The Signature of Kähler Surfaces Immersed into $C P^{m}$

Domenico PERRONE
University of Lecce
(Communicated by K. Ogiue)

Abstract

In this note we give some interesting topological restrictions for the immersion of Kaehler surfaces into the complex projective space $C P^{m}(1)$.

§ 1. Introduction.

Let M be a 2-dimensional compact Kaehler submanifold immersed into the complex projective space $C P^{m}(1)$ endowed with the Fubini-Study metric of constant holomorphic sectional curvature 1 . We denote by $\operatorname{sign}(M)$ and σ the signature of M and the second fundamental form of the immersion respectively.

In this paper we obtain the following theorems.
Theorem 1. For M we have:

$$
\begin{equation*}
32 \pi^{2} \operatorname{sign}(M) \geqq \int_{M}\left(4-|\sigma|^{4}\right) * 1 \tag{1.1}
\end{equation*}
$$

where * denotes the Hodge star operator and the equality holds if and only if M is an imbedded submanifold congruent to the standard imbedding of $C P^{2}(1)$ or $C Q^{2}=C P^{1} \times C P^{1}$ into $C P^{m}(1)$.

Theorem 2. If M has scalar curvature $\tau \geqq 3$, then

$$
\operatorname{sign}(M) \leqq \operatorname{sign}\left(C P^{2}\right)
$$

where the equality holds if and only if M is congruent to the standard imbedding of $C P^{2}(1 / 2)$ or $C P^{2}(1)$ into $C P^{m}(1)$.

From Theorem 1 we obtain
Corollary 1. A) If M has positive total scalar curvature, then the

This work was financed by funds of M.P.I.
second Betti number of M satisfies

$$
b_{2} \leqq 2+\frac{1}{32 \pi^{2}} \int_{M}\left(|\sigma|^{4}-4\right) * 1
$$

where the equality holds if and only if M is congruent to the standard imbedding of $C P^{2}(1)$ or $C Q^{2}$ into $C P^{m}(1)$.
B) If M has $\operatorname{sign}(M) \leqq 0$, then

$$
\int_{M}|\sigma|^{4} * 1 \geqq 4 \operatorname{vol}(M)
$$

where the equality holds if and only if M is congruent to the standard imbedding of $C Q^{2}$ into $C P^{m}(1)$.

Theorem 1 has another interesting consequence. Indeed, Theorem 1 together with Theorem 2 yields

Corollary 2. If M has scalar curvature $\tau \geqq 4$, then M is congruent to the standard imbedding of $C Q^{2}$ or $C P^{2}(1)$ into $C P^{m}(1)$.

Remark. Corollary 2 is one of Ogiue's conjectures [4]. During the preparation of this note it came to my knowledge that this Ogiue's conjecture has been proved in [5] for every $n \geqq 2$.

§ 2. Preliminaries.

Let M be a 2 -dimensional compact Kaehler manifold. Let $\left\{\vartheta^{1}, \vartheta^{2}\right\}$ be a local field of unitary coframes. Then the Kaehler 2-form ϕ, the Ricci form γ and the scalar curvature τ are given by

$$
\phi=\frac{\sqrt{-1}}{8 \pi} \sum \vartheta^{\alpha} \wedge \bar{\vartheta}^{\alpha}, \quad \gamma=\frac{\sqrt{-1}}{4 \pi} \sum \rho_{\alpha \bar{\beta}} \vartheta^{\alpha} \wedge \bar{\vartheta}^{\beta}, \quad \tau=2 \sum \rho_{\alpha \bar{\alpha}}
$$

where $\rho_{\alpha \bar{\beta}}$ are the local components of the Ricci tensor ρ of M. It is well-known that the first Chern class c_{1} is represented by γ. We denote by $|R|$ and $|\rho|$ the lengths of the curvature and Ricci tensors respectively. We recall that the signature of M can be expressed by the following formulas (cf. for example [1] and [2] p. 125):

$$
\begin{align*}
& 96 \pi^{2} \operatorname{sign}(M)=\int_{M}\left(4|\rho|^{2}-2|R|^{2}\right) * 1 \tag{2.1}\\
& \operatorname{sign}(M)=\sum_{p, q=0}^{2}(-1)^{q} b_{p, q} \tag{2.2}
\end{align*}
$$

where $b_{p, q}$ denotes the dimension of the space of the harmonic forms of bidegree (p, q) on M.

From a classification theorem of Nakagawa-Takagi [3] (see also Takeuchi [6]), we have the following

Lemma 2.1. Let M be a compact Kaehler surface immersed in $C P^{m}(1)$. Then M has parallel second fundamental form if and only if it is an imbedded submanifold congruent to the standard imbedding of one in the following table:

surface	p	τ	vol	sign
(a) $C P^{2}(1)$	0	6	$8 \pi^{2}$	1
(b) $C P^{2}(1 / 2)$	3	3	$32 \pi^{2}$	1
(c) $C Q^{2}$	1	4	$16 \pi^{2}$	0

where p is the essential complex codimension. The imbeddings (b) and (c) are called respectively the Veronese imbedding and the Segre imbedding.

§ 3. Proof of Theorem 1.

Since M is holomorphically isometrically immersed in $C P^{m}(1)$, the second fundamental form σ of the immersion satisfies the following equations

$$
\begin{align*}
& \tau=6-|\sigma|^{2} \tag{3.1}\\
& |\rho|^{2}=9-3|\sigma|^{2}+\operatorname{Tr}\left(\sum_{\alpha} A_{\alpha}^{2}\right)^{2} \tag{3.2}\\
& |R|^{2}=12-4|\sigma|^{2}+2 \sum_{\alpha, \beta}\left(\operatorname{Tr} A_{\alpha} A_{\beta}\right)^{2} \tag{3.3}\\
& \frac{1}{2} \Delta|\sigma|^{2}=|\bar{\nabla} \sigma|^{2}+2|\sigma|^{2}-2 \operatorname{Tr}\left(\sum_{\alpha} A_{\alpha}^{2}\right)^{2}-\sum_{\alpha, \beta}\left(\operatorname{Tr} A_{\alpha} A_{\beta}\right)^{2} \tag{3.4}
\end{align*}
$$

where Δ is the Laplacian, $\bar{\nabla} \sigma$ the covariant derivative of σ and A_{α} the Weingarten maps associated with orthonormal basis $\xi_{1}, \cdots, \xi_{2(m-2)}$ of the normal space. Equations (3.1) and (3.4) can be found in [4]. Equations (3.2) and (3.3) can be obtained from the equation of Gauss. It is also shown that (cf. [4] p. 87)

$$
\begin{equation*}
2 \sum_{\alpha, \beta}\left(\operatorname{Tr} A_{\alpha} A_{\beta}\right)^{2} \leqq|\sigma|^{4} \tag{3.5}
\end{equation*}
$$

Taking the integral of the both sides of (3.4) and using Green's Theorem, we have

$$
\begin{equation*}
\int_{M}|\bar{\nabla} \sigma|^{2} * 1=\int_{M}\left\{2 \operatorname{Tr}\left(\sum_{\alpha} A_{\alpha}^{2}\right)^{2}+\sum_{\alpha, \beta}\left(\operatorname{Tr} A_{\alpha} A_{\beta}\right)^{2}-2|\sigma|^{2}\right\} * 1 . \tag{3.6}
\end{equation*}
$$

Now combining (2.2) with (3.2), (3.3) and (3.6), we obtain

$$
\begin{equation*}
48 \pi^{2} \operatorname{sign}(M)=\int_{M}\left\{|\bar{\nabla} \sigma|^{2}+6-3 \sum_{\alpha, \beta}\left(\operatorname{Tr} A_{\alpha} A_{\beta}\right)^{2}\right\} * 1 \tag{3.7}
\end{equation*}
$$

From (3.7), (3.5) and (3.1) we get

$$
48 \pi^{2} \operatorname{sign}(M) \geqq \int_{M}|\bar{\nabla} \sigma|^{2} * 1+\frac{3}{2} \int_{M}\left(4-|\sigma|^{4}\right) * 1 \geqq \frac{3}{2} \int_{M}\left(4-|\sigma|^{4}\right) * 1,
$$

from which (1.1) follows. Suppose that the equality holds in (1.1), that is,

$$
\begin{equation*}
48 \pi^{2} \operatorname{sign}(M)=\frac{3}{2} \int_{M}\left(4-|\sigma|^{4}\right) * 1 \tag{3.8}
\end{equation*}
$$

then M has parallel second fundamental form. On the other hand (3.8) is not satisfied for $M=C P^{2}(1 / 2)$. Therefore (3.8) and Lemma 2.1 imply that $M=C P^{2}(1)$ or $M=C Q^{2}$.

§4. Proof of Theorem 2.

Let g be the Kaehler metric of M induced from the immersion $j: M \rightarrow C P^{m}(1)$ and ϕ the associated Kaehler form. Now since the total scalar curvature $\int_{M} \tau * 1$ is positive, a result of Yau [7] implies that all plurigenera of M vanish. In particular we have $b_{2,0}=0$. Then, using $b_{2,0}=0, b_{2,2}=b_{0,0}=1, b_{p, q}=b_{q, p}$ and Serre duality, from (2.2) we obtain

$$
\operatorname{sign}(M)=2-b_{1,1} \leqq 1
$$

If $\operatorname{sign}(M)=1$, then $b_{1,1}=1$ and consequently M is cohomologically Einsteinian, i.e., $c_{1}=\alpha \omega$ for some constant α, where $\omega=[\phi]$ is the cohomology class represented by ϕ. On the other hand, by a direct computation we find

$$
\begin{equation*}
\phi \wedge \gamma=\frac{\tau}{2} \phi^{2} \tag{4.1}
\end{equation*}
$$

Thus by taking integration of both sides of equation (4.1) we obtain $a=(1 / 2) \operatorname{vol}(M) \int_{M} \tau * 1>0$. Therefore M has positive first Chern class. Then from a classification theorem of Yau [7] we have that M is biholomorphic to either $C P^{1} \times C P^{1}$ or to a surface obtained from $C P^{2}$ by blowing up k points, $0 \leqq k \leqq 8$, in general position. However, since $b_{1,1}=1, M$ cannot be biholomorphic to $C P^{1} \times C P^{1}$. Since blowing up a point of $C P^{2}$ diminishes
the signature by one, if $\operatorname{sign}(M)=1$ then M is biholomorphic to the complex projective space $C P^{2}$. Let ϕ_{0} be the Kaehler form of $C P^{m}(1)$. If $j^{*}: H^{2}\left(C P^{m}, \boldsymbol{Z}\right) \rightarrow H^{2}(M, \boldsymbol{Z})$ is the homomorphism corresponding to the immersion j, then

$$
[\phi]=j^{*}\left(\left[\phi_{0}\right]\right) \in H^{2}(M, \boldsymbol{Z}) .
$$

Let φ_{0} be the Kaehler form of M corresponding to the Fubini-Study metric g_{0} of constant holomorphic sectional curvature 1. Since $[\phi],\left[\varphi_{0}\right] \in H^{2}(M, Z)$ and $H^{2}(M, \boldsymbol{Z})=H^{2}\left(C P^{2}, \boldsymbol{Z}\right) \cong \boldsymbol{Z}$, we have

$$
[\phi]=s\left[\varphi_{0}\right] \quad \text { for some positive integer } s
$$

Thus we have

$$
\begin{equation*}
[\phi]^{2}=s^{2}\left[\rho_{0}\right]^{2} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
[\phi] c_{1}=s\left[\varphi_{0}\right] c_{1} . \tag{4.3}
\end{equation*}
$$

From (4.2) and (4.3) we obtain respectively

$$
\operatorname{vol}(M, g)=s^{2} \operatorname{vol}\left(M, g_{0}\right) \quad \text { and } \quad \int_{M} \tau * 1=s \int_{M} \tau_{0} * 1=6 s \operatorname{vol}\left(M, g_{0}\right)
$$

Consequently we have

$$
\begin{equation*}
\int_{M} \tau * 1=\frac{6}{s} \operatorname{vol}(M, g) \tag{4.4}
\end{equation*}
$$

The assumption $\tau \geqq 3$ and $6-\tau=|\sigma|^{2} \geqq 0$, together with (4.4), imply $3 \leqq 6 / s \leqq 6$ and so either $s=1$ or $s=2$. If $s=1$ we have $\tau=6$ and hence $\sigma=0$. Therefore M is totally geodesic. If $s=2$ we have $\tau=3$. On the other hand it is well-known that every Kaehler metric with constant scalar curvature τ on $C P^{2}$ is of constant holomorphic sectional curvature $\tau / 6$. Then, from (3.1)-(3.3) and (3.6) we have $\bar{\nabla} \sigma=0$ and by Lemma 2.1 we conclude that M is congruent to the Veronese imbedding $C P^{2}(1 / 2)$.

Proof of Corollary 1. If M has positive total scalar curvature, as before we have $\operatorname{sign}(M)=2-b_{2}$. Therefore A) of the Corollary 1 follows from Theorem 1.

If M has $\operatorname{sign}(M) \leqq 0$, from Theorem 1 we obtain $\int_{M}|\sigma|^{4} * 1 \geqq 4 \operatorname{vol}(M)$. Moreover $\int_{M}|\sigma|^{4} * 1=4 \operatorname{vol}(M)$ implies $\operatorname{sign}(M)=0$ and the equality in (1.1). Therefore M is necessarily congruent to $C Q^{2}$.

Proof of Corollary 2. If $\tau \geqq 4$, then from inequality (1.1) we have

$$
32 \pi^{2} \operatorname{sign}(M) \geqq \int_{M}\left(4-|\sigma|^{4}\right) * 1=\int_{M}(\tau-4)\left(2+|\sigma|^{2}\right)^{i} * 1 \geqq 0 .
$$

On the other hand, as in the proof of Theorem 2 we have $\operatorname{sign}(M)=2-b_{2}$. Therefore $b_{2}=1$ or $b_{2}=2$. If $b_{2}=1$, then $\operatorname{sign}(M)=1$ and $\tau \geqq 4>3$, so Theorem 2 implies that $M=C P^{2}(1)$. If $b_{2}=2$, then the equality holds in (1.1) and $\operatorname{sign}(M)=0$, so Theorem 1 implies that $M=C Q^{2}$.

References

[1] H. Donnelly, Topology and Einstein Kaehler metrics, J. Differential Geometry, 11 (1976), 259-264.
[2] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.
[3] H. Naragawa and R. Takagi, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan, 28 (1976), 638-667.
[4] K. OGIUE, Differential Geometry of Kaehler submanifolds, Adv. Math., 13 (1974), 73-114.
[5] Liao Ruijia, Scalar curvature of Kaehler submanifolds of complex projective space, preprint.
[6] M. Takeuchi, Homogeneous Kaehler submanifolds in a complex projective space, Japan. J. Math., 4 (1978), 171-219.
[7] S. T. Yau, On the curvature of compact Hermitian manifolds, Inv. Math., 25 (1974), 213-240.

Present Address:
Dipartimento di Matematica, Facolta di Scienze, Universita di Lecce 73100 Lecce, Italy

