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Abstract. In this note we give some interesting topological restrictions for the immersion
of Kaehler surfaces into the complex projective space CP™(1).

§1. Introduction.

Let M be a 2-dimensional compact Kaehler submanifold immersed into
the complex projective space CP™(1) endowed with the Fubini-Study metric
of constant holomorphic sectional curvature 1. We denote by sign(M)
and ¢ the signature of M and the second fundamental form of the im-

mersion respectively.
In this paper we obtain the following theorems.

THEOREM 1. For M we have:
(1.1) 327 sign(M)gS (4—|of9) *1
. M

where * denotes the Hodge star operator and the equality holds if and
only if M is an imbedded submanifold congruent to the standard imbedding
of CP*(1) or CQ*=CP*x CP* into CP™(1).

THEOREM 2. If M has scalar curvature v=3, then
sign(M)<sign(CP?

where the equality holds if and only if M is congruent to the standard
tmbedding of CP*(1/2) or CP*1) into CP™(1).

From Theorem 1 we obtain

COROLLARY 1. A) If M has positive total scalar curvature, then the
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second Betti number of M satisfies

1
<24 ‘_
b.=<2 327:2SM(IGI 4) x1

where the equality holds if and only if M is congruent to the standard
imbedding of CP*(1) or CQ* into CP™(1).
B) If M has sign(M)=<0, then

S o]t x1 =4 vol(M)
where the equality holds if and only if M is congruent to the standard
wmbedding of CQ* into CP™(1).

Theorem 1 has another interesting consequence. Indeed, Theorem 1
together with Theorem 2 yields

COROLLARY 2. If M has scalar curvature tv=4, then M is congruent
to the standard imbedding of CQ* or CP*(1) into CP™(1).

REMARK. Corollary 2 is one of Ogiue’s conjectures [4]. During the
preparation of this note it came to my knowledge that this Ogiue’s con-
jecture has been proved in [5] for every n=2.

§2. Preliminaries.

Let M be a 2-dimensional compact Kaehler manifold. Let {¢, 9°} be
a local field of unitary coframes. Then the Kaehler 2-form ¢, the Ricci
form 7 and the scalar curvature z are given by

vV —1 V=1
8w 4

b= SHNG, T= S 0N, =23 0

where p,; are the local components of the Ricei tensor o of M. It is
well-known that the first Chern class ¢, is represented by v. We denote
by |R] and |o| the lengths of the curvature and Ricei tensors respectively.
We recall that the signature of M can be expressed by the following

formulas (cf. for example [1] and [2] p. 125):

2.1) 967° sign(M)=| (4loP—2IR 1,

(2.2) sign(M)= i:o( —1)%,,,
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where b, , denotes the dimension of the space of the harmonic forms of
bidegree (p, @) on M.

From a classification theorem of Nakagawa-Takagi [3] (see also Takeuchi
[6]), we have the following

LEMMA 2.1. Let M be a compact Kaehler surface immersed in CP™(1).
Then M has parallel second fundamental form if and only if it is an
imbedded submanifold congruent to the standard imbedding of one in the
Jollowing table:

surface P T vol sign
(a) CPx1) 0 6 8r? 1
(b) CP%(1/2) 3 3 32n* 1
(e) CQ* 1 4 1672 0

where p is the essential complex codimension. The imbeddings (b) and (c)
are called respectively the Veronese imbedding and the Segre imbedding.

§3. Proof of Theorem 1.

Since M is holomorphically isometrically immersed in CP™(1), the second
fundamental form o of the immersion satisfies the following equations

8.1) r=6—|0|?,

(3.2) |oP=9— 3]0[2+Tr(2 AZ)
(3.3) |RP=12—4|o*+2 2 (Tr A Ap)?,
(3.4) —;—-Awlz: Vo +2|o*—2 Tr(za‘, AL — az‘; (Tr A A,

where A is the Laplacian, Vo the covariant derivative of ¢ and A, the
Weingarten maps associated with orthonormal basis &, +-+, &m—y Of the
normal space. Equations (8.1) and (3.4) can be found in [4]. Equations
(3.2) and (8.3) can be obtained from the equation of Gauss. It is also
shown that (cf. [4] p. 87)

(3.5) 23, (Tr A, A, <ol .

Taking the integral of the both sides of (8.4) and using Green’s Theorem,
we have
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(3.6) S ol *1-_—8 (2 Tx(S A2+ 3 (Tr A, A" —2lof) +1.
M M « «,

Now combining (2.2) with (8.2), (3.3) and (3.6), we obtain

3.7) 487 sign(M) = SM{1%|2+6—3 3 (Tr 4,4, +1 .

From (8.7), (8.5) and (3.1) we get

487* sign(M)zg Wdlz*1+i§ (4—!0'|‘)*12—3—S 4—lol*) *1,
M 2 M 2 M

from which (1.1) follows. Suppose that the equality holds in (1.1), that is,
(3.8) 487 sign(M)=%S (4—|olt) =1 ,
M

then M has parallel second fundamental form. On the other hand (3.8)
is not satisfied for M=CP?*1/2). Therefore (3.8) and Lemma 2.1 imply
that M=CP?*(1) or M=CQ".

§4. Proof of Theorem 2.

Let g be the Kaehler metric of M induced from the immersion
j: M—CP™(1) and ¢ the associated Kaehler form. Now since the total
scalar curvature S 7 x1 is positive, a result of Yau [7] implies that all

plurigenera of M Mvanish. In particular we have b,,=0. Then, using
b, =0, b,,=b,,=1, b, ,=b,, and Serre duality, from (2.2) we obtain

sign(M)=2-b,,<1.

If sign(M)=1, then b, ,=1 and consequently M is cohomologically Einsteinian,
i.e., ¢,=aw for some constant a, where w=[¢] is the cohomology class rep-
resented by ¢. On the other hand, by a direct computation we find

(4.1) ¢/\~/=§¢2 .

Thus by taking integration of both sides of equation (4.1) we obtain

a=(1/2)vol(M )S z#1>0. Therefore M has positive first Chern class. Then
M

from a classification theorem of Yau [7] we have that M is biholomorphic
to either CP'x CP" or to a surface obtained from CP? by blowing up &
points, 0<k<8, in general position. However, since b,,=1, M cannot be
biholomorphic to CP'x CP'. Since blowing up a point of CP? diminishes
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the signature by one, if sign(M)=1 then M is biholomorphic to the com-
plex projective space CP*. Let ¢, be the Kaehler form of CP™(1). If
J*: H(CP™, Z)— H*(M, Z) is the homomorphism corresponding to the im-
mersion 7, then

[8]=35*(g.)) € H(M, Z) .

Let @, be the Kaehler form of M corresponding to the Fubini-Study metric
g, of constant holomorphic sectional curvature 1. Since [¢], [p,] € H¥M, Z)
and H*M, Z)=H*CP? Z)=Z, we have

[6]l=s[®.] for some positive integer s .

Thus we have

(4.2) [T =sp.T
and
4.3) [gle,=s[p]e, -

From (4.2) and (4.3) we obtain respectively

vol(M, g)=s*vol(M, g,) and | zx1=s{ 7,+1=65vol(hM, gy) .
Consequently we have
(4.4) | on =-S— vol(M, g) .

The assumption z=3 and 6 —7=|¢[*=0, together with (4.4), imply 8< 6/s<6
and so either s=1 or s=2. If s=1 we have =6 and hence 6=0. There-
fore M is totally geodesic. If s=2 we have r=38. On the other hand
it is well-known that every Kaehler metric with constant scalar curvature
7 on CP* is of constant holomorphic sectional curvature z/6. Then, from
(8.1)-(8.3) and (8.6) we have Vo=0 and by Lemma 2.1 we conclude that
M is congruent to the Veronese imbedding CP%(1/2). '

ProOF OF COROLLARY 1. If M has positive total scalar curvature,

as before we have sign(M)=2—b,. Therefore A) of the Corollary 1 follows
from Theorem 1.

If M has sign(M)=<0, from Theorem 1 we obtain S lo]* *x1 =4 vol(M).
M
Moreover S lo|* *1=4 vol(M) implies sign(M)=0 and the equality in (1.1).
M
Therefore M is necessarily congruent to CQ:.
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PROOF OF COROLLARY 2. If 7=4, then from inequality (1.1) we have
3272 sign(M)gS (4—|of) +1= SM(T—4)(2+ o) 120 .
M

On the other hand, as in the proof of Theorem 2 we have sign(M)=2-—b,.
Therefore b,=1 or b,=2. If b,=1, then sign(M)=1 and 7=4>3, so Theorem
2 implies that M=CP*1). If b,=2, then the equality holds in (1.1) and
sign(M)=0, so Theorem 1 implies that M=C@Q".
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