TOKYO J. MATH. Vol. 11, No. 1, 1988

The Signature of Kähler Surfaces Immersed into CP^m

Domenico PERRONE

University of Lecce (Communicated by K. Ogiue)

Abstract. In this note we give some interesting topological restrictions for the immersion of Kaehler surfaces into the complex projective space $CP^{m}(1)$.

§1. Introduction.

Let M be a 2-dimensional compact Kaehler submanifold immersed into the complex projective space $CP^{m}(1)$ endowed with the Fubini-Study metric of constant holomorphic sectional curvature 1. We denote by sign(M)and σ the signature of M and the second fundamental form of the immersion respectively.

In this paper we obtain the following theorems.

THEOREM 1. For M we have:

(1.1)
$$32\pi^2 \operatorname{sign}(M) \ge \int_M (4 - |\sigma|^4) * 1$$

where * denotes the Hodge star operator and the equality holds if and only if M is an imbedded submanifold congruent to the standard imbedding of $CP^2(1)$ or $CQ^2 = CP^1 \times CP^1$ into $CP^m(1)$.

THEOREM 2. If M has scalar curvature $\tau \ge 3$, then

 $\operatorname{sign}(M) \leq \operatorname{sign}(CP^2)$

where the equality holds if and only if M is congruent to the standard imbedding of $CP^2(1/2)$ or $CP^2(1)$ into $CP^m(1)$.

From Theorem 1 we obtain

COROLLARY 1. A) If M has positive total scalar curvature, then the

This work was financed by funds of M.P.I.

Received June 24, 1987

DOMENICO PERRONE

second Betti number of M satisfies

$$b_2 \leq 2 + \frac{1}{32\pi^2} \int_{M} (|\sigma|^4 - 4) * 1$$

where the equality holds if and only if M is congruent to the standard imbedding of $CP^2(1)$ or CQ^2 into $CP^m(1)$.

B) If M has $sign(M) \leq 0$, then

$$\int_{\mathcal{M}} |\sigma|^4 * 1 \ge 4 \operatorname{vol}(M)$$

where the equality holds if and only if M is congruent to the standard imbedding of CQ^2 into $CP^{m}(1)$.

Theorem 1 has another interesting consequence. Indeed, Theorem 1 together with Theorem 2 yields

COROLLARY 2. If M has scalar curvature $\tau \ge 4$, then M is congruent to the standard imbedding of CQ^2 or $CP^2(1)$ into $CP^m(1)$.

REMARK. Corollary 2 is one of Ogiue's conjectures [4]. During the preparation of this note it came to my knowledge that this Ogiue's conjecture has been proved in [5] for every $n \ge 2$.

§2. Preliminaries.

Let *M* be a 2-dimensional compact Kaehler manifold. Let $\{\vartheta^1, \vartheta^2\}$ be a local field of unitary coframes. Then the Kaehler 2-form ϕ , the Ricci form γ and the scalar curvature τ are given by

$$\phi = \frac{\sqrt{-1}}{8\pi} \sum \vartheta^{lpha} \wedge \bar{\vartheta}^{lpha}$$
, $\gamma = \frac{\sqrt{-1}}{4\pi} \sum \rho_{lphaar{eta}} \vartheta^{lpha} \wedge \bar{\vartheta}^{eta}$, $\tau = 2 \sum \rho_{lphaar{lpha}}$

where $\rho_{\alpha\bar{\beta}}$ are the local components of the Ricci tensor ρ of M. It is well-known that the first Chern class c_1 is represented by γ . We denote by |R| and $|\rho|$ the lengths of the curvature and Ricci tensors respectively. We recall that the signature of M can be expressed by the following formulas (cf. for example [1] and [2] p. 125):

(2.1)
$$96\pi^2 \operatorname{sign}(M) = \int_{M} (4|\rho|^2 - 2|R|^2) *1 ,$$

(2.2)
$$\operatorname{sign}(M) = \sum_{p,q=0}^{2} (-1)^{q} b_{p,q}$$

132

where $b_{p,q}$ denotes the dimension of the space of the harmonic forms of bidegree (p, q) on M.

From a classification theorem of Nakagawa-Takagi [3] (see also Takeuchi [6]), we have the following

LEMMA 2.1. Let M be a compact Kaehler surface immersed in $CP^{m}(1)$. Then M has parallel second fundamental form if and only if it is an imbedded submanifold congruent to the standard imbedding of one in the following table:

surface	p	τ	vol	sign
(a) $CP^{2}(1)$	0	6	$8\pi^2$	1
(b) $CP^{2}(1/2)$	3	3	$32\pi^2$	1
(c) CQ^2	1	4	$16\pi^2$	0

where p is the essential complex codimension. The imbeddings (b) and (c) are called respectively the Veronese imbedding and the Segre imbedding.

§3. Proof of Theorem 1.

Since M is holomorphically isometrically immersed in $CP^{m}(1)$, the second fundamental form σ of the immersion satisfies the following equations

(3.1)
$$\tau = 6 - |\sigma|^2$$
,

(3.2)
$$|\rho|^2 = 9 - 3|\sigma|^2 + \operatorname{Tr}(\sum_{\alpha} A_{\alpha}^2)^2$$
,

(3.3)
$$|R|^2 = 12 - 4|\sigma|^2 + 2\sum_{\alpha,\beta} (\operatorname{Tr} A_{\alpha} A_{\beta})^2$$

(3.4)
$$\frac{1}{2}\Delta|\sigma|^2 = |\bar{\nabla}\sigma|^2 + 2|\sigma|^2 - 2\operatorname{Tr}(\sum_{\alpha} A_{\alpha}^2)^2 - \sum_{\alpha,\beta} (\operatorname{Tr} A_{\alpha}A_{\beta})^2,$$

where Δ is the Laplacian, $\overline{\nabla}\sigma$ the covariant derivative of σ and A_{α} the Weingarten maps associated with orthonormal basis $\xi_1, \dots, \xi_{2(m-2)}$ of the normal space. Equations (3.1) and (3.4) can be found in [4]. Equations (3.2) and (3.3) can be obtained from the equation of Gauss. It is also shown that (cf. [4] p. 87)

$$(3.5) 2\sum_{\alpha,\beta} (\operatorname{Tr} A_{\alpha} A_{\beta})^2 \leq |\sigma|^4 .$$

Taking the integral of the both sides of (3.4) and using Green's Theorem, we have

DOMENICO PERRONE

(3.6)
$$\int_{\mathcal{M}} |\bar{\nabla}\sigma|^2 * 1 = \int_{\mathcal{M}} \{2 \operatorname{Tr}(\sum_{\alpha} A_{\alpha}^2)^2 + \sum_{\alpha,\beta} (\operatorname{Tr} A_{\alpha} A_{\beta})^2 - 2|\sigma|^2\} * 1.$$

Now combining (2.2) with (3.2), (3.3) and (3.6), we obtain

(3.7)
$$48\pi^{2} \operatorname{sign}(M) = \int_{\mathcal{M}} \{ |\bar{\nabla}\sigma|^{2} + 6 - 3 \sum_{\alpha,\beta} (\operatorname{Tr} A_{\alpha}A_{\beta})^{2} \} * 1.$$

From (3.7), (3.5) and (3.1) we get

$$48\pi^{2}\operatorname{sign}(M) \ge \int_{M} |\bar{\nabla}\sigma|^{2} * 1 + \frac{3}{2} \int_{M} (4 - |\sigma|^{4}) * 1 \ge \frac{3}{2} \int_{M} (4 - |\sigma|^{4}) * 1 ,$$

from which (1.1) follows. Suppose that the equality holds in (1.1), that is,

(3.8)
$$48\pi^2 \operatorname{sign}(M) = \frac{3}{2} \int_{M} (4 - |\sigma|^4) * 1 ,$$

then *M* has parallel second fundamental form. On the other hand (3.8) is not satisfied for $M = CP^2(1/2)$. Therefore (3.8) and Lemma 2.1 imply that $M = CP^2(1)$ or $M = CQ^2$.

§4. Proof of Theorem 2.

Let g be the Kaehler metric of M induced from the immersion $j: M \to CP^{m}(1)$ and ϕ the associated Kaehler form. Now since the total scalar curvature $\int_{M} \tau *1$ is positive, a result of Yau [7] implies that all plurigenera of M vanish. In particular we have $b_{2,0}=0$. Then, using $b_{2,0}=0$, $b_{2,2}=b_{0,0}=1$, $b_{p,q}=b_{q,p}$ and Serre duality, from (2.2) we obtain

 $sign(M) = 2 - b_{1,1} \le 1$.

If $\operatorname{sign}(M) = 1$, then $b_{1,1} = 1$ and consequently M is cohomologically Einsteinian, i.e., $c_1 = a\omega$ for some constant a, where $\omega = [\phi]$ is the cohomology class represented by ϕ . On the other hand, by a direct computation we find

$$(4.1) \qquad \qquad \phi \wedge \gamma = \frac{\tau}{2} \phi^2 \ .$$

Thus by taking integration of both sides of equation (4.1) we obtain $a = (1/2) \operatorname{vol}(M) \int_{M} \tau * 1 > 0$. Therefore M has positive first Chern class. Then from a classification theorem of Yau [7] we have that M is biholomorphic to either $CP^1 \times CP^1$ or to a surface obtained from CP^2 by blowing up k points, $0 \le k \le 8$, in general position. However, since $b_{1,1} = 1$, M cannot be biholomorphic to $CP^1 \times CP^1$. Since blowing up a point of CP^2 diminishes

134

the signature by one, if $\operatorname{sign}(M)=1$ then M is biholomorphic to the complex projective space CP^2 . Let ϕ_0 be the Kaehler form of $CP^m(1)$. If $j^*: H^2(CP^m, \mathbb{Z}) \to H^2(M, \mathbb{Z})$ is the homomorphism corresponding to the immersion j, then

$$[\phi] = j^*([\phi_0]) \in H^2(M, \mathbb{Z}) .$$

Let φ_0 be the Kaehler form of M corresponding to the Fubini-Study metric g_0 of constant holomorphic sectional curvature 1. Since $[\phi]$, $[\varphi_0] \in H^2(M, \mathbb{Z})$ and $H^2(M, \mathbb{Z}) = H^2(\mathbb{C}P^2, \mathbb{Z}) \cong \mathbb{Z}$, we have

$$[\phi] = s[\varphi_0]$$
 for some positive integer s.

Thus we have

$$(4.2) \qquad \qquad [\phi]^2 = s^2 [\varphi_0]^2$$

and

$$(4.3) [\phi]c_1 = s[\varphi_0]c_1.$$

From (4.2) and (4.3) we obtain respectively

$$\operatorname{vol}(M, g) = s^2 \operatorname{vol}(M, g_0)$$
 and $\int_M \tau * 1 = s \int_M \tau_0 * 1 = 6s \operatorname{vol}(M, g_0)$.

Consequently we have

(4.4)
$$\int_{M} \tau * 1 = \frac{6}{s} \operatorname{vol}(M, g) .$$

The assumption $\tau \ge 3$ and $6-\tau = |\sigma|^2 \ge 0$, together with (4.4), imply $3 \le 6/s \le 6$ and so either s=1 or s=2. If s=1 we have $\tau=6$ and hence $\sigma=0$. Therefore M is totally geodesic. If s=2 we have $\tau=3$. On the other hand it is well-known that every Kaehler metric with constant scalar curvature τ on CP^2 is of constant holomorphic sectional curvature $\tau/6$. Then, from (3.1)-(3.3) and (3.6) we have $\overline{\nabla}\sigma=0$ and by Lemma 2.1 we conclude that M is congruent to the Veronese imbedding $CP^2(1/2)$.

PROOF OF COROLLARY 1. If M has positive total scalar curvature, as before we have $\operatorname{sign}(M)=2-b_2$. Therefore A) of the Corollary 1 follows from Theorem 1.

If M has $\operatorname{sign}(M) \leq 0$, from Theorem 1 we obtain $\int_{M} |\sigma|^4 * 1 \geq 4 \operatorname{vol}(M)$. Moreover $\int_{M} |\sigma|^4 * 1 = 4 \operatorname{vol}(M)$ implies $\operatorname{sign}(M) = 0$ and the equality in (1.1). Therefore M is necessarily congruent to CQ^2 .

DOMENICO PERRONE

PROOF OF COROLLARY 2. If $\tau \ge 4$, then from inequality (1.1) we have

$$32\pi^{2}\operatorname{sign}(M) \ge \int_{M} (4 - |\sigma|^{4}) * 1 = \int_{M} (\tau - 4)(2 + |\sigma|^{2}) * 1 \ge 0.$$

On the other hand, as in the proof of Theorem 2 we have $\operatorname{sign}(M)=2-b_2$. Therefore $b_2=1$ or $b_2=2$. If $b_2=1$, then $\operatorname{sign}(M)=1$ and $\tau \ge 4>3$, so Theorem 2 implies that $M=CP^2(1)$. If $b_2=2$, then the equality holds in (1.1) and $\operatorname{sign}(M)=0$, so Theorem 1 implies that $M=CQ^2$.

References

- [1] H. DONNELLY, Topology and Einstein Kaehler metrics, J. Differential Geometry, **11** (1976), 259-264.
- [2] F. HIRZEBRUCH, Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.
- [3] H. NAKAGAWA and R. TAKAGI, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan, 28 (1976), 638-667.
- [4] K. OGIUE, Differential Geometry of Kaehler submanifolds, Adv. Math., 13 (1974), 73-114.
- [5] LIAO RUIJIA, Scalar curvature of Kaehler submanifolds of complex projective space, preprint.
- [6] M. TAKEUCHI, Homogeneous Kaehler submanifolds in a complex projective space, Japan. J. Math., 4 (1978), 171-219.
- [7] S.T. YAU, On the curvature of compact Hermitian manifolds, Inv. Math., 25 (1974), 213-240.

Present Address: DIPARTIMENTO DI MATEMATICA, FACOLTÀ DI SCIENZE, UNIVERSITÀ DI LECCE 73100 LECCE, ITALY

136