Theta_{80},$ $G_{14}=\Theta_{40},$ $G_{1f}=\Theta_{b0},$ $G_{16}=\Theta_{b2}$ ,

(3.5)
$G_{17}=\Theta_{f3},$ $G_{18}=\Theta_{u},$ $G_{19}=\Theta_{ff},$ $G_{20}=\Theta_{f6},$ $G_{21}=L$ ,
$G_{22}=C_{u}$ (a general fibre).
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Let $B$ be the intersection matrix defined by $G_{b},$
$\cdots,$ $G_{22}$ :

$B=(G_{i}\cdot G_{j})_{\iota\leqq i,j\leq 22}$ .
Then it follows that det $B\neq 0$ .

Now, in order to define $G_{1},$
$\cdots,$

$G_{4}$ we choose a point $u^{*}$ in the lower
half plane of $\Delta$ and take line segments $l_{i}(i=1, \cdots, 5)$ connecting $u$ and
$u^{*}$ . So far as the general point $u_{0}$ moves in $\Delta-\bigcup_{=1}^{f}l$ , the basis $\{\gamma_{1}, \gamma_{2}\}$

is uniquely determined up to the homotopy equivalence. Hence if it is
necessary we may take $u_{0}$ so that ${\rm Im} u_{0}>0$ . We cotinue analytically the
basis $\{\gamma_{1}, \gamma_{2}\}$ along an arc $g$ in $\Delta^{\prime}$ , then we can consider the l-cycles $\gamma_{1},$ $\gamma_{2}$ are
transformed by $\alpha_{i}^{*}$ if their l-cycles cross $l_{i}$ along $g$ in the positive sense.
When we continue a l-cycle $\gamma$ on the general fibre $\pi^{-1}(u_{0})$ analytically
along an arc $g$ on $\Delta^{\prime}$ beginning at $u_{0}$ , we get a 2-chain on $\tilde{S}_{0}$ . If this
2-chain is a 2-cycle, we denote the 2-cycle by $\Gamma(\gamma, g)$ .

Now, let us define closed arcs $g_{1},$ $g_{2},$ $g_{3}$ on $\Delta$ as follows:

(3.6) $\left\{\begin{array}{l}g_{1}=\epsilon(u_{0}, u_{3})\epsilon(u_{0}, u_{4})\\g_{2}=\epsilon(u_{0}, u_{2})\epsilon(u_{0}, u_{8})\\g_{3}=\epsilon(u_{0}, u_{1})\epsilon(u_{0}, u_{4})\end{array}\right.$

The arcs $g_{1},$ $g_{2}$ and $g_{8}$ are homotopic to the arcs in Figure 3.2 respectively.
We as well denote these arcs by $g_{1},$ $g_{2}$ and $g_{8}$ respectively.

FIGURE 3.2

We first define 2-cycles $G,$ $G^{\prime}$ as follows:

$G$ : Continue the l-cycle $\gamma_{1}$ along $\epsilon(u_{0}, u_{2})$ and continue the l-cycle $7_{8}$

along $\epsilon(u_{0}, u_{8})$ ,
$G^{\prime}$ : Continue the l-cycle $-\gamma_{2}$ along $\epsilon(u_{0}, u_{1})$ and continue the l-cycle

$\gamma_{1}$ along $\epsilon(u_{0}, u_{4})$ .
REMARK 3.1. We can see that $G$ and $G$ ’ are well defined as 2-cycles
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by considering the local monodromy (3.3).

Now, we define 2-cycles $G_{1},$ $G_{2},$ $G_{3}$ and $G_{4}$ as follows:
$G_{1}=\Gamma(\gamma_{2}, g_{1}^{-1})$ , $G_{2}=\Gamma(\gamma_{1}, g_{1})$ ,

(3.7)
$G_{3}=G+G_{2}$ , $G_{4}=G’+G_{1}$ .

Let $A$ be the intersection matrix $(G_{i}\cdot G_{\dot{f}})_{1\leq i,j\leq 4}$ . By elementary calculation,
we get

$0$ $0$

$0$ 2
(3.8)

2 2
$0$ $0$

Let $C$ be the intersection matrix $(G_{i}\cdot G_{\dot{f}})_{1\leqq i,j\leq 22}$ , then we have $C=A\oplus B$ .
Hence we have det $C\neq 0$ . This shows that $\{G_{1}, \cdots, G_{22}\}$ is a basis of
$H_{2}(\tilde{S}_{2}, Q)$ .

Next, in order to construct a basis of $H_{2}(\tilde{S}_{0}, Z)$ , we take directed
segments $\beta_{i}(i=1,2,3,4)$ beginning at $u_{0}$ and ending at $u$ (see Figure
3.3). We define the 2-cycles $\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3},$ $\Gamma_{4}$ on $\tilde{S}_{0}$ as follows:

$\Gamma_{1}$ $:=\Gamma(\gamma_{1}, \beta_{1}^{-1}\beta_{4})$ , $\Gamma_{2}$ $:=\Gamma(\gamma_{2}, \beta_{2}^{-1}\beta_{3})$ ,
(3.9)

$\Gamma_{3}$ $:=\Gamma(\gamma_{1}, \beta_{4}^{-1}\beta_{3})$ , $\Gamma_{4}$ $:=\Gamma(\gamma_{2}, \beta_{3}^{-1}\beta_{4})$ .

FIGURE 3.3

It is easily checked that $\Gamma_{i}(i=1,2,3,4)$ are well-defined as 2-cycles.
The following holds for the 2-cycles $G,$ $\Gamma_{j}(i, j=1,2,3,4)$ :

(3.10) $G_{i}\cdot\Gamma_{J}=\delta_{j}$ $(i, j=1,2,3,4)$ ,
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where $\delta_{ij}$ indicates Kronecker’s delta.
Now, let $\{\Gamma_{b}, \cdots, \Gamma_{22}\}$ be a Z-basis of

$\langle G_{f}, \cdots, G_{22}\rangle_{q}\cap H_{2}(\tilde{S}_{0}, Z)$ ,

where the notation $\langle*\rangle_{Q}$ indicates the subspace of $H_{2}(\tilde{S}_{0}, Q)$ generated by
$|*$ . Then we obtain the following.

PROPOSITION 3.1. The system $\{\Gamma_{1}, \cdots, \Gamma_{22}\}$ defined in the above is a
basis of $H_{2}(\tilde{S}_{0}, Z)$ .

PROOF. Let $\Gamma$ be any element of $H_{2}(\tilde{S}_{0}, Z)$ , and we set

$\Gamma’=\Gamma-\sum_{i=1}^{4}a_{i}\Gamma_{i}$ ,

where $a_{i}=\Gamma\cdot G(i=1,2,3,4)$ .
From (3.10), we get

$\Gamma\cdot G_{j}=\Gamma\cdot G_{j}-\sum_{i=1}^{4}a_{l}\Gamma_{t}\cdot G_{j}=a_{j}-a_{j}=0$ $(j=1,2,3,4)$ .
Hence $\Gamma$

‘ belongs to $\langle G_{f}, \cdots, G_{22}\rangle_{Q}\cap H_{2}(\tilde{S}_{0}, Z)$ , and this proves that $\Gamma$ is
represented by a Z-linear combination of $\Gamma_{1},$

$\cdots,$
$\Gamma_{22}$ .

(III) Finally, we construct a basis of $H_{2}(\tilde{S}(x), Z)$ for all $\lambda\in\Lambda$ . We set
(3.11) $\ovalbox{\tt\small REJECT}=\{\tilde{S}(x):xe\Lambda\}$ .
Since $\mathscr{F}$ is locally trivial as the fibre space over $\Lambda$ , we can easily define
bases $\{\Gamma_{1}(\lambda), \cdots, \Gamma_{22}(\lambda)\}$ and $\{G_{1}(x), \cdots, G_{22}(x)\}$ of $H_{2}(\tilde{S}(x), Z)$ and $H_{2}(\tilde{S}(x), Q)$

for $\{\Gamma_{1}, \cdots, \Gamma_{22}\}$ and $\{G_{1}, \cdots, G_{22}\}$ , respectively. Here we note that the
2-cycles $\Gamma_{b}(x),$

$\cdots,$
$\Gamma_{22}(\lambda)$ are algebraic 2-cycles and

(3.12) $\Gamma_{i}(\lambda)\cdot G_{j}(\lambda)=\delta_{ij}$ for all $\lambda\in\Lambda$ $(i, j=1,2,3,4)$ .
Moreover, let $A(\lambda)$ be the intersection matrix $(G_{i}(\lambda)\cdot G_{j}(\lambda))_{1\leq i,j\leqq 4}$ , then we
have

(3.13) $A(x)=A$ for all $\lambda\in\Lambda$ ,

where $A$ is the matrix defined by (3.8).

\S 4. Period map $\Phi$ and its image.

In \S 3 we defined the second homology basis $\{\Gamma_{1}(\lambda), \cdots, \Gamma_{22}(\lambda)\}$ on the
K3 surface $\tilde{S}(x)$ . We define periods $\eta=\eta_{i}(x)$ along the 2-cycles $\Gamma_{i}(x)$

$(i=1, \cdots, 22)$ as follows:
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(4.1) $\eta(x)=\int_{\Gamma(\lambda)}\psi(\lambda)$ for all $xe\Lambda$ $(i=1, \cdots, 22)$ ,

where $\psi=\psi(\lambda)$ is the holomorphic 2-form on $\tilde{S}(\lambda)$ defined in (2.3). Since
the cycles $\Gamma_{5}(\lambda),$

$\cdots,$
$\Gamma_{22}(\lambda)$ are algebraic, we have the following:

(4.2) $\eta_{i}(x)\equiv 0$ $(i=5, \cdots, 22)$ .
Hence we can define the period, map $\Phi_{1}$ for $\mathscr{G}^{-}$ as follows:

(4.3) $\Phi_{1}:\Lambda ex\mapsto(\eta_{1}(x):\eta_{2}(\lambda):\eta_{8}(\lambda):\eta_{4}(\lambda))eP_{8}(C)$ .
Now, let us cosider the Riemann-Hodge relations. Let $\{e_{1}(x), \cdots, e_{22}(\lambda)\}$

be the dual basis of $H^{2}(\tilde{S}(x), Z)$ to the basis $\{\Gamma_{1}(\lambda), \cdots, \Gamma_{22}(\lambda)\}$ : namely,
denoting by $\omega_{j}=\omega_{\dot{f}}(x)$ the d-closed 2-form corresponding to $e_{j}=e_{\dot{f}}(\lambda)$ under
the de Rham theorem, we have the following:

(4.4) $e_{j}(\Gamma_{i}(\lambda)):=\int_{\Gamma_{l}(\lambda)}\omega_{\dot{f}}(x)=\delta_{2}$ $(i, j=1, \cdots, 22)$ .
We set the integers $a_{tj}$ as follows:

(4.5) $a_{\dot{f}}=e_{i}\cdot e_{\dot{f}}$ $(i, j=1, \cdots, 22)$ ,

where $e_{i}\cdot e_{j}$ indicates the cup product of $e_{i}$ and $e_{j}$ . Then it follows that

(4.6) $a_{ij}=\int_{St\lambda)}\sim\omega\wedge\omega_{j}$ $(i, j=1, \ldots, 22)$ .
When we set $M=(a_{j})_{1\leq,j\leq 22}$ , the Riemann-Hodge relations are given by
the following:

(4.7) $\eta M^{t}\eta=0$ ,

(4.8) $\eta M\overline{\eta}>0$ ,

where $\eta=(\eta_{1}, \cdots, \eta_{22})$ (see Kodaira [5, 6]).
From (3.12), (4.4) and (4.5), we obtain

$a_{\dot{f}}=G\cdot G_{j}$ $(i, j=1,2,3,4)$ .
Thus from (4.2), (4.7) and (4.8), we get the following:

(4.9) $(\eta_{1}, \eta_{2}, \eta_{8}, \eta_{4})A(\eta\eta\eta\eta 132)=0$ ,
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(4.10) $(\eta_{1}, \eta_{2}, \eta_{8}, \eta_{4})A(\frac{}{\eta}2\overline{\frac{\eta}{}\frac{\eta}{\eta}}418)>0$ ,

where $A$ is the matrix in (3.8).
Let $\Omega$ be the subset of $P_{3}(C)$ defined by (4.9) and (4.10), then the

image of $\Phi_{1}$ is contained in $\Omega$ . Let us show that the image of the period
map $\Phi_{1}$ is contained in the space biholomorphic to the Cartesian product
space $H\times H$ of the upper half plane $H$. We define the matrix $P$ of
$SL(4, C)$ as follows:

(4.11) $P=(-\frac{\rho}{2}0\rho 0-\frac{\rho}{2}\rho 00$ $\frac{1}{\rho,00}0$

$\frac{1}{\rho}000)$ , $\rho eC^{*}$ .

We set anew $\eta={}^{t}(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4})$ and define $\eta^{\prime}={}^{t}(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}, \eta_{4}^{\prime})$ by the relation:
(4.12) $\eta=P\eta$

’

Then we have

(4.13) ${}^{t}PAP=A^{\prime}$ , $A^{\prime}=\left(\begin{array}{llll}0 & 0 & 0 & 2\\0 & 0 & 2 & 0\\0 & 2 & 0 & 0\\2 & 0 & 0 & 0\end{array}\right)$ .

Thus from (4.9) and (4.10), we obtain the following:

(4.14) $\eta_{1}^{\prime}\eta_{4}^{\prime}+\eta_{2}^{\prime}\eta_{3}^{\prime}=0$ ,

(4.15) $\eta_{1}^{\prime}\overline{\eta}_{4}^{\prime}+\eta_{2}^{\prime}\overline{\eta}_{\theta}^{\prime}+\eta_{8}\overline{\eta}_{2}^{\prime}+\eta_{4}^{\prime}\overline{\eta}_{1}^{\prime}>0$ .
Since $\eta_{i}^{\prime}(i=1,2,3,4)$ are never zero, we can set

(4.16) $(z_{1}, z_{2}, z_{3})=(\frac{\eta_{1}^{\prime}}{\eta_{2}},$
$\frac{\eta_{4}}{\eta_{2}},$

$\frac{\eta_{s}}{\eta_{2}})$ .

Hence from (4.14), (4.15) and (4.16) we get

(4.17) $z_{8}+z_{1}z_{2}=0$ ,
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(4.18) $({\rm Im} z_{1})({\rm Im} z_{2})>0$ .
The subset of $C^{8}$ defined by (4.17) and (4.18) has two components. The
image of the period map $\Phi_{1}$ is connected, so it must be contained in only
one component. Let us denote the component by $\Omega_{0}$ , then we may sel
$\Omega_{0}$ as follows:

(4.19) $\Omega_{0}=\{(z_{1}, z_{2}, z_{s})eC^{8}:{\rm Im} z_{1}>0, {\rm Im} z_{2}>0, z_{3}=-z_{1}z_{2}\}$ .
In fact, we can see that ${\rm Im} z_{1}>0$ and ${\rm Im} z_{2}>0$ (see Appendix). The space
$\Omega_{0}$ is clearly biholomorphic to $H\times H$.

In general, periods $\eta_{i}(\lambda)$ are multi-valued holomorphic functions, and $s($

are $\eta^{\prime}(x)$ . Therefore setting anew the period map $\Phi$ for $s\mathscr{F}$ as follows:

$\Phi;\Lambda\ni\lambda\mapsto(\frac{\eta_{1}^{\prime}(x)}{\eta_{2}^{\prime}(x)},$ $\frac{\eta_{4}^{\prime}(x)}{\eta_{2}^{\prime}(x)},$ $\frac{\eta_{3}^{\prime}(x)}{\eta_{2}^{\prime}(x)})eC^{8}$ ,

we obtain the following theorem.

THEOREM 4.1. The period map $\Phi$ for $\mathscr{G}^{-}$ is a multi-valued holo,
morphic map from $\Lambda$ into $H\times H$.

REMARK 4.1. The signature of $A$ is (2.2), hence from (4.9) and (4.10)
we can get the formulas:

$\left\{\begin{array}{l}\tilde{\eta}_{1}^{2}+\tilde{\eta}_{2}^{2}-\tilde{\eta}_{3}^{2}-\tilde{\eta}_{4}^{2}=0\\|\tilde{\eta}_{1}|^{2}+|\tilde{\eta}_{2}|^{2}-|\tilde{\eta}_{3}|^{2}-|\tilde{\eta}_{4}|^{2}>0\end{array}\right.$

which show that $\Omega$ is isomorphic to a symmetric domain of type IV.

\S 5. Monodromy transformation group.

Let $\lambda_{0}$ be the point whose homogeneous coordinates is $(1:-1:-1$
in $\Lambda$ . The elements of $\pi_{1}(\Lambda, \lambda_{0})$ induce monodromy transformations $0^{\cdot}$

$H_{2}(\tilde{S}(x_{0}), Z)$ . The algebraic cycles $\Gamma_{b},$
$\cdots,$ $\Gamma_{22}$ are invariant under $th\{$

transformations. Thus the transformations are regarded as that of $th_{t}$

periods $\eta_{i}=\eta_{i}(\lambda)(i=1,2,3,4)$ . In this section we shall study the rep
resentations into $GL(4, Z)$ of their transformations and determine $t|$

transformation group on $H\times H$.
(I) In order to define the generators of $\pi_{1}(\Lambda, \lambda_{0})$ , we use the follow

ing notations:
$H$: a general hyperplane passing through $\lambda_{0}$ in $P_{2}(C)$ , assume tha

$H$ and $L(i=0,1,2,3,4)$ intersect at one point respectively, wher $($

$L_{i}$ are the lines defined in (1.7).
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$\epsilon(x_{0};H\cap L_{i})$ : a loop on $H$ starting from $\lambda_{0}$ and going around only
$H\cap L_{i}$ in the positive sense.

We set

(5.1) $\delta_{i}=\epsilon(x_{0};H\cap L_{i})$ $(i=0,1,2,3,4)$ .
We as well denote by $\delta_{i}$ the homotopy class of $\delta_{l}$ , then $\{\delta_{0}, \delta_{1}, \delta_{2}, \delta_{\theta}, \delta_{4}\}$

are the generators of $\pi_{1}(\Lambda, \lambda_{0})$ . Let the $\delta_{i}^{*}$ be the monodromy represen-
tation induced by $\delta_{l}$ . $\delta_{i}^{*}$ is obtained by the analytic continuation of 2-cycles
$\Gamma_{1},$ $\Gamma_{2},$ $T_{3}$ and $\Gamma_{4}$ along the loop $\delta_{i}$ . Let us study $\delta_{1}^{*}$ . We define the loop
$\delta_{1}$ using affine coordinates $(x, y)$ as follows:

$\delta_{1}:\left\{\begin{array}{ll}x=-r(\theta)e^{t\theta} & (0\leqq\theta\leqq 2\pi)\\y=-1 & \end{array}\right.$

where $r(\theta)$ is a continuous function such that $1/2\leqq r(\theta)\leqq 1,$ $r(O)=r(2\pi)=1$

and $r(\pi)=1/2$ . Then the critical points $1/x$ and $(1-y)/x$ are denoted by
$1/x=-(1/r(\theta))e^{-l\theta}$ and $(1-y)/x=-(2/r(\theta))e^{-i\theta}$ respectively. Thus the seg-
ments $\beta_{i}(i=1,2,3,4)$ defined in Figure 3.3 are transformed to the arcs
$\beta_{l}^{\prime}$ in Figure 5.1.

FIGURE 5.1

Suppose that $\Gamma_{i}$ is transformed to $\Gamma_{i}^{\prime}$ by $\delta_{1}$ , then by using (3.10) (or
(3.3)), we obtain

$\Gamma_{1}^{\prime}=\Gamma_{1}+2\Gamma_{3}$ , $\Gamma_{2}^{\prime}=\Gamma_{2}-2\Gamma_{4}$ , $\Gamma_{3}=\Gamma_{3}$ , $\Gamma_{4}^{\prime}=\Gamma_{4}$ .
Hence we get

(5.2) $\delta_{1}^{*}=\left(\begin{array}{llll}1 & 0 & 2 & 0\\0 & 1 & 0 & -2\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{array}\right)$ .

By a similar way we obtain the following:
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$\delta_{2}^{*}=\left(\begin{array}{llll}3 & 2 & 0 & 2\\-2 & -1 & -2 & 0\\0 & 0 & 3 & -2\\0 & 0 & 2 & -1\end{array}\right)$ , $\delta_{3}^{*}=(0001$ $-1220$ $0001$

(5.3)

$\delta_{4}^{*}=(-2-124$ $-3-448$ $-2-225$ )$00$ ’
$\delta_{0}^{*}=(0001$ $2001$ $2001$

Here we have the following proposition.

PROPOSITION 5.1. The following properties hold for the transforma-
$t$ions $\delta_{i}^{*}(i=0,1,2,3,4)$ :

det $\delta_{i}^{*}=1$ $(i=0,1,2)$ , det $\delta_{i}^{*}=-1$ $(i=3,4)$ ,
${}^{t}\delta^{*}A\delta_{i}^{*}=A$ , $\delta_{i}^{*}\equiv 1$ (mod2) $(i=0,1,2,3,4)$ ,

where $A$ is the matrix defined by (3.8).

REMARK 5.1. The monodromy group of the system of hypergeometric
differential equation for $F_{2}(\alpha, \beta, \beta, \gamma, \gamma^{\prime}, x, y)$ is known in general case
(see Sasaki and Takano [11]); but, in our case, we must describe in the
concrete.

Now, let us study our transformation group on $H\times H$. We get the
transformations $\delta_{i}^{*}‘$ $=P^{-1}\delta^{*}P(i=0,1,2,3,4)$ by the change of basis (4.12).
By using (4.16) and (4.17), we can regard $\delta^{\sim}$

’ as transformations on $H\times H$.
Let us denote by $\delta_{i}$ the transformations on $H\times H$ corresponding to $\delta_{i}^{*}$

$(i=0,1,2,3,4)$ , then we obtain the following:

$\delta_{0}:(z_{1}, z_{2})\mapsto(\frac{z_{1}}{-2z_{1}+1},$ $z_{2}+\rho^{2})$ ,

$\delta_{1}:(z_{1}, z_{2})\mapsto(z_{1}, z_{2}+2\rho^{2})$ ,

(5.4) $\delta_{2}:(z_{1}, z_{2})-(\frac{-z_{1}+2}{-2z_{1}+3},$ $z_{2})$ ,

$\delta_{3}:(z_{1}, z_{2})\mapsto(\frac{1}{-\frac{2}{\rho^{2}}z_{2}+2},$ $-\frac{\rho^{2}}{2z_{1}}+\rho^{2})$

’

$\delta_{4}:(z_{1}, z_{2})\mapsto(\frac{z_{2}}{2z_{2}+\frac{\rho^{2}}{2}},$ $\frac{\frac{\rho^{2}}{2}z_{1}}{-2z_{1}+1})$ .
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(II) In order to describe more exactly the moduli space of the sur-
faces $\tilde{S}(\lambda)$ and complete the monodromy transformation group on $H\times H$,
we induce the equivalent relation $\sim$ in the space $\Lambda$ as follows:

(5.5) $(\xi_{0};\xi_{1};\xi_{2})\sim(\xi_{0}^{\prime}\ddagger\xi_{1}^{l};\xi_{2}^{\prime})$ if and only if $\tilde{S}(\xi_{0};\xi_{1}\ddagger\xi_{2})$

is isomorphic to $\tilde{S}(\xi_{0}^{\prime};\xi_{1}^{\prime}\ddagger\xi_{2}^{\prime})$ as elliptic surfaces.

This isomorphism as elliptic surfaces is given by regarding the base curve
as u-sphere, so we call it u-isomorphism and denote it by

(5.6) $\tilde{S}(x)\cong u\tilde{S}(x^{\prime})$ ,

where $x=(\xi_{0}\ddagger\xi_{1}:\xi_{2})$ and $x^{\prime}=(\xi_{0};\xi_{1}^{\prime}:\xi_{2}^{\prime})$ . The u-isomorphism $\sigma:\tilde{S}(\lambda)\rightarrow\sim\tilde{S}(x^{\prime})$

makes the following diagram commutative (Figure 5.2), where $T$ is an
automorphism on u-sphere $\Delta$ .

$\tilde{S}(x)\rightarrow^{\sigma}\tilde{S}(x^{\prime})$

$\pi\downarrow$ $\downarrow\pi^{\prime}$

$\Delta\rightarrow^{T}\Delta$

FIGURE 5.2

Thus, if a u-isomorphism $\sigma:\tilde{S}(\lambda)\rightarrow\tilde{S}(x’)$ exists, then the arrangement of the
singular fibres of $\tilde{S}(x)$ coincides with that of $\tilde{S}(x’)$ . From Proposition 2.1,
the singular fibres of $\tilde{S}(x)$ are as follows:

$u=0,1$ . . . . . . . $I_{0}^{*}$ ,

$u=\frac{\xi_{0}}{\xi_{1}},$ $\frac{\xi_{0}-\xi_{2}}{\xi_{1}}$
. . . . . . . $I_{2}$ ,

$ u=\infty$ . . . . . . . $I_{2}^{*}$ .
Hence the automorphism $ T;\Delta\rightarrow\Delta$ has to satisfy the following:

(5.7) $T:\{0,1\}\rightarrow\{0,1\}$ , $ T:\infty\mapsto\infty$ ,

(5.8) $T:\{\frac{\xi_{0}}{\xi_{1}},$ $\frac{\xi_{0}-\xi_{2}}{\xi_{1}}\}\rightarrow\{\frac{\xi_{0}^{r}}{\xi_{1}^{\prime}},$ $\frac{\xi_{0}^{\prime}-\xi_{2}}{\xi_{1}^{\prime}}\}$ .

From (5.7), we get

$T=id$ or $T:u-u’=1-u$ .
(1) The case: $T=id$ . In this case, we have only to consider the follow-
ing
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(5.9) $\frac{\xi_{0}}{\xi_{1}}=\frac{\xi_{0}^{\prime}-\xi_{2}^{\prime}}{\xi_{1}^{i}}$ , $\frac{\xi_{0}-\xi_{2}}{\xi_{1}}=\frac{\xi_{0}^{\prime}}{\xi_{1}^{\prime}}$ .
Setting $(x, y)=(\xi_{1}/\xi_{0}, \xi_{2}/\xi_{0})$ and $(x^{\prime}, y^{\prime})=(\xi_{1}^{\prime}/\xi_{0}^{\prime}, \xi_{2}/\xi_{0}^{\prime})$ , from (5.9) we have

(5.10) $x^{\prime}=\frac{x}{1-y}$ , $y^{\prime}=\frac{-y}{1-y}$ .
Then the u-isomorphism $\sigma_{2}:\tilde{S}(x, y)\rightarrow\tilde{S}(x^{\prime}, y^{\prime})$ is given by

(5.11) $\sigma_{2}:(u, v, w)\mapsto(u, v^{\prime}, w’)=(u,$ $1-v,$ $\frac{w}{\sqrt 1-y})$ .
In paticular, putting $(x, y)=(-1, -1)$ , we get

(5.12) $\tilde{S}(-1, -1)\cong u\tilde{S}(-\frac{1}{2}$ , $\frac{1}{2})$ .
(2) The case: $T:u\mapsto u^{\prime}=1-u$ . In this case we have two cases.
(2-1) The case:

$T:\frac{\xi_{0}}{\xi_{1}}\mapsto 1-\frac{\xi_{0}}{\xi_{1}}=\frac{\xi_{0}^{\prime}}{\xi_{1}}$

$T:\frac{\xi_{0}-\xi_{2}}{\xi_{1}}\mapsto 1-\frac{\xi_{0}-\xi_{2}}{\xi_{1}}=\frac{\xi_{0}^{l}-\xi_{2}^{\prime}}{\xi_{1}^{\prime}}$ .
We have

(5.13) $\frac{\xi_{1}-\xi_{0}}{\xi_{1}}=\frac{\xi_{0}^{\prime}}{\xi_{1}^{\prime}}$ , $\frac{\xi_{1}+\xi_{2}-\xi_{0}}{\xi_{1}}=\frac{\xi_{0}^{\prime}-\xi_{2}^{\prime}}{\xi_{1}^{\prime}}$ ,

(5.14) $x^{\prime}=\frac{x}{x-1}$ , $y^{\prime}=\frac{-y}{x-1}$ .

Thus, in this case the u-isomorphism $\sigma_{1}:\tilde{S}(x, y)\rightarrow\tilde{S}(x^{\prime}, y^{\prime})$ isgven by

(5.15) $\sigma_{1}:(u, v, w)-(u^{\prime}, v^{\prime}, w^{\prime})=(1-u,$ $v,$ $\frac{w}{\sqrt{1-x}})$ .
And we get

(5.16) $\tilde{S}(-1, -1)\cong u\tilde{S}(\frac{1}{2},$ $-\frac{1}{2})$ .
(2-2) The case:

$T:\frac{\xi_{0}}{\xi_{1}}\mapsto 1-\frac{\xi_{0}}{\xi_{1}}=\frac{\xi_{0}^{\prime}-\xi_{2}^{\prime}}{\xi_{1}^{\prime}}$

$T:\frac{\xi_{0}-\xi_{2}}{\xi_{1}}\mapsto 1-\frac{\xi_{0}-\xi_{2}}{\xi_{1}}=\frac{\xi_{0}^{\prime}}{\xi_{1}^{\prime}}$ .
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We have

(5.17) $1-\frac{\xi_{0}}{\xi_{1}}=\frac{\xi_{0}^{\prime}-\xi_{2}^{\prime}}{\xi_{1}^{\prime}}$ ,

(5.18) $x^{\prime}=\frac{x}{x+y-1}$ ,

$\frac{\xi_{1}+\xi_{2}-\xi_{0}}{\xi_{1}}=\frac{\xi_{0}^{\prime}}{\xi_{1}^{l}}$ ,

$y’=\frac{y}{x+y-1}$ .
Thus, in this case the u-isomorphism $\sigma_{8}:\tilde{S}(x, y)\rightarrow\tilde{S}(x^{\prime}, y^{\prime})$ is given by

(5.19) $\sigma_{3}:(u, v, w)\mapsto(u^{\prime}, v’, w^{\prime})=(1-u,$ $1-v,$ $\frac{w}{\sqrt{1-x-y}})$ .

And we get

(5.20) $\tilde{S}(-1, -1)\cong u\tilde{s}(\frac{1}{3},$ $\frac{1}{3})$ .

REMARK 5.2. The elliptic surface $\tilde{S}(x)$ is also considered as elliptic
surface on v-sphere, then the types of the singular fibres of two elliptic
surfaces ‘coincide with each other. By a similar way, we can concider
v-isomorphisms, but v-isomorphisms are equivalent to u-isomorphisms:
namely

$\tilde{S}(\lambda)\cong v\tilde{S}(\lambda)$ if and only if $\tilde{S}(x)\cong u\tilde{S}(\lambda)$ .
Now, we consider the quotient space $\Lambda/\sim$ of $\Lambda$ by the relation $\sim$ . In

the space $\Lambda/\sim,$ $x_{0}=(-1, -1)$ is identified with $x_{1}=(1/2, -1/2),$ $x_{2}=(-1/2$ ,
1/2) and $\lambda_{3}=(1/3,1/3)$ . Let us denote the equivalent class of $\lambda_{0}$ by $[\lambda_{0}]$ ,
then the monodromy transformations induced by $\pi_{1}(\Lambda/\sim, [\lambda_{0}])$ are obtained
by adding two transformations to that induced by $\pi_{1}(\Lambda, \lambda_{0})$ .

If we take adequately three arcs $\tau_{1},$ $\tau_{2},$ $\tau_{3}$ starting from $\lambda_{0}$ and ending
at $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$ respectively in $\Lambda$ , then we can regard the arcs $\tau_{1},$ $\tau_{2},$ $\tau_{3}$ as
loops starting from $[\lambda_{0}]$ in $\Lambda/\sim$ . We denote as well these loops by $\tau_{i}$

$(i=1,2,3)$ and denote the representation of $\tau_{i}$ into $GL(4, Z)$ by $\tau_{i}^{*}$ . This
monodromy $\tau_{i}^{*}$ means the following:

Let $\sigma_{i*}:$
$H_{2}(\tilde{S}(\lambda_{0}), Z)\rightarrow\sim H(S(x_{i}), Z)$ be the isomorphism induced by the

u-isomorphism $\sigma_{i}$ and let $\tau_{i*}(\Gamma_{1}),$
$\cdots,$ $\tau_{i*}(\Gamma_{4})$ be the 2-cycles on $\tilde{S}(x_{i})$

induced by $\tau_{i}$ . Then the monodromy $\tau_{i}^{*}$ is defined by the formula:

$\left(\begin{array}{l}\tau_{i*}(\Gamma_{1})\\\vdots\\\tau_{l*}(\Gamma_{4})\end{array}\right)=\tau_{i}^{*}\left(\begin{array}{l}\sigma_{i*}(\Gamma_{1})\\\vdots\\\sigma_{i*}(\Gamma_{4})\end{array}\right)$ .
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By carrying out calculation, we obtain

(5.21) $\tau_{1}^{*}=(1000$ $0001$ $0011$ $-110)$ , $\tau_{2}^{*}=\left(\begin{array}{llll}2 & 1 & 0 & 1\\-1 & 0 & -1 & 0\\0 & 0 & 2 & -1\\0 & 0 & 1 & 0\end{array}\right)$ ,

$\tau_{3}^{*}=\left(\begin{array}{llll}2 & 1 & 2 & 0\\-1 & 0 & -2 & 0\\0 & 0 & 2 & -1\\0 & 0 & 1 & 0\end{array}\right)$ .

$\tau_{i}^{*}(i=1,2,3)$ satisfy the following:

(5.22) det $\tau_{i}^{*}=1$ , $t\tau^{*}A\tau^{*}=A$ $(i=1,2,3)$ ,

(5.23) $\tau_{1}^{*2}=\delta_{1}^{*}$ , $\tau_{2}^{*2}=\delta_{2}^{*}$ , $\tau_{3}^{*}=\tau_{1}^{*}\tau_{2}^{*}$ .
And by the same way which we got $\delta_{i}$ from $\delta_{i}^{*}$ , we get $\tilde{\tau}_{i}$ from $\tau_{i}^{*}:$

$\tilde{\tau}_{1}:(z_{1}, z_{2})\mapsto(z_{1}, z_{2}+\rho^{2})$ ,

(5.24) $\tau_{2}\sim:(z_{1}, z_{2})-(\frac{1}{-z_{1}+2},$ $z_{2})$ ,

$\tilde{\tau}_{3}:(z_{1}, z_{2})-\rightarrow(\frac{1}{-z_{1}+2},$ $z_{2}+\rho^{2})$ .

We denote by $G(\rho)$ the transformation group on $H\times H$ generated by

5 $(i=0,1,2,3,4)$ and $\tau_{j}\sim(j=1,2,3)$ .
In particular, putting $\rho=\sqrt{2}$, from (5.4) and (5.24), we get the

following:

$\delta_{0}:(z_{1}, z_{2})-\rightarrow(\frac{z_{1}}{-2z_{1}+1},$ $z_{2}+2)$ ,

$\delta_{1}:(z_{1}, z_{2})-(z_{1}, z_{2}+4)$ ,

$\delta_{2}:(z_{1}, z_{2})\mapsto(\frac{-z_{1}+2}{-2z_{1}+3},$ $z_{2})$ ,

(5.25) $\delta_{8}:(z_{1}, z_{2})\mapsto(\frac{1}{-z_{2}+2},$ $-\frac{1}{z_{1}}+2)$ ,

$\delta_{4}:(z_{1}, z_{2})\mapsto(\frac{z_{2}}{2z_{2}+1},$ $\frac{z_{1}}{-2z_{1}+1})$ ,

$\tilde{\tau}_{1}:(z_{1}, z_{2})\mapsto(z_{1}, z_{2}+2)$ ,
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$\tau_{2}\sim:(z_{1}, z_{2})\mapsto(\frac{1}{-z_{1}+2},$ $z_{2})$ ,

$\tilde{\tau}_{3}:(z_{1}, z_{2})-(\frac{1}{-z_{1}+2},$ $z_{2}+2)$ .

We denote by $\langle c\rangle$ the group generated by the involution $c:(z_{1}, z_{2})\mapsto(z_{2}, z_{1})$

and denote by $\Gamma_{1,2}$ the group generated by the modular transformations
$T:z\mapsto z+2$ and $S:z\mapsto-1/z$ , i.e.,

$\Gamma_{1,2}=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL(2, Z):ab\equiv 0,$ $cd\equiv 0(mod 2)\}/\pm I$ .
We shall show that the transformation group $\Gamma=G(\sqrt{2})$ on $H\times H$ is the
semi-direct product group $\langle c\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ , where its operation is given as
follows: Let $(c_{1}, (S_{1}, T_{1}))$ and $(c_{2}, (S_{2}, T_{2}))$ be elements of $\langle c\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ ,
then

$(c_{1}, (S_{1}, T_{1}))(z_{1}, z_{2})=\left\{\begin{array}{ll}(S_{1}(z_{1}), T_{1}(z_{2})) & if c_{1}=id\\(T_{1}(z_{2}), S_{1}(z_{1})) & if c_{1}=\ell,\end{array}\right.$

$(f_{1}(S_{1}, T_{1}))(f_{2}(S_{2}, T_{2}))=(c_{1}e_{2}, (S_{1}, T_{1})^{t_{2}}(S_{2}, T_{2}))$

$=\left\{\begin{array}{ll}(f_{1}f_{2}(S_{1}S_{2}, T_{1}T_{2})) & if c_{2}=1\\(c_{1}c_{2}, (T_{1}S_{2}, S_{1}T_{2})) & if c_{2}=c.\end{array}\right.$

THEOREM 5.1. The transformation group $\Gamma$ generated by $\delta_{i},$
$\tau_{j}\sim$

$(i=0,1,2,3,4;j=1,2,3)$ in (5.25) is the semi-direct product group
$\langle c\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ :

$\Gamma=\langle c\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ .
PROOF. It is immediate that $\Gamma\subset\langle c\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ . Thus we prove the

converse. The group $\langle c\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ is generated by $(c, (I, I)),$ $(1,$ $(I,$ $\left(\begin{array}{l}12\\01\end{array}\right)))$

and $(1,$ $(I,$ $\left(\begin{array}{ll}0 & 1\\-l & 0\end{array}\right)))$ , where $I=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ . By the way, from (5.25), we have

$\delta_{0}=(1,$ $(\left(\begin{array}{ll}1 & 0\\-2 & 1\end{array}\right),$ $\left(\begin{array}{ll}1 & 2\\0 & 1\end{array}\right)))$ ,

$\tilde{\delta}_{2}=(1,$ $(\left(\begin{array}{ll}-1 & 2\\-2 & 3\end{array}\right),$ $II)$ ,

$\delta_{4}=(f(\left(\begin{array}{ll}1 & 0\\-2 & 1\end{array}\right),$ $\left(\begin{array}{ll}l & 0\\2 & 1\end{array}\right)))$ .
Hence we get
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$\delta_{0}\cdot\delta_{4}\cdot\delta_{2}=(c, (I, I))$ .
And we have

$\tilde{\tau}_{1}=(1,$ $(I,$ $\left(\begin{array}{ll}1 & 2\\0 & 1\end{array}\right)))$ ,

$f\cdot T_{2}\cdot f\cdot T_{1}=\sim\sim(1,$ $(I,$ $\left(\begin{array}{ll}0 & l\\-1 & 0\end{array}\right)))$ ,

where we identified $f$ with $(c, (I, I))$ . These show that $r\supset\langle f\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ .
Therefore we obtain

$\Gamma=\langle c\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ .
REMARK 5.3. Let $\Gamma^{\prime}$ be the monodromy group generated by $\tilde{\delta}_{i}$

$(i=0,1,2,3,4)$ , then $’’\subsetneqq\langle\iota\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ .
\S 6. Modular function $\Psi$.
In this final section, we shall investigate the inverse map $\Psi$ of the

period map
$\Phi:\Lambda/\sim\rightarrow H\times H/\Gamma$ ,

i.e., an automorphic map relative to $\Gamma=G(\sqrt{2})$ . We call $\Psi$ the “modular
function” for the family $\mathscr{G}^{-}$ In order to make sure that $\Psi$ is well-defined
on $H\times H$, we must verify bijectivity of $\Phi$ by extending the domain $\Lambda/\sim$

if necessary. For this purpose, we set $\Lambda=P_{2}(C)-\bigcup_{k=0}^{f}L_{k}$ as in \S 1 and
we study the behavior of the period map $\Phi$ on $L_{k}(k=0,1,2,3,4)$ .

(I) We set

$P_{0}=$ $(0$ : 1 : $0)$ , $P_{1}=(0$ : $0$ : 1 $)$ , $P_{2}=(1 : 0 : 0)$ , $P_{s}=(1$ : 1 : $0)$ ,

$P_{4}=(1:0:1)$ , $P_{f}=(1:1:1)$ , $P_{6}=(0:1:-1)$ (see Figure 6.1).

FIGURE 6.1
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By elementary but careful calculation (see Appendix), we obtain the fol-
lowing table.

TABLE 6.1

REMARK 6.1. As the “image of $\Phi$
’ we write representatives for

equivalent classes relative to modulus $\Gamma$ .
REMARK 6.2. $S(P_{6})$ and $S(P_{6})$ are denoted by

$S(P_{b}):w^{2}=uv(1-u)(1-v)(1-u-v)$ ,

$S(P_{6}):w^{2}=uv(1-u)(1-v)(-u+v)$ , respectively.

And the Picard number of the surfaces $\tilde{S}(P_{b})$ and $\tilde{S}(P_{6})$ is 19.

We can regard the equivalent relation $\sim$ of the parameter space $\Lambda$

as that obtained by a projective transformation group of $P_{2}(C)$ . Let us
denote this group by $G$ . By (5.9), (5.13) and (5.17) $G$ is generated by
the following transformations $g_{1},$ $g_{2}$ and $g_{3}$ :

(6.1) $\left\{\begin{array}{l}g_{1}:(\xi_{0};\xi_{1}\ddagger\xi_{2})-\succ(\xi_{0};\xi_{1}^{\prime}\ddagger\xi_{2})=(\xi_{0}-\xi_{1}\ddagger-\xi_{1}:\xi_{2})\\g_{2}:(\xi_{0};\xi_{1};\xi_{2})\mapsto(\xi_{0}^{\prime};\xi_{1}^{\prime};\xi_{2}^{\prime})=(\xi_{0}-\xi_{2}\ddagger\xi_{1};-\xi_{2})\\g_{3}:(\xi_{0}\ddagger\xi_{1}\ddagger\xi_{2})-(\xi_{0};\xi_{1}^{l};\xi_{2}^{l})=(\xi_{1}+\xi_{2}-\xi_{0};\xi_{1}\ddagger\xi_{2})\end{array}\right.$

We immediately find that $g_{i}=g_{\dot{f}}g_{k}=g_{k}g_{\dot{f}}(i, j, k=1,2,3)$ and $g_{1}^{2}=1(i=1,2,3)$ ,
thus $G$ is isomorphic to the Klein four-group. $G$ acts discontinuously on
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$P_{2}(C)$ . We note that $g_{1},$ $g_{2}$ and $g_{8}$ fix lines $\{\xi_{1}=0\},$ $\{\xi_{2}=0\}$ and $\{\xi_{1}+\xi_{2}-2\xi_{0}=0\}$

respectively and that the lines $L_{0},$ $L_{3},$ $L_{4}$ and $L_{b}$ are transformed one
another by $G$ . And the hypersurfaces $H_{0},$ $H_{8},$ $H_{4}$ and $H_{b}$ of $H\times H$ corre-
sponding to these lines $L_{0},$ $L_{3},$ $L_{4}$ and $L_{f}$ belong to the same orbit of $\Gamma$ .
Moreover, by the above table, putting

(6.2) $\Lambda_{0}=P_{2}(C)-L_{1}\cup L_{2}$ ,

we see that $\tilde{S}(\lambda)$ are elliptic K3 surfaces for all $\lambda e\Lambda_{0}$ . Therefore we can
consider the period map $\Phi$ as the map from $\Lambda_{0}/\sim$ to $ H\times H/\Gamma$ , where the
equivalent relation $\sim$ is obtained by restricting the projective transfor-
mation group $G$ to $\Lambda_{0}$ .

REMARK 6.3. In general, the elements of $\Lambda_{0}/\sim$ consist of four points
of $\Lambda_{0}$ except the equivalent classes of points on the line $L=\{\xi_{1}+\xi_{2}-2\xi_{0}=0\}$

fixed by $g_{3}$ . On the line $L$ , u-isomorphism $\sigma_{3}:\tilde{S}(x)\rightarrow\tilde{S}(\lambda)$ corresponding
to $g_{s}$ (see (5.19)) becomes the automorphism of order 4 of K3 surface
$\tilde{S}(x)(\lambda eL)$ : namely

$\sigma_{8}$ : $\tilde{S}(x)\rightarrow^{\sim}\tilde{S}(\lambda)$

(V (1)

$(u, v, w)-(u’, v^{\prime}, w^{\prime})=(1-u, 1-v, -iw)$ .
(II) Next let us show that the period map $\Phi$ is an injection from

$\Lambda_{0}/\sim$ to $ H\times H/\Gamma$ . For this purpose we define a “marked K3 surface”.
Here we employ the following notations:

$S$: an algebraic K3 surface,
$\mathscr{L}$ : a free Z-module of rank 22 with an even integer valued uni-

modular symmetric bilinear form of signature (3.19),
$l$ : a fixed element of 9

A marked K3 surface is defined as a triple $(S, \varphi, D)$ satisfying the follow-
ing conditions:

(1) $\varphi$ is an isomorphism from -s24 to $H_{2}(S, Z)$ ,
(2) $D$ is an effective divisor on $S$ such that $D^{2}>0,$ $D\cdot D^{\prime}\geqq 0$ for any

effective divisor $D^{\prime}$ and $\varphi(l)=D$.
Two marked K3 surfaces $(S, \varphi, D)$ and $(S’, \varphi^{\prime}, D^{\prime})$ are identified if there
exists an isomorphism $f$ from $S$ to $S^{\prime}$ such that $\varphi^{\prime}=f_{*}\cdot\varphi$ (modulo effective
divisors) and $f_{*}(D)=D’$ , where $f_{*}$ is the map from $H_{2}(S, Z)$ to $H_{2}(S^{\prime}, Z)$

induced by $f$.
We denote by $M(l)$ a family of all marked K3 surfaces $(S, \varphi, D)$ with

fixed $l$ . Let $(S, \varphi, D)$ be a marked K3 surface and let $(l_{1}, \cdots, l_{22})$ be a
basis of $Z$. Setting $\Gamma=\varphi(l_{i})(i=1, \cdots, 22)$ , we see that $\{\Gamma_{1}, \cdots, \Gamma_{22}\}$ is
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a basis of $H_{2}(S, Z)$ . So we put $\eta_{i}=\int_{r_{i}}\psi(i=1, \cdots, 22)$ and define a map
$\tau:M(l)\rightarrow P_{21}(C)$ by

$\tau:M(l)\ominus(S, \varphi, D)\mapsto(\eta_{1}, \cdots, \eta_{22})\in P_{21}(C)$ ,

$where\vee\psi$ is a holomorphic 2-form on $S$ . Then following Pjateckii-Sapiro
and Safarevi\v{c} [10], we obtain the Torelli theorem for algebraic K3
surfaces.

THEOREM T. The period map $\tau$ is injective.

Now in order to show injectivity of $\Phi$ we define a marking on $\tilde{S}(x)$

$(\lambda\in\Lambda_{0})$ . We put

$x_{0}=(1:-1:-1)$ , $S_{0}=\tilde{S}(x_{0})$ , $\mathscr{L}=H_{2}(S_{0}, Z)$ ,

and define $l\in \mathscr{L}$ by

(6.3) $l=L+2G$ ,

where $L$ is the global section on $\tilde{S}(x)$ and $G$ is a fibre $\pi^{-1}(u)$ . It is
trivial to verify that $l$ is an effective divisor. We define an isomorphism
$\varphi:\mathscr{L}\rightarrow H_{2}(S(\lambda), Z)$ by the canonical isomorphism from $H_{2}(S_{0}, Z)$ to
$H_{2}(\tilde{S}(\lambda), Z)$ and an effective divisor $D$ on $\tilde{S}(\lambda)$ by $D=L+2G$ . Note that
$D\cdot D^{\prime}\geqq 0$ for any effective divisor $D^{\prime}$ on $\tilde{S}(x)$ . Hence $(\tilde{S}(x), \varphi, D)$ is a
marked K3 surface. The injectivity of $\Phi$ follows immediately from the
following lemma.

LEMMA 6.1. Let $(\tilde{S}(\lambda), \varphi, D)$ and $(\tilde{S}(x’), \varphi^{\prime}, D)$ be two marked K3
surfaces, where $\lambda,$ $\lambda^{\prime}\in\Lambda_{0}$ . If $(\tilde{S}(x), \varphi, D)=(\tilde{S}(x^{\prime}), \varphi^{\prime}, D)$ , then there exists
a u-isomorphism from $\tilde{S}(\lambda)$ onto $\tilde{S}(\lambda)$ .

PROOF. By applying the fact that $H^{0}(\tilde{S}(\lambda), p([D]))=0$ , $H^{1}(\tilde{S}(\lambda)$ ,
$P([D]))=0$ and Serre’s duality theorem to the Riemann-Roch theorem,
we obtain dim $H^{0}(\tilde{S}(\lambda), P([D]))=3$ . Hence we infer that a coordinate $t$

of based curve $\Delta=P_{1}$ is written by a ratio of two holomorphic sections
of dl $([D])$ . By the condition $(\tilde{S}(x), \varphi, D)=(\tilde{S}(x’), \varphi^{\prime}, D)$ , there exists a
biholomorphic map $f:\tilde{S}(x)\rightarrow\tilde{S}(x^{\prime})$ . Let $(\tilde{S}(x), \pi, \Delta)$ and $(\tilde{S}(x^{\prime}), \pi^{\prime}, \Delta)$ be two
elliptic surfaces, then $t^{\prime}=\pi^{\prime}\cdot f$ is also written by a ratio of two holo-
morphic sections of $p([D])$ . Thus the transformation $ T:\Delta\ni t\rightarrow t^{\prime}e\Delta$ is an
isomorphism on $\Delta$ and the following diagram (Figure 6.2) is commutative.
Therefore we obtain $\tilde{S}(\lambda)\cong u\tilde{S}(x’)$ .
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$\tilde{S}(\lambda)\rightarrow^{f}\tilde{S}(x^{\prime})$

$\pi\downarrow$ $\downarrow\pi$

$\Delta\rightarrow^{T}\Delta$

FIGURE 6.2

By virtue of Theorem $T$ and Lemma 6.1, we obtain the following prop-
osition.

PROPOSITION 6.1. The period map

$\Phi:\Lambda_{0}/\sim\rightarrow H\times H/\Gamma$

is injective.

(III) Finally, instead of showing the surjectivity of $\Phi$ we show that
the period map $\Phi$ is extended as biholomorphic map from $(\Lambda_{0}/\sim)^{*}$ onto
$(H\times H/\Gamma)^{*}$ , where $X^{*}$ indicates a compactification of $X$. Then, we first
mention the compactification of $\Lambda_{0}/\sim$ and $ H\times H/\Gamma$ .

The equivalent relation $\sim$ in $\Lambda_{0}$ was defined as the restriction to $\Lambda_{0}$

of the projective transformation group $G$ on $P_{2}(C)$ , hence we define the
compactification $(\Lambda_{0}/\sim)^{*}$ by

(6.4) $(\Lambda_{0}/\sim)^{*}:$ $=P_{2}(C)/G=P_{2}(C)$ .
In this definition, we can easily verify that the sign of equality holds.
On the other hand, in view of $\Gamma=\langle c\rangle\ltimes\Gamma_{1,2}\times\Gamma_{1,2}$ we can consider as follows:

(6.5) $H\times H/\Gamma=(H/\Gamma_{1,2})\times(H/\Gamma_{1,2})/f$ .
Here $H/\Gamma_{1,2}$ is compactified by attaching two cusp points $\{1, \infty\}$ and the
compactification $(H/\Gamma_{1.2})^{*}$ of $H/\Gamma_{1,2}$ is isomorphic to $P_{1}(C)$ : namely,

(6.6) $(H/\Gamma_{1,2})^{*}=P_{1}(C)$ .

(fundamental domain of $H/\Gamma_{1.2}$)
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Thus we define our compactification of $ H\times H/\Gamma$ by the following:

(6.7) $(H\times H/\Gamma)^{*}:$ $=(H/\Gamma_{1,2})^{*}\times(H/\Gamma_{1,2})^{*}/c=P_{1}(C)\times P_{1}(C)/f$ .
Here we have

(6.8) $P_{1}\times P_{1}/c=P_{2}$ .
In fact, the map

$P_{1}\times P_{1}/C\ni(\zeta_{0}:\zeta_{1})\times(\nu_{0}:\nu_{1})-(\zeta_{0}\nu_{0}:\zeta_{0}\nu_{1}+\zeta_{1}\nu_{0}:\zeta_{1}\nu_{1})\in P_{2}$

is an isomorphism. Hence we obtain

(6.9) $(H\times H/\Gamma)^{*}=P_{2}(C)$ .
Next, let us show that the map $\Phi$ is extended to a biholomorphic map
from $(\Lambda_{0}/\sim)^{*}$ onto $(H\times H/\Gamma)^{*}$ . For this purpose we use two lemmas.

LEMMA 6.2. Let $\Omega$ be an open set in $C^{n}$ and $f:\Omega\rightarrow C^{n}$ an injective
holomorphic map. Then $f$ is a biholomorphic map from $\Omega$ onto
$f(\Omega)$ .

PROOF. See Theorem 5 in p. 86, Narasimhan [7].

The following lemma follows immediately from the above lemma.

LEMMA 6.3. Let $M$ and $N$ be eonnected compact complex manifolds
such that dim $M=\dim N$ and let $f:M\rightarrow N$ be an injective holomorphic
map. Then $f$ is a biholomorphic map from $M$ onto $N$.

PROOF. It is obvious.

Now, we can make sure that $\Phi$ is extended as an injective map onto
$(\Lambda_{0}/\sim)^{*}=P_{2}(C)$ . In fact, we can see that the inverse map of the period
map $\Phi$ restricted to the boundary of $(\Lambda_{0}/\sim)^{*}$ is given by the lambda
function which is an elliptic modular function (see Appendix). Therefore,
by the above argument we obtain the following theorem:

THEOREM 6.1. The period map $\Phi:\Lambda_{0}/\sim\rightarrow H\times H$ is extended to a
biholomorphic map from $(\Lambda_{0}/\sim)^{*}$ onto $(H\times H/\Gamma)^{*}$ . Consequently, the
inverse map $\Psi$ of $\Phi$ is defined as a single-valued holomorphic map on
$H\times H$, and it is automorphic relative to the monodromy group F. And
it follows that the modular function $\Psi$ for $\mathscr{F}$ induces the biholomorphic
map:

$(H\times H/\Gamma)^{*}\rightarrow^{\sim}P_{2}(C)=(\Lambda_{0}/\sim)^{*}$ .
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Appendix

Here we shall give calculation of the monodromy representation $\alpha_{l}^{*}$

in (3.3) and that of Table 6.1.
(I) We study $\alpha_{1}^{*}$ . In order to make our calculation easy, we rewrite

Figure 3.1 as follows:

FIGURE A.l

The l-cycles $\gamma_{1},$ $\gamma_{2}$ in Figure A.1 are clearly homotopic to the l-cycles
$\gamma_{1},$ $\gamma_{2}$ in Figure 3.1 respectively. General fibres $C(u)$ of $\tilde{S}_{0}$ have four
branch points $v=0,1,$ $-1-u,$ $\infty$ . Putting the arc $\alpha_{1}$ as follows:

$\alpha_{1}:u+2=\frac{1}{2}e^{\theta}$ $(0\leqq\theta\leqq 2\pi)$ ,

the branch point $v=-1-u$ encircles the point $v=1$ from $v=1/2$ along
the arc $v-1=-(1/2)e^{i\theta}(0\leqq\theta\leqq 2\pi)$ . Thus the l-cycles $\gamma_{1},$ $\gamma_{2}$ are trans-
formed to l-cycles $\gamma_{1}^{\prime},$

$\gamma_{2}$ in Figure A.2 by $\alpha_{1}$ . It is clear that $\gamma_{1}^{\prime}=\gamma_{1}$ .
And we can see that the intersection numbers $\gamma_{2}^{\prime}\cdot\gamma_{1}=1,$ $\gamma_{2}^{\prime}\cdot\gamma_{2}=2$ , hence
we get $\gamma_{2}^{\prime}=-2\gamma_{1}+\gamma_{2}$ . Therefore we obtain $\alpha_{1}^{*}=\left(\begin{array}{ll}1 & 0\\-2 & 1\end{array}\right)$ .

FIGURE A.2

$\alpha_{2}^{*}$ is obtained by using Figure 3.1. And we can get the others in a
similar way.

(II) Calculation of Table 6.1. In (4.11), we put $\rho=\sqrt{2}$, then by
(4.12) we get the following:
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(A.1) $\left(\begin{array}{l}\eta_{1}\\\eta_{2}\\\eta_{3}\\\eta_{4}\end{array}\right)=\left(\begin{array}{l}-\frac{1}{\sqrt{2}}\eta_{1}^{\prime}+\frac{1}{\sqrt{2}}\eta_{4}^{\prime}\\-\frac{1}{\sqrt 2}\eta_{2}+\frac{1}{\sqrt{2}}\eta_{3}\sqrt{2}\eta_{1}\sqrt{2}\eta_{2}^{\prime}\end{array}\right)$ .

First, we calculate $\mathfrak{p}_{b}=\Phi(P_{b})$ . We note that the 2-cycles $\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}$ and
$\Gamma_{4}$ on $\tilde{S}(x)(\lambda=\xi_{0}:\xi_{1};\xi_{2})\in\Lambda)$ are defined by using the arcs $\beta_{1},$ $\beta_{2},$ $\beta_{3}$ in
Figure A.3 as follows:

$\Gamma_{1}=\Gamma(\beta_{1}, \gamma_{1})$ , $\Gamma_{2}=\Gamma(\beta_{2}, \gamma_{2})$ ,
$\Gamma_{3}=\Gamma(\beta_{3}^{-1}, \gamma_{1})$ , $\Gamma_{4}=\Gamma(\beta_{3}, \gamma_{2})$ ,

where $\gamma_{1},$ $\gamma_{2}$ are l-cycles on a general fibre $C$ of $\tilde{S}(x)$ defined as Figure
A.4.

FIGURE A.3

FIGURE A.4

Here $P(v_{1})=0,$ $P(v_{2})=(\xi_{0}-\xi_{1}u)/\xi_{2},$ $P(v_{3})=1$ and $ P(v_{4})=\infty$ , where $P$ is a
projection from $C$ onto v-sphere.

When a point $\lambda=(\xi_{0}\ddagger\xi_{1}\ddagger\xi_{2})\in\Lambda$ tends to $P_{f}=(1:1:1)$ , the critical points
$(\xi_{0}-\xi_{2})/\xi_{1}$ and $\xi_{0}/\xi_{1}$ converge to $0$ and 1 respectively. Thus the arcs $\beta_{1}$ ,
$\beta_{2},$ $\beta_{8}$ in Figure A.3 are transformed as the following figure while $\lambda$

tends to $P_{6}$ :
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(Figure A.3) c\Rightarrow
$\Rightarrow$

FIGURE A.5

In Figure A.5 the arc $\beta_{1}$ crosses the arc $l_{2}$ in the positive sense, hence
the l-cycle $\gamma_{1}$ continued along the arc $\beta_{1}$ is transformed to $\gamma_{1}+2\gamma_{2}$ by the
monodromy transformation $\left(\begin{array}{l}12\\01\end{array}\right)$ (see \S 3). Therefore we get

$\Gamma_{1}=-\Gamma_{3}+2\Gamma_{4}$ , $\Gamma_{2}=-\Gamma_{4}$ ,

namely we get

(A.2) $\eta_{1}=-\eta_{s}+2\eta_{4}$ , $\eta_{2}=-\eta_{4}$ .
From (A.1) and (A.2), we obtain

$\left\{\begin{array}{l}-\frac{1}{\sqrt{2}}\eta_{1}^{\prime}+^{1}\sqrt{2}\eta_{4}^{\prime}=-\sqrt{2}\eta_{2}^{\prime}+2\sqrt{2}\eta_{1}^{\prime}\\-\frac{1}{\sqrt{2}}\eta_{2}^{\prime}+\frac{1}{\sqrt{2}}\eta_{3}^{\prime}=-\sqrt{2}\eta_{1}^{\prime}\end{array}\right.$

Thus by (4.16) and (4.17), $\Phi(P_{f})$ is given as the intersection of the follow.
ing two hypersurfaces:

$\left\{\begin{array}{l}5z_{1}-z_{2}-2=0\\2z_{1}-z_{1}z_{2}-1=0\end{array}\right.$

Hence we obtain $\Phi(P_{f})=((2+i)/5, i)$ . Note that $\tau_{2}(i, i)=((2+i)/5, i)$ .
Next, we calculate $\Phi(L_{1}-\{P_{1}, P_{2}, P_{4}\})$ . When we put $\xi_{1}=0$ , the critica

points $(\xi_{0}-\xi_{2})/\xi_{1}$ and $\xi_{0}/\xi_{1}$ go to the point at infinity. Putting $\xi_{1}=0$ in
(1.6’), we have

$w^{2}=uv(1-u)(1-v)(\xi_{0}-\xi_{2}v)$ .
We set
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(A.3) $\omega_{i}=\int_{\gamma_{i}}\frac{dv}{\sqrt{v(1-v)(\xi_{0}-\xi_{2}v)}}$ $(i=1,2)$ ,

where $\gamma_{1},$ $\gamma_{2}$ are l-cycles on a general fibre of $\tilde{S}(\xi_{0};0:\xi_{2})$ with $\gamma_{1}\cdot\gamma_{2}=-1$ .
Then we have the following:

$\eta_{1}=\int_{r_{1}}\frac{du\wedge dv}{w}=\int_{\infty}^{1}du\int_{\gamma_{1}}\frac{dv}{w}=\omega_{1}\int_{\infty}^{1}\frac{du}{\sqrt u(1-u)}$ ,

$\eta_{3}=\int_{\Gamma_{3}}\frac{du\wedge dv}{w}=\omega_{1}\int_{0}^{1}\frac{du}{\sqrt u(1-u)}=\pi\omega_{1}$ ,

$\eta_{4}=\int_{\Gamma}\frac{du\wedge dv}{w}=\omega_{2}\int_{1}^{0}\frac{du}{\sqrt{u(1-u)}}=-\pi\omega_{2}$ .

From (A.1) and (4.16), we get

(A.4) $\left\{\begin{array}{l}z_{1}=\frac{\eta_{1}^{\prime}}{\eta_{2}^{\prime}}=\frac{\eta_{4}}{\eta_{3}}=-\frac{\omega_{2}}{\omega_{1}}\\z_{2}=\frac{\eta_{4}^{\prime}}{\eta_{2}^{\prime}}=\frac{2\eta_{1}+\eta_{4}}{\eta_{3}}=(\omega_{1}\int_{\infty}^{1}\frac{du}{\sqrt{u(1-u)}}\pi\omega_{2})/\pi\omega_{1}=\infty\end{array}\right.$

Since $\gamma_{1}\cdot\gamma_{2}=-1$ , we have ${\rm Im} z_{1}={\rm Im}(-\omega_{2}/\omega_{1})>0$ . Hence the points on
$L_{1}-\{P_{1}, P_{2}, P_{4}\}$ are mapped into $ H\times t\infty$ } by the period map $\Phi$ , where
$H=\{zeC:{\rm Im} z>0\}$ .

Now, let us study the behavior of the map $\Phi$ on $L_{1}$ . Since $\xi_{1}\equiv 0$ on
$L_{1}$ , if we put $\lambda=\xi_{0}/\xi_{2}$ , we have $P_{1}=0,$ $P_{2}=\infty,$ $P_{4}=1$ . Thus $L_{1}-\{P_{1}, P_{2}, P_{4}\}$

coincides with $P_{1}-\{0,1, \infty\}$ . And if we restrict the projective transfor-
mations $g_{1},$ $g_{2}$ and $g_{3}$ in (6.1) to $L_{1}$ , we have that

$\left\{\begin{array}{l}g_{1}:(\xi_{0}:0:\xi_{2})-\rightarrow(\xi_{0}:0:\xi_{2})\\g_{2}:(\xi_{0};0;\xi_{2})->(\xi_{0}-\xi_{2};0:-\xi_{2})\\g_{3}:(\xi_{0};0;\xi_{2})\mapsto(\xi_{2}-\xi_{0};0;\xi_{2})\end{array}\right.$

Hence we get $g_{1}=id,$ $g_{2}=g_{3}:x\mapsto 1-x$ . We can define the period map
$\Phi$ on $L_{1}-\{P_{1}, P_{2}, P_{4}\}$ by $\Phi(\lambda)=\eta_{1}^{\prime}(x)/\eta_{2}^{\prime}(x)=\eta_{4}(x)/\eta_{3}(x)=\omega_{2}(x)/\omega_{1}(x)$ . Then,
from (A.3), the inverse map of $\Phi$ is essentially the lambda function.
On the $\lambda$-function, it is well known that $z^{\prime}\equiv z(mod SL(2, Z))(z, z^{\prime}\in H)$

if and only if $\lambda(z^{\prime})$ coincides with one of

$\lambda(z),$ $1-\lambda(z)$ , $\frac{1}{x(z)}$ $\frac{1}{1-x(z)}$ $\frac{x(z)}{x(z)-1}$ $\frac{x(z)-1}{x(z)}$ .

In particular, we have
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$z^{\prime}=-\frac{1}{z}$ if and only if $\lambda(z^{\prime})=1-\lambda(z)$ .

By the way, $\lambda$-function is invariant under $\Gamma(2)$ the principal congruence
subgroup of level 2. The subgroup of $SL(2, Z)$ generated by $\Gamma(2)$ and
the transformation $S:z\mapsto-1/z$ is exactly the modular group $\Gamma_{1,2}$ . There-
fore we obtain the following:

$p$

$\lambda:H/\Gamma_{1,2}\rightarrow P_{1}-\{0,1, \infty\}/\sim$ ,

where equivalent relation $\sim$ is defined by $x\sim x$
’ if and only if $\lambda^{r}=1-\lambda$ .

(fundamental domain of $H/\Gamma(2)$)

Moreover, by Figure A.4 we can see that $\Phi(P_{1})=\Phi(0)=0,$ $\Phi(P_{2})=$

$\Phi(\infty)=-1,$ $\Phi(P_{4})=\Phi(1)=\infty$ . (These facts do not contradict the results
of Table 6.1.) This shows that the map $\Phi$ is well-defined as an injective
holomorphic map on $ L_{1}/\sim$ . We can consider the period map $\Phi$ on $L_{2}$ in
a similar way. Hence we obtain the following:

PROPOSITION A.l. On the boundary $L_{1}\cup L_{2}/\sim of$ $(\Lambda_{0}/\sim)^{*}$ , the period
map $\Phi$ is an injective holomorphic map and its inverse map is given
by the lambda function.
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