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The Signature of K\"ahler Surfaces Immersed into $CP^{m}$
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Abstract. In this note we give some interesting topological restrictions for the immersion
of Kaehler surfaces into the complex proiective space $CP^{m}(1)$ .

\S 1. Introduction.

Let $M$ be a 2-dimensional compact Kaehler submanifold immersed into
the complex projective space $CP^{n}(1)$ endowed with the Fubini-Study metric
of constant holomorphic sectional curvature 1. We denote by sign$(M)$

and $\sigma$ the signature of $M$ and the second fundamental form of the im-
mersion respectively.

In this paper we obtain the following theorems.

THEOREM 1. For $M$ we have:

(1.1) $32\pi^{2}sign(M)\geqq\int_{H}(4-|\sigma|^{4})*1$

where $*denotes$ the Hodge star operator and the equality holds if and
only if $M$ is an imbedded submanifold congruent to the standard imbedding
of $CP^{2}(1)$ or $CQ^{2}=CP^{1}\times CP^{1}$ into $CP^{m}(1)$ .

THEOREM 2. If $M$ has scalar curvature $\tau\geqq 3$ , then

sign$(M)\leqq sign(CP^{2})$

where the equality holds if and only if $M$ is congruent to the standard
imbedding of $CP^{2}(1/2)$ or $CP^{2}(1)$ into $CP^{m}(1)$ .

From Theorem 1 we obtain

COROLLARY 1. A) If $M$ has positive total scalar curvature, then the
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second Betti number of $M$ satisfies

$b_{2}\leqq 2+\frac{1}{32\pi^{2}}\int_{H}(|\sigma|^{4}-4)*1$

where the equality holds if and only if $M$ is congruent to the $standar\dot{a}$

imbedding of $CP^{2}(1)$ or $CQ^{2}$ into $CP^{m}(1)$ .
B) If $M$ has sign$(M)\leqq 0$ , then

$\int_{H}|\sigma|^{4}*1\geqq 4vol(M)$

where the equality holds if and only if $M$ is congruent to the standaro
imbedding of $CQ^{2}$ into $CP^{m}(1)$ .

Theorem 1 has another interesting consequence. Indeed, Theorem 1
together with Theorem 2 yields

COROLLARY 2. If $M$ has scalar curvature $\tau\geqq 4$ , then $M$ is $cong\gamma uen/$

to the standard imbedding of $CQ^{2}$ or $CP^{2}(1)$ into $CP^{m}(1)$ .
REMARK. Corollary 2 is one of Ogiue’s conjectures [4]. During tht

preparation of this note it came to my knowledge that this Ogiue’s con
jecture has been proved in [5] for every $n\geqq 2$ .

\S 2. Preliminaries.

Let $M$ be a 2-dimensional compact Kaehler manifold. Let $\{\theta^{1}, \theta^{2}\}b\langle$

a local field of unitary coframes. Then the Kaehler 2-form $\phi$ , the Ricc
form $\gamma$ and the scalar curvature $\tau$ are given by

$\phi=\frac{\sqrt{-1}}{8\pi}\sum\theta^{\alpha}\wedge\overline{\theta}^{\alpha}$ , $\gamma=\frac{\sqrt{-1}}{4\pi}\sum\rho_{\alpha\overline{\beta}}\theta^{\alpha}$ A $\overline{\theta}^{\beta}$ , $\tau=2\sum\rho_{a\overline{\alpha}}$

where $\rho_{\alpha\overline{\beta}}$ are the local components of the Ricci tensor $\rho$ of $M$. It $I_{1}$

well-known that the first Chern class $c_{1}$ is represented by $\gamma$ . We denot $($

by $|R|$ and $|\rho|$ the lengths of the curvature and Ricci tensors respectively
We recall that the signature of $M$ can be expressed by the $followin\{$

formulas (cf. for example [1] and [2] p. 125):

(2.1) $96\pi^{2}sign(M)=\int_{H}(4|\rho|^{2}-2|R|^{2})*1$ ,

(2.2) sign$(M)=\sum_{m\wedge-}^{2}\int-1)^{q}b_{p,q}$
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where $b_{p,q}$ denotes the dimension of the space of the harmonic forms of
bidegree $(p, q)$ on $M$.

From a classification theorem of Nakagawa-Takagi [3] (see also Takeuchi
[ $ 6\rfloor$), we have the following

LEMMA 2.1. Let $M$ be a compact Kaehler surface immersed in $CP^{m}(1)$ .
Then $M$ has parallel second fundamental form if and only if it is an
imbedded submanifold congruent to the standard imbedding of one in the
following table:

$\ovalbox{\tt\small REJECT}_{2}\ovalbox{\tt\small REJECT}\frac{surface}{}\frac{\frac{(a)CP^{2}(1)}{(b)CP^{2}(1/2)}}{(c)CQ^{2}}|_{\frac{}{1}}^{\frac{p}{}}\frac{0}{3}|_{\frac{}{4}}^{\tau}\overline{\frac{6}{3}}|_{\frac{2}{16\pi}}^{\frac{vo1}{8\pi}}\frac{2}{32\pi}|_{\frac{}{0}}^{\frac{sign}{}}\frac{1}{1}|$

where $p$ is the essential complex codimension. The imbeddings (b) and (c)
are called respectively the Veronese imbedding and the Segre imbedding.

\S 3. Proof of Theorem 1.

Since $M$ is holomorphically isometrically immersed in $CP^{M}(1)$ , the second
fundamental form $\sigma$ of the immersion satisfies the following equations

(3.1) $\tau=6-|\sigma|^{2}$ ,

(3.2) $|\rho|^{2}=9-3|\sigma|^{2}+Tr(\sum_{\alpha}A_{\alpha}^{2})^{2}$ ,

(3.3) $|R|^{2}=12-4|\sigma|^{2}+2\sum_{\alpha,\beta}$
$($Tr $A_{\alpha}A_{\beta})^{2}$ ,

(3.4) $\frac{1}{2}\Delta|\sigma|^{2}=|\overline{\nabla}\sigma|^{2}+2|\sigma|^{2}-2Tr(\sum_{\alpha}A_{\alpha}^{2})^{2}-\sum_{\alpha,\beta}$ $($Tr $A_{\alpha}A_{\beta})^{2}$ ,

where $\Delta$ is the Laplacian, $\overline{\nabla}\sigma$ the covariant derivative of $\sigma$ and $A_{\alpha}$ the
Weingarten maps associated with orthonormal basis $\xi_{1},$ $\cdots,$ $\xi_{2(m-2)}$ of the
normal space. Equations (3.1) and (3.4) can be found in [4]. Equations
(3.2) and (3.3) can be obtained from the equation of Gauss. It is also
shown that (cf. [4] p. 87)

(3.5) 2 $\sum_{\alpha.\beta}$

$($Tr $A_{\alpha}A_{\beta})^{2}\leqq|\sigma|^{4}$

Taking the integral of the both sides of (3.4) and using Green’s Theorem,
we have
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(3.6) $\int_{K}|\overline{\nabla}\sigma|^{2}*1=\int_{K}${$2Tr(\sum_{\alpha}A_{\alpha}^{2})^{2}+\sum_{\alpha,\beta}$ (Tr $A_{\alpha}A_{\beta})^{2}-2|\sigma|^{2}$} $*1$ .
Now combining (2.2) with (3.2), (3.3) and (3.6), we obtain

(3.7) $48\pi^{2}sign(M)=\int_{H}${ $|\overline{\nabla}\sigma|^{2}+6-3\sum_{\alpha,\beta}$ (Tr $A_{\alpha}A_{\beta})^{2}$} $*1$ .
From (3.7), (3.5) and (3.1) we get

48z2 sign $(M)\geqq\int_{H}|\overline{\nabla}\sigma|^{2}*1+\frac{3}{2}\int_{H}(4-|\sigma|^{4})*1\geqq\frac{3}{2}\int_{H}(4-|\sigma|^{4})*1$ ,

from which (1.1) follows. Suppose that the equality holds in (1.1), that is,

(3.8) $48\pi^{l}sign(M)=\frac{3}{2}\int_{H}(4-|\sigma|^{4})*1$ ,

then $M$ has parallel second fundamental form. On the other hand (3.8)

is not satisfied for $M=CP^{2}(1/2)$ . Therefore (3.8) and Lemma 2.1 imply
that $M=CP^{2}(1)$ or $M=CQ^{2}$ .

\S 4. Proof of Theorem 2.

Let $g$ be the Kaehler metric of $M$ induced from the immersion
$j:M\rightarrow CP^{m}(1)$ and $\phi$ the associated Kaehler form. Now since the total
scalar curvature $\int_{H}\tau*1$ is positive, a result of Yau [7] implies that all
plurigenera of $M$ vanish. In particular we have $b_{2,0}=0$ . Then, using
$b_{2,0}=0,$ $b_{2,2}=b_{0,0}=1,$ $b_{p,q}=b_{q,p}$ and Serre duality, from (2.2) we obtain

sign$(M)=2-b_{1,1}\leqq 1$ .
If sign$(M)=1$ , then $b_{1,1}=land$ consequently $M$ is cohomologically Einsteinian,
i.e., $ c_{1}=a\omega$ for some constant $a$ , where $\omega=[\phi]$ is the cohomology class rep-
resented by $\phi$ . On the other hand, by a direct computation we find

(4.1) $\phi$ A $\gamma=\frac{\tau}{2}\phi^{2}$ .

Thus by taking integration of both sides of equation (4.1) we obtain
$a=(1/2)vol(M)\int_{K}\tau r1>0$ . Therefore $M$ has positive first Chern class. Then
from a classification theorem of Yau [7] we have that $M$ is biholomorphic
to either $CP^{1}\times CP^{1}$ or to a surface obtained from $CP^{2}$ by blowing up $k$

points, $0\leqq k\leqq 8$ , in general position. However, since $b_{1,1}=1,$ $M$ cannot be
$t_{s}:L-1---\rightarrow-h_{\dot{\tau}n}*-\rho p_{1\cup}\rho p_{1}$ $Qi_{r\wedge\Delta}h1_{rszr}i_{1\alpha}$ $\tau\tau r\tau oY\backslash \cap i+nf0P^{2}di_{YV\backslash }ini\alpha h\circ Q$
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the signature by one, if sign$(M)=1$ then $M$ is biholomorphic to the com-
plex projective space $CP^{2}$ . Let $\phi_{0}$ be the Kaehler form of $CP^{m}(1)$ . If
$j^{*}:H^{2}(CP^{m}, Z)\rightarrow H^{2}(M, Z)$ is the homomorphism corresponding to the im-
mersion $j$ , then

$[\phi]=j^{*}([\phi_{0}])\in H^{2}(M, Z)$ .
Let $\varphi_{0}$ be the Kaehler form of $M$ corresponding to the Fubini-Study metric
$g_{0}$ of constant holomorphic sectional curvature 1. Since $[\phi],$ $[\varphi_{0}]eB^{2}(M, Z)$

and $H^{2}(M, Z)=H^{2}(CP^{2}, Z)\cong Z$, we have

$[\phi]=s[\varphi_{0}]$ for some positive integer $s$ .
Thus we have

(4.2) $[\phi]^{2}=s^{2}[\varphi_{0}]^{2}$

and

(4.8) $[\phi]c_{1}=s[\varphi_{0}]c_{1}$ .
From (4.2) and (4.3) we obtain respectively

$vol(M, g)=s^{2}vol(M, g_{0})$ and $\int_{K}\tau*1=s\int_{H}\tau_{0}*1=6svol(M, g_{0})$ .
Consequently we have

(4.4) $\int_{H}\tau*1=\frac{6}{s}vol(M, g)$ .
The assumption $\tau\geqq 3$ and $6-\tau=|\sigma|^{2}\geqq 0$ , together with (4.4), imply $3\leqq 6/s\leqq 6$

and so either $s=1$ or $s=2$ . If $s=1$ we have $\tau=6$ and hence $\sigma=0$ . There-
fore $M$ is totally geodesic. If $s=2$ we have $\tau=3$ . On the other hand
it is well-known that every Kaehler metric with constant scalar curvature
$\tau$ on $CP^{2}$ is of constant holomorphic sectional curvature $\tau/6$ . Then, from
$(3.1)-(3.3)$ and (3.6) we have $\overline{\nabla}\sigma=0$ and by Lemma 2.1 we conclude that
$M$ is congruent to the Veronese imbedding $CP^{2}(1/2)$ .

PROOF OF COROLLARY 1. If $M$ has positive total scalar curvature,
as before we have sign$(M)=2-b_{2}$ . Therefore A) of the Corollary 1 follows
from Theorem 1.

If $M$ has sign$(M)\leqq 0$ , from Theorem 1 we obtain $\int_{H}|\sigma|^{4}*1\geqq 4vol(M)$ .
Moreover $\int_{H}|\sigma|^{4}*1=4vol(M)$ implies $sIgn(M)=0$ and the equality in (1.1).
Therefore $M$ is necessarily congruent to $CQ^{2}$ .
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PROOF OF COROLLARY 2. If $\tau\geqq 4$ , then from inequality (1.1) we have

$32\pi^{2}sign(M)\geqq\int_{H}(4-|\sigma|^{4})*1=\int_{H}(\tau-4)(2+|\sigma|^{2})^{i}*1\geqq 0$ .
On the other hand, as in the proof of Theorem 2 we have sign$(M)=2-b_{2}$ .
Therefore $b_{2}=1$ or $b_{2}=2$ . If $b_{2}=1$ , then sign$(M)=1$ and $\tau\geqq 4>3$ , so Theorem
2 implies that $M=CP^{2}(1)$ . If $b_{2}=2$ , then the equality holds in (1.1) and
sign$(M)=0$ , so Theorem 1 implies that $M=CQ^{2}$ .
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