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Introduction

L. Waelbroeck [11] proved the universality of the space &(V)~ of
Schwartz-distributions with compact support on a C>-manifold V with the
d-function mapping §: V—£(V)", i.e., any vector valued C*-mapping f: V—E
factors through 6:V—&(V)™ by a uniquely determined linear morphism
[ &(V)"—E as f=f~4. For the unit circle T, we proved in a previous
paper [9] that any vector valued C*-mapping f: T—E factors through
0: T—<Z(T) where <#Z(T) is the space of Sato-hyperfunctions on 7. In
the case of Schwartz-distributions, Waelbroeck used a notion of b-spaces,
and for Sato-hyperfunctions we used a notion of ib-spaces (intersections
of b-spaces).

In this paper we prove the universality for the spaces of ultradistri-
butions of various kinds on the unit circle T. We represent these spaces
as linear subspaces of C? (called here sequence spaces) using Fourier co-
efficients. For a sequence space EcC?, Kothe [4] defined the dual (called
a-dual by him) by

E-={veC?|for all uekE, 3;|u;|lv;|<+oco}.

We consider functionals only of sequential type, i.e., v: E— C is represented
as v(u)=<u, v)=2>,;u;v; with ve E~. A sequence space FE is perfect if
E=E"". A linear mapping f: E— F between two sequence spaces is called
sequential if for every v e F~, the composed mapping vofe E~. If E and
F' are perfect, f: E— F is sequential if and only if f is represented by
an infinite matrix (f;;) € C?*% such that

Sfullus] <+ and  3in I35 fusthsl < - o0
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for any ve€ F~ and u € E.

Thus, we develop the theory without topology replacing completeness
by perfectness of the spaces and continuity by sequentialness of the
mappings. The universality theorem is presented in an abstract form
using two axioms on the space &(T) which is a function space on T but
identifiable as a sequence space. We require that each ¢ € &°(T) has abso-
lutely convergent Fourier series, i.e., 2(T)c 7 (T) or in sequential termi-
nology & (T)cl(Z) (Axiom 2.1). Moreover, we require that Z(T) be perfect
(Axiom 2.2). The vector valued ultradifferentiable mappings are replaced
by & (T)-mappings f: T—E, i.e., for any ve E~, the composed mapping
vofe &(T). Then we prove the Abstract Universality Theorem 2.4., i.e.,
o: T—&(T) is a & (T)-mapping; for any sequential mapping f~: & (T)— E,
f~od: T—E is a &(T)-mapping; and any & (T)-mapping f: T—E is of the
form f=f~-0 with unique f~.

Since the presentation is axiomatic, our ultradistributions start from
&..(T)" = Schwartz-distributions to all the way up to & (T)" = the space
of all formal trigonometric series. In between, Sato-hyperfunctions &,(T)",
Morimoto’s ecohomological hyperfunctions &, (T)" and entire functionals
Exp(C*)" are situated as follows: For 0<s<1 and t>1,

E (T DZ(T) DExp(C*)" > E (T D&UT)Y D5(T)

where &,,(T)" is the space of ultradistributions of Gevrey-Beurling type
and Z,(T)", &,(T)" are that of Gevrey-Roumieu type for any 0<s, t<oo.

We would like to thank Prof. M. Morimoto for sending his manuscripts
and pointing out some similarities with his own work on Exp(C*) which
is included in §5. The existence of this paper owes to Prof. H. Komatsu.
After his kind advices we succeeded to formulate our abstract universality
theorem without appealing any topology which we thought indispensable.
Finally, our thanks go to the referee for his kind advices which improved
greatly the presentation of this paper.

§1. Sequential spaces and sequential linear mappings.
DEFINITION 1.1. A sequential space E is a linear subspace of
C’={a=(a;)|a;€C, jeZ}.

The dual -E~ (a-dual in the terminology of G. Kothe) is a sequence
space defined by

E~={aecC?|for all ueE, >;ujla;] <+ }.
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DEFINITION 1.2. A sequence space E is called perfect if E~"=E.

ExXAMPLE 1.3. The space C? is the largest perfect space for which
(C*)"=C"? = the space of all finite sequences. Since ECF implies E~"D>F",
C” is the smallest perfect space so that any perfect space E contains C'?.

EXAMPLE 1.4. For any space E, its dual E~ is perfect. In fact, by
definition ECE™" so that E~"DE""". But since E~c(E")"", we have
E~=E""".

DEFINITION 1.5. A sequence space is normal if uw=(u;) € E implies
lul=(lu;]) € E. \ |
A dual space E~ is normal so that any perfect space is normal.

DEFINITION 1.6. A pairing {, >z on E is a bilinear function on £ x E~
defined by

uy V)=, uv;€C,
J
which converges absolutely by the definition of E~.

DEFINITION 1.7. @: E—C is called a sequential linear fumnctional if
there exists some a € E~ so that o(u)={u, a); for all ue E. We abuse
the notation a: F— C for this mapping.

DEFINITION 1.8. A mapping f: E— F between two sequential spaces
is called a sequential linear mapping if

i) f is algebraically linear,

ii) for any ve F~, the composed mapping vofe E~.

ADJOINTNESS THEOREM 1.9. Let E, F be two perfect spaces. Then
a linear mapping f: E—F 1is sequential if and only if f is represented
by an infinite matrixz (f,;) € C?*% such that for any we E, ve F~,

(*) Ej:]fkil il < +oo , §k:|’vk] !%‘.fkiu:‘]<+°° .

The adjoint mapping f~: F~— E~ defined by the composite f v=vof is
also sequential and the transposed matrix *(f,;) represents f~. Mappings
S and f~ are related by the adjointness relation:

fuy vYp={u, f0>y  for any ue E, ve F~.

For the proof of this Adjointness Theorem 1.9, we need the following
lemma:

LEMMA. Let E, F be perfect spaces and (f,;) € C**% be an infinite
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matrix satisfying (*), then for any we E and ve F~, we have
AR ATES A TARD WA
PROOF OF LEMMA. For any u € E, let us define its n-cut u™ =(u{") by

- {uj (I51=n)
N (R (F1 )

Then for any we E~, we have

(=12, ---).

{lu—u"™, w) — 0 as n— oo,
because the fact 3}, |u,w,| <+ o implies that

[{u—u"™, wH|= mZ lu,w,| — 0 as n— oo .
>n

Now for any u € E and ve F'~, we have
(fhy 03 =2, fusuhsv =ty vo f)
and, since F is perfect, i.e.,
S sl - [oofil <+
we can conclude that vofe E~. Moreover, for any v € F'~, we have vofe E~,
so that
{fu—fu™, v)=L{u—u", vof) —0 as n — oo .
That is, for any v € E and ve F~,
lim 3} fv,] - I’_‘Xs."fuu,:Ek‘, AR ;fuuf .

n—oo k

Using the fact that F is perfect, we can replace > <. fii%; and >; fiiu;
by their absolute values respectively:

}‘1_1.2 ; vl - llﬂzs‘.nfkiu:'{:% vl + l;fuusl . O

PROOF OF ADJOINTNESS THEOREM 1.9. Let f: F—F be sequential,
i.e., for any v e F", the composed mapping vefe E~. Let ¢,=(e,;) € F~ be
the functional defined by

e_{l k=34
Tl k5.
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Then e,of=(f,;) € E, i.e., for any uw € E, >}; |fiil lujl<+ . Forany uek,
e.ofu is the k-th coordinate of fu € F' hence :

(fu)= :Z Suits 5

i.e., f is represented by the matrix (f,;) € C**% satisfying (x).

Let (f.;) be an infinite matrix satisfying (). Taking u=e; which
belongs to E such that >, fi.ei=fii» Wwe have X, v, |fisl<+co. Consider,
for any finite n, the sum

L= 3 |3 vifisl lugl .
lfisn &
We can choose ¢;€C, |¢;/=1 such that
lga V3%l =2k. Ve 1i€i%s5 +
Since (g;u;) € E/, we have
I= Z > v Sri€ith;
171sn &k
=12 v 2 Jri€iU;]
k lilsn
=30 vl | 25 Suseiusl -
k l71sn

Letting n— o we get from Lemma

11_‘12 Inzgl l% Ve Srdl 1%5]
=lim 3% il | 3 frseius]
n—oo k ldlsn
=2k'. V] l%fkiefujl< F oo,
i.e., if a matrix (f,;) satisfies (x), it satisfies also

(%) Ek.'. [Ve] | frsl <400 ; lEk'. VoSusl [Us] <+ o0

for any ueE, veF~. Now, let f: E—F be defined by fu=0Q.;fisu:)
for any € E, then for any ve F", the composed mapping veof: E—C is
given by

vofu =§kl vk(Ejl Jri%s) =Zj‘. (Ekl VeSr)Us »

Since by (xx*)

7

|§a Sl lug| <+ oo,
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Fo=CQlLvfi;) e E7, i.e., f is sequential.
Finally, using (*) and (x*) we have, for any ueck, 'veF'

{fu, 'U>F—'Z ’Uk(z Jrit;)= Z (Z ViU =<u, f g

as asserted. O

ExAMPLE 1.10. For any two perfect spaces F and F' we denote by
L(E, F') the space of all sequential linear mappings from E to F. Then
it is easy to determine the structure of the following spaces:

L(C*®?, C*)=C?%*%= all matrices.

L(C?, C®)=C"?*® = a]l matrices of finite supports.

As a consequence we have:

C(ZXZ) CL(E, F) CCZXZ

for any perfect spaces E and F.

§2. Abstract Universality Theorem.

Let &(T) be a C-valued function space on the unit circle T. We
propose the following axioms for &(T):

AxioMm 2.1. For any @€ Z(T), the Fourier coefficients

1 2x .
¢5=—-§ P(t)e "'dt
21 Jo

are defined and for %0, 0<>}; |Pi| <+ o=, i.e., &€(T)c % (T)= the space
of all functions having absolutely convergent Fourier series. Imbedding
Z(T) into C? using Fourier coefficients this means that we require
e (T)cCl(Z).

Axiom 2.2. Under the above identification, &°(T) is a perfect space.

REMARK. Axioms 2.1 and 2.2 are independe‘nt. In fact, 2(T)=L¥T)
satisfies Axiom 2.2 but not 2.1.
Take any integer N>0 and consider

& (T)={pe > (T)|for any jeZ, |j|>N, ¢;=0}.
Then Z(T) satisfies Axiom 2.1 but not 2.2.

DEFINITION 2.8. A mapping f: T— E from the unit circle 7T into a
sequence space E is a &(T)-mapping if for any w e E~, the composed
mapping uof: T'— C belongs to & (T).
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ABSTRACT UNIVERSALITY THEOREM 2.4. Let & (T) be a function space
on T satisfying Axioms 2.1 and 2.2. Then we have:
(i) The delta mapping 6: T—<Z(T)" defined by
{p, 0p=p@) . Jfor all peZ&(T)
18 a & (T)-mapping.
- (i) If g7 &(T)"—E is a sequential linear mapping, then the com-
posed mapping g~°8: T—E is a € (T)-mapping.
(iii) For any & (T)-mapping f: T— E, there exists a unique sequential
linear mapping f~: & (T)"— E so that f=f~-d.
Proor. (i) Take ve&(T)"=<(T). Then the composed mapping
v09,=<v, 0,y =v(t)
is, by the definition of §-mapping, an element of & (T).
~ (ii) Let weE". Then by definition, ueg~e & (T)""=<(T). Hence
uog~od,={uog~, 8,y =ucg~(t) belongs to & (T). ~
(ili) Existence of f~: & (T)"— E. By hypothesis, f: T—FEis a & (T)-
mapping so that for any ve E~, vof € &€(T). Therefore, a sequential linear
mapping E~—&(T) is defined. Hence by Adjointness Theorem 1.9, there
is an adjoint mapping f~: &(T)"— E~"=FE which is a sequential mapping.
By the definition of adjoint mapping f~ we have

{u, ’U°f><fm'~ =<fA°’Nn Vg »
For u=94,, this gives

{0y Vo[ Yem~=0of(t)={ A1), vy p={f"0s V&

for any ve E~. This proves f=f"°0.

Unicity of f~:&(T)"—E. Suppose f~oo=f=0. We have to show
that f~=0 on &(T)". Since f~ is sequential, by Adjointness Theorem
1.9 there exists g: E~—<&(T) such that

fu, vy =<t gVemn -
Take w=0,€ & (T)", then
(f 0y vIe=1{0s gV em~=9v(t)=0
for any ve E*, i.e., g=0 on E~. From {f~u, v);=0 for any ve E~, we
conclude that f~u=0 for any uwe <& (T)", i.e., f~=0 on &(T)". |
§3. Gevrey classes &(T), ?(,,(T) for 0<s= <><>;.

DEFINITION 3.1. Gevrey classes of functions on T'=R/2xZ are de-
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fined as follows: for any se R, ¢ € &,(T) if and only if @ € C~(T) and
there exist some A>0 and C>0 so that for any integer n=0

l#™]|= sup |‘—132(—t—)—| =C-A"(nl) .
ostsex| it

Similarly, for any se R, ¢ € &,/(T) if and only if @ € C~(T) and for any
A>0 there exists C,>0 so that for any integer n=0

”¢(n)”°°= sup li:q)(.—t)l éCA-A"(’n!)' .
ostse | dt®

REMARKS. For s=o, we define
B o(T)=Fr(T)=22(T)=C>(T)

to be the space of infinitely differentiable funections.

The following facts are easy consequences of the above definitions.
For <0, &(T)=%,(T)=C, i.e., the space of all constant functions. For
8=0, Z,(T)=C but &(T) is the space of all finite linear combinations of
et (i=v'—1 and je Z). For s=1, &,(T)=C*T) is the space of all an-
alytic functions on T.

Following results concerning the Fourier coefficients of Gevrey classes
of functions and their duals are proved in our paper [10]:

PROPOSITION 3.2. Let

Pi=| P it (je2)
21 Jo

and 0<8< o,
(1) e & (T) +f and only +f for some B>0 and K>0 we have

lp;|=K-e 23" (jeZ).
(ii) @ € B w(T) if and only if for any B>0 there exists K;>0 such that
lps| = K59 (jeZ).

We imbed &(T) and &, (T) into C? as its subspaces using Fourier
coefficients. Then we have

PROPOSITION 38.8. Suppose 0<s< oo,
(1) ueZ(T) +f and only if for any B>0 there exists K;>0 such that

lus| <Kz (jeZ).
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(il) e &, (T)" if and only if for some B>0 and K>0 we have
uASK-e®i (e Z).

It is known that C*c 7 (T) so that &,(T) and &,,,(T) satisfy Axiom
2.1. From Propositions 3.2 and 8.8 it follows that &,(T) and &,,(T) are
perfect, i.e., they satisfy Axiom 2.2. For the case of s= o, perfectness
follows from Kothe [3]:

pe2(T) if and only if for all k=0,1,2, ---, 3 |jfflp;|l<+ o,

ue=2(T)" if and only if for some k=0, K>0,
lus| = Kl|jlI* (1eZ).
Hence, we have

THEOREM 3.4. The space &,(T)" with 6: T— &, (T)" is universal for
any &.(T)-mapping f: T— E into any perfect space E. Similar statement
holds for & .(T)" for any s:0<8s< oo,

§4. Trigonometric polynomials & (7).

The space &,(T) of polynomials in e*, i.e., trigonometric polynomials
is identical with the sequence space C*, hence is perfect so that the
space &(T) satisfies Axioms 2.1 and 2.2. We have

THEOREM 4.1. The space &(T)" of all formal trigonometric series
with 6: T—F(T)" given by 5,=(e'?);., 18 universal for any & T)-mapping
JS: T— E into any perfect space E.

In other words, the space &(T)" is universal for any weakly vector
valued polynomial mappings.

§5. Entire functions of exponential type Exp(C>).

DEFINITION 5.1. A function @ on C*=C\ {0} is entire of exponential
type if there are a=0, =0 such that

I lles=sup (Ip()le!1 1) < o0
Exp(C*) is the space of such functions.

DEFINITION 5.2 Fourier coefficients of @ € Exp(C*) are defined by

1 2z .
sv,-:—s P(e)edt ,
27 Jo .
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@ being identified with its restriction on 7.
The following proposition holds (see Helgason [1], Morimoto [5]):

PROPOSITION 5.8. (i) @€ Exp(C*) if and only if for some K>0 and
B>0, '

151
pl<sKBL  (jez),
1711
(i) ueExp(C*)" if and only if for all B>0,

From this it follows that the space Exp(C*) considered as a sequential
space is perfect hence satisfies Axioms 2.1 and 2.2. Hence we have

THEOREM 5.4. The space of entire functionals Exp(C*)” with ¢: T—
Exp(C*)~ is universal for any Exp(C*)-mapping f: T— E to any perfect
space E, i.e., Exp(C*)" is universal for any vector valued weakly entire
functions of exponential type.

Here, we show connections with ultradistributions of Gevrey classes:

THEOREM 5.5. For any s (0<s<1), we have
E(T)CTExp(C*)CFu(T) .

PROOF. The first inclusion. From Propositions 3.2 (i) and 5.8 (i), it
is sufficient to show that for B>0, 0<s<1,

e—BIiII/’=0<_L%i'_ for |j] — oo .

Let us write
Cy=ldlt - e .
Using the Stirling formula:
1711 ~ [jlljle—lill/m=el:’l-losla'l—ljl+(1/2)-10821=IJ‘I ,
we have

Cj ~ elil'l°8|.1'l—l.1'l+(1/2)°1082IIJ'I—B|.1'11/' —0

for |j|— - as required.
The second inclusion. From Propositions 5.3 (i) and 3.2 (ii) it is suf-

ficient to show that for any B>0,
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141 . .

B _o(e)  for 7] — oo .

171!
Let us write this time,

j__‘_B:'ﬂ_ . e'.ﬂ
171!
Then,
C,- ~ eldl-B—ijl-loglii+1l— /2 log2xifl+ifl _, ()

for |j|— co as required. O
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