On Compact Generalized Jordan Triple Systems of the Second Kind

Hiroshi ASANO and Soji KANEYUKI
Yokohama City University and Sophia University

Dedicated to Professor Nagayoshi Iwahori on his sixtieth birthday

Introduction.

A finite dimensional graded Lie algebra $\mathscr{G}=\sum \mathscr{G}_{k}$ over a field F of characteristic zero is said to be of the ν-th kind, if $\mathscr{G}_{ \pm k}=\{0\}$ for $k>\nu$. Let $B:(x, y, z) \mapsto(x y z)$ be a triple operation on a vector space U over F. The operation B is called a generalized Jordan triple system, if the equality $(u v(x y z))=((u v x) y z)-(x(v u y) z)+(x y(u v z))$ is valid for $u, v, x, y, z \in U$. If, in addition, the relation $(x y z)=(z y x)$ holds for $x, y, z \in U$, then B is said to be a Jordan triple system. Koecher [5] and Meyberg [7] studied interesting relationship between Jordan triple systems with nondegenerate trace forms and symmetric Lie algebras (\mathscr{G}, τ); here \mathscr{G} is a semisimple graded Lie algebra of the 1 st kind with $\mathscr{G}_{0}=\left[\mathscr{G}_{-1}, \mathscr{G}_{1}\right]$, and τ is a gradereversing involution of \mathscr{G}. Our main concern is to generalize this connection to the case of generalized Jordan triple systems. It is known (Kantor [3]) that to a generalized Jordan triple system B on U there corresponds a graded Lie algebra $\mathscr{L}(B)=\sum U_{i}$ with $U_{-1}=U$. The triple system B is called of the ν-th kind, if the graded Lie algebra $\mathscr{C}(B)$ is of the ν-th kind. Under a certain condition (A) for B (cf. §1), $\mathscr{L}(B)$ admits a grade-reversing involution τ_{B}. The pair ($\mathscr{L}(B), \tau_{B}$) is considered to be a generalization of the symmetric Lie algebra corresponding to a Jordan triple system. On the other hand, K. Yamaguti [8] introduced the bilinear forms γ_{B} for a wider class of triple systems. For a generalized Jordan triple system B, the form γ_{B} is symmetric, and, as is seen in the present paper, it plays the same role as the trace form for a Jordan triple system does. Now suppose B is of the 2nd kind. The first aim of this paper is to prove the following implications (Propositions 2.4, 2.5, 2.10 and Theorem 2.8):

[^0]

Under the assumption that γ_{B} is nondegenerate, we will next give a formula which describes a relationship between the Killing form of $\mathscr{P}(B)$ and the symmetric bilinear form γ_{B} (Theorem 2.13). For the case where F is the field of real numbers, B is said to be compact if γ_{B} is positive definite. We will prove that B is compact if and only if the gradereversing involution τ_{B} is a Cartan involution (Theorem 3.3). In Theorem 3.7 we will show that, under the assumption of compactness for $B, \mathscr{L}(B)$ is simple if and only if B is simple.

Finally we should remark that compact real simple generalized Jordan triple systems B of the 2 nd kind with $\mathscr{L}(B)$ classical can be classified (see [2]).
§ 1. Basic facts on the generalized Jordan triple systems of the second kind.

Let U be a finite dimensional vector space over a field F of characteristic zero and $B: U \times U \times U \rightarrow U$ be a trilinear mapping. Then the pair (U, B) is called a triple system over F. We shall often write ($x y z$) instead of $B(x, y, z)$. For subspaces $V_{i}(1 \leqq i \leqq 3)$ of U, we denote by ($V_{1} V_{2} V_{3}$) the subspace spanned by all elements of the form $\left(x_{1} x_{2} x_{3}\right)$ for $x_{i} \in V_{i}$. A triple system (U, B) is called a generalized Jordan triple system (abbreviated as GJTS) if the following equality is valid:

$$
\begin{equation*}
(u v(x y z))=((u v x) y z)-(x(v u y) z)+(x y(u v z)) \tag{1.1}
\end{equation*}
$$

for $u, v, x, y, z \in U$. Furthermore, if the additional condition

$$
(x y z)=(z y x) \quad x, y, z \in U
$$

is satisfied, then (U, B) is called a Jordan triple system (abbreviated as JTS). For a GJTS which is not a JTS, see Example 2.1. Starting from a given GJTS (U, B), Kantor [3] constructed a certain graded Lie algebra $\mathscr{L}(B)=\sum U_{i}$ such that $U_{-1}=U$. We call this Lie algebra $\mathscr{L}(B)$ the Kantor algebra for (U, B). We say that (U, B) is of the i-th kind if $U_{ \pm k}=\{0\}$ for all $k>i$. Note that in our conventions every GJTS of the 1st kind is considered as a GJTS of the 2nd kind satisfying $U_{ \pm 2}=\{0\}$. It is known [3] that a GJTS is of the 1st kind if and only if it is a JTS. For an element $a \in U$, let us define a bilinear map B_{a} on U by putting

$$
B_{a}(x, y)=B(x, a, y) \quad \text { for } \quad x, y \in U
$$

We say that (U, B) satisfies the condition (A) if $B_{a}=0$ implies $a=0$. In this case there exists a grade-reversing involutive automorphism τ_{B} of $\mathscr{L}(B)$ such that $\tau_{B}(\alpha)=B_{a}$ for $a \in U$ (see [2] Proposition 3.8). The automorphism τ_{B} is called the grade-reversing canonical involution of $\mathscr{L}(B)$. Let us define the two linear endomorphisms $L_{a b}$ and $S_{a b}$ on $U(a, b \in U)$ by

$$
L_{a b}(x)=(a b x), \quad S_{a b}(x)=(a x b)-(b x a)
$$

Let \mathscr{S} be the subspace of $\operatorname{End}(U)$ spanned by operators $S_{a b}$. Following the arguments in Kantor [3], one can prove that if (U, B) satisfies the condition (A), then there exists a linear isomorphism of U_{-2} onto \mathscr{S}. We can thus identify U_{-2} with \mathscr{S}. We restate a result of Kantor [3] as follows, in which the condition (A) should be added as an assumption; a bracket relation there should be also corrected.

Theorem 1.1 ([3]). Let (U, B) be a GJTS of the 2 nd kind satisfying the condition (A) and let τ_{B} be the grade-reversing canonical involution of the Kantor algebra $\mathscr{L}(B)=\sum U_{i}$ for (U, B). Then,
(i) $\quad U_{-2}=\mathscr{S}, U_{-1}=U, U_{1}=\tau_{B}\left(U_{-1}\right), U_{2}=\tau_{B}\left(U_{-2}\right) ; U_{0}$ is the subspace of $\operatorname{End}(U)$ spanned by operators $L_{a b}$.
(ii) If we denote $\tau_{B}(X)$ by \bar{X}, then we have the following bracket relations in $\mathscr{L}(B)$:

$$
\begin{align*}
& {[a, b]=S_{b a}, \quad[\bar{a}, b]=L_{b a}, \quad\left[L_{a b}, c\right]=(a b c), \quad\left[L_{a b}, \bar{c}\right]=-\overline{(b a c)},} \\
& {\left[\bar{S}_{a b}, c\right]=\bar{S}_{a b}(c), \quad\left[L_{a b}, S_{c d}\right]=S_{(a b c) d}+S_{c(a b d)},} \tag{1.2}\\
& {\left[S_{a b}, \bar{S}_{c d}\right]=L_{(a c b) d}-L_{(b b a) d}-L_{(a d b) c}+L_{(b d a) c},} \\
& {\left[L_{a b}, L_{c d}\right]=L_{(a b c) d}-L_{c(b a d)},}
\end{align*}
$$

where $a, b, c, d \in U$.
Let (U, B) be a GJTS of the 2 nd kind over F. Put

$$
W=U_{-1}+U_{1}, \quad V=U_{-2}+U_{0}+U_{2}
$$

Then, since $\mathscr{L}(B)=\sum U_{i}$ is a graded Lie algebra, the following relations are obviously valid:

$$
\begin{equation*}
\mathscr{L}(B)=V+W, \quad[V, V] \subset V, \quad[V, W] \subset W, \quad[W, W] \subset V \tag{1.3}
\end{equation*}
$$

Therefore the space W becomes a Lie triple system (abbreviated as LTS) with triple product $\{X Y Z\}=[[X, Y], Z]$. By $L(X, Y)$ we denote the linear endomorphism $Z \mapsto\{X Y Z\}$ on W. Let $L(W, W)$ be the space spanned by
operators $L(X, Y)$ and let

$$
\mathscr{L}(W)=L(W, W)+W
$$

be the standard imbedding Lie algebra of the LTS W (see [6]). Note that $L(W, W)$ is a subalgebra of $\mathscr{L}(W)$. We define the linear mapping φ of V into $\operatorname{End}(W)$ by

$$
\begin{equation*}
\left.\varphi(X)=\operatorname{ad}_{W}(X) \quad \text { (the restriction of } \operatorname{ad}(X) \text { on } W\right) . \tag{1.4}
\end{equation*}
$$

Note that $\varphi([X, Y])=\operatorname{ad}_{W}([X, Y])=L(X, Y)$ for $X, Y \in W$.
Lemma 1.2. If (U, B) satisfies the condition (A), then ρ is a Lie isomorphism of V onto $L(W, W)$.

Proof. It follows from Theorem 1.1 that $\left[U_{-1}, U_{-1}\right]=U_{-2},\left[U_{-1}, U_{1}\right]=$ $U_{0},\left[U_{1}, U_{1}\right]=U_{2}$, and consequently $[W, W]=V$. Hence, we get $\varphi(V)=$ $\varphi([W, W])=L(W, W)$. Therefore φ is surjective. Since φ is obviously a Lie homomorphism, it is enough to prove that φ is injective. Suppose that $\varphi(X)=0$ for $X \in V$. Denoting X by $X=S_{1}+T+\bar{S}_{2}\left(S_{i} \in U_{-2}, T \in U_{0}\right)$, we have $\{0\}=\varphi(X) W=[X, W]=\left[S_{1}+T+\bar{S}_{2}, U_{-1}+U_{1}\right]=\left(\left[S_{1}, U_{1}\right]+\left[T, U_{-1}\right]\right)+$ $\left(\left[T, U_{1}\right]+\left[\bar{S}_{2}, U_{-1}\right]\right)$. Since $U_{-1}+U_{1}$ is a direct sum, this means that $\left[S_{1}, U_{1}\right]+$ $\left[T, U_{-1}\right]=\{0\}$ and $\left[T, U_{1}\right]+\left[\bar{S}_{2}, U_{-1}\right]=\{0\}$. Hence, for any elements $x, y \in U_{-1}=$ U, we have

$$
\begin{equation*}
\left[S_{1}, \bar{x}\right]+[T, y]=0, \quad[T, \bar{x}]+\left[\bar{S}_{2}, y\right]=0 \tag{1.5}
\end{equation*}
$$

Putting $x=0$ in (1.5), we get $[T, y]=0$ and $\left[\bar{S}_{2}, y\right]=0$. By (1.2), we have $T(y)=0$ and $\overline{S_{2}(y)}=0$. Since y is an arbitrary element in U, and since τ_{B} is an isomorphism, it follows that $T=S_{2}=0$. Similarly, putting $y=0$ in (1.5), we can show that $S_{1}=0$. Therefore we have $X=0$.

Proposition 1.3. Let (U, B) be a GJTS of the 2 nd kind and $\mathscr{L}(B)$ be the Kantor algebra for (U, B). Let $\mathscr{L}(W)$ be the standard imbedding Lie algebra of the LTS W. If (U, B) satisfies the condition (A), then $\mathscr{L}(B)$ is isomorphic to $\mathscr{L}(W)$.

Proof. We define the map $\psi: \mathscr{L}(B) \rightarrow \mathscr{L}(W)$ by $\psi(X+Y)=\varphi(X)+Y$ $(X \in V, Y \in W)$. Since φ is a Lie isomorphism by Lemma 1.2, it can be easily proved that ψ is also a Lie isomorphism.

By this proposition, the Kantor algebra for a GJTS of the 2nd kind satisfying the condition (A) may be viewed as the standard imbedding Lie algebra of a certain LTS.
§ 2. Nondegenerate generalized Jordan triple systems of the second kind.

Throughout this section, we will keep the notations in the previous section.
2.1. Let (U, B) be a GJTS of the 2 nd kind over F. We denote the linear endomorphism $z \mapsto(z x y)$ on U by $R_{x y}$. Let us consider the symmetric bilinear form on U :

$$
\gamma_{B}(x, y)=\frac{1}{2} \operatorname{Tr}\left(2 R_{x y}+2 R_{y x}-L_{x y}-L_{y x}\right)
$$

where $\operatorname{Tr}(f)$ means the trace of a linear endomorphism f. The form γ_{B} is a special case of the bilinear form considered by K. Yamaguti [8]. In the case of a JTS, this form coincides with the usual trace form γ defined by $\gamma(x, y)=(1 / 2) \operatorname{Tr}\left(L_{x y}+L_{y x}\right)$. We call γ_{B} the trace form of the GJTS of the 2nd kind (U, B).

Example 2.1. Let $M(p, q-p ; \boldsymbol{C}), p<q$ be the real vector space of all $p \times(q-p)$ matrices with coefficients in the complex number field C. For an element $X \in M(p, q-p ; C)$ we denote by X^{*} the transposed conjugate matrix of X. We define a trilinear map B on $M(p, q-p ; C)$ by

$$
B(X, Y, Z)=X Y^{*} Z+Z Y^{*} X-Z X^{*} Y
$$

Then, by direct calculations, $(M(p, q-p ; C), B)$ is seen to be a real GJTS of the 2nd kind, which is not a JTS. In this case $\mathscr{L}(B)$ is isomorphic to the Lie algebra $\mathfrak{n u}(p, q)$ (see [2]). We will compute the trace form γ_{B}. For given $X, Y \in M(p, q-p ; C)$, let us first consider the real linear endomorphism T on $M(p, q-p ; \boldsymbol{C})$ defined by $T(Z)=X Z^{*} Y$. Then, direct computations show that

$$
\begin{equation*}
\operatorname{Tr}_{R}(T)=0 \tag{2.1}
\end{equation*}
$$

Let A (resp. B) be a square matrix of degree p (resp. $q-p$), and let λ_{A} (resp. ρ_{B}) be the left (resp. right) multiplication by A (resp. B) on $M(p, q-p ; C)$. By using (2.1), we have

$$
\gamma_{B}(X, Y)=\frac{1}{2} \operatorname{Tr}_{R}\left(2 \rho_{X^{*} Y}+2 \rho_{Y^{*} X}+\lambda_{Y X^{*}}+\lambda_{X Y^{*}}\right)
$$

On the other hand, we see that

$$
\begin{aligned}
& \operatorname{Tr}_{c}\left(\rho_{X^{*}}\right)=\operatorname{Tr}\left(E_{p} \otimes X^{*} Y\right)=p \overline{\left(\operatorname{Tr} X Y^{*}\right)} \\
& \operatorname{Tr}_{c}\left(\lambda_{X Y^{*}}\right)=\operatorname{Tr}\left(X Y^{*} \otimes E_{q-p}\right)=(q-p)\left(\operatorname{Tr} X Y^{*}\right),
\end{aligned}
$$

where E_{p} (resp. E_{q-p}) is the unit matrix of degree p (resp. $q-p$). By using these equalities we get

$$
\gamma_{B}(X, Y)=2(p+q) \operatorname{Re}\left(\operatorname{Tr} X Y^{*}\right)
$$

where Re denotes the real part. γ_{B} is thus positive definite.
Let β be the Killing form of the Kantor algebra $\mathscr{L}(B)$. Since $\mathscr{L}(B)=\sum U_{i}$ is a graded Lie algebra, we have that $\beta\left(U_{i}, U_{j}\right)=0$ if $i+j \neq 0$. Hence we get

$$
\begin{equation*}
\beta(V, W)=0 \tag{2.2}
\end{equation*}
$$

From now on, we assume that (U, B) satisfies the condition (A). Then, since $\mathscr{L}(B)$ is isomorphic with $\mathscr{L}(W)$ by Proposition $1.3, \beta$ can be considered to be the Killing form of $\mathscr{L}(W)$. Let α be the Ricci (or Killing) form of the LTS W defined by

$$
\alpha(X, Y)=\frac{1}{2} \operatorname{Tr}(R(X, Y)+R(Y, X))
$$

where $R(X, Y)$ is the linear endomorphism on W defined by $Z \mapsto\{Z X Y\}$. It is well known (see [6]) that

$$
\beta(X, Y)=2 \alpha(X, Y) \quad \text { for } \quad X, Y \in W
$$

The following lemma is essentially obtained by Yamaguti [8]. His result is different from ours only in the sign.

Lemma 2.2. For $x_{i}, y_{i} \in U(i=1,2)$, we have

$$
\beta\left(x_{1}+\bar{x}_{2}, y_{1}+\bar{y}_{2}\right)=-2\left\{\gamma_{B}\left(x_{1}, y_{2}\right)+\gamma_{B}\left(x_{2}, y_{1}\right)\right\}
$$

Proposition 2.3. Let (U, B) be a GJTS of the 2nd kind satisfying the condition (A). If the trace form γ_{B} is identically zero, then the Kantor algebra $\mathscr{L}(B)$ is solvable.

Proof. By Lemma 2.2 the Killing form β of $\mathscr{L}(B)$ is identically zero on W. Choose an element $X \in V$. Since $V=[W, W], X$ can be written as $X=\sum\left[Y_{i}, Z_{i}\right]\left(Y_{i}, Z_{i} \in W\right)$. Then, for an arbitrary element $X^{\prime} \in V$, we have $\beta\left(X, X^{\prime}\right)=\sum \beta\left(\left[Y_{i}, Z_{i}\right], X^{\prime}\right)=\sum \beta\left(Y_{i},\left[Z_{i}, X^{\prime}\right]\right)=0$, because Y_{i} and $\left[Z_{i}, X^{\prime}\right]$ are in W. Therefore β is also identically zero on V. In view of (2.2), we obtain that β is identically zero on $\mathscr{L}(B)$. Hence $\mathscr{L}(B)$ is solvable.

Proposition 2.4. Let (U, B) be a GJTS of the 2nd kind satisfying the condition (A). Let γ_{B} be the trace form of (U, B) and $\mathscr{L}(B)$ be the

Kantor algebra for (U, B). Then γ_{B} is nondegenerate if and only if $\mathscr{L}(B)$ is semisimple.

Proof. Kamiya [1] proved that γ_{B} is nondegenerate if and only if $\mathscr{L}(W)$ is semisimple. Combining this with Proposition 1.3, we obtain this proposition.
2.2. Let (U, B) be a GJTS over F. A subspace I of U is called an ideal (resp. K-ideal) if $(U U I)+(U I U)+(I U U) \subset I$ (resp. $(U U I)+(I U U) \subset I)$ is valid. Obviously any ideal is a K-ideal. The whole space U and $\{0\}$ are called the trivial ideals. (U, B) is said to be simple (resp. K-simple) if B is not a zero map and U has no non-trivial ideal (resp. K-ideal). Hence every K-simple GJTS is simple.

Proposition 2.5. Every simple GJTS (U, B) satisfies the condition (A).
Proof. Put $I=\left\{a \in U \mid B_{a}=0\right\}$. Let $u, v, x, y \in U$ and $a \in I$. Using (1.1), we get $B_{(x y a)}(u, v)=(u(x y a) v)=-(y x(u a v))+((y x u) a v)+(u a(y x v))=0$. It follows that $B_{(x y a)}=0$, that is, $(x y a) \in I$. Hence we have $(U U I) \subset I$. Similarly we can obtain $(I U U) \subset I$. Obviously we have $(U I U)=\{0\} \subset I$. Therefore I is an ideal of U. From the assumption of simplicity, we have $I=\{0\}$ or $I=U$. If we suppose that $I=U$, then we have $(U U U)=\{0\}$, which contradicts the assumption that B is not a zero map. Hence we have to have $I=\{0\}$. This means that (U, B) satisfies the condition (A).

Lemma 2.6. Let (U, B) be a GJTS of the 2nd kind. If it is simple, then $[V, W]=W$ is valid.

Proof. Since ($U U U$) is an ideal of U, we have $(U U U)=U$ from the assumption of simplicity. By Proposition 2.5 and Theorem 1.1, we have $U_{0}=\left[U_{1}, U_{-1}\right]=\left[\tau_{B}\left(U_{-1}\right), U_{-1}\right]$ and $U_{-1}=U$. Hence, using the equality $[[\bar{x}, y], z]=\left[L_{y x}, z\right]=(y x z)$, we obtain that

$$
\left[U_{0}, U_{-1}\right]=\left[\left[\tau_{B}\left(U_{-1}\right), U_{-1}\right], U_{-1}\right]=(U U U)=U_{-1}
$$

By applying τ_{B} to this equality, we have also that

$$
\left[U_{0}, U_{1}\right]=\tau_{B}\left(\left[U_{0}, U_{-1}\right]\right)=\tau_{B}\left(U_{-1}\right)=U_{1}
$$

From these two equalities, we get the relation

$$
[V, W] \supset\left[U_{0}, U_{-1}+U_{1}\right]=U_{-1}+U_{1}=W
$$

Since the converse inclusion is known in (1.3), we obtain [V, W] $=W$.
Lemma 2.7 ([1]). For a GJTS (U, B) of the 2nd kind, the following
relation is valid:

$$
\gamma_{B}((x y z), w)=\gamma_{B}(z,(y x w))=\gamma_{B}(x,(w z y)) .
$$

Theorem 2.8. Let (U, B) be a GJTS of the $2 n d$ kind. If it is simple, then the trace form γ_{B} is nondegenerate.

Proof. Put $U^{\perp}=\left\{a \in U \mid \gamma_{B}(a, U)=0\right\}$. Let $x, y, z \in U$ and $a \in U^{\perp}$. By Lemma 2.7, we have that

$$
\begin{aligned}
& \gamma_{B}((x y a), z)=\gamma_{B}(a,(y x z))=0, \\
& \gamma_{B}((a x y), z)=\gamma_{B}(a,(z y x))=0, \\
& \gamma_{B}((x a y), z)=\gamma_{B}(x,(z y a))=\gamma_{B}((y z x), a)=0 .
\end{aligned}
$$

It follows from these equalities that U^{\perp} is an ideal of U. Hence we have $U^{\perp}=\{0\}$ or $U^{\perp}=U$, that is, γ_{B} is nondegenerate or identically zero. Now let us assume that γ_{B} is identically zero. Then, by Proposition 2.3, $\mathscr{L}(B)$ is a solvable Lie algebra. Consequently, we have

$$
\begin{equation*}
[\mathscr{L}(B), \mathscr{L}(B)] \neq \mathscr{L}(B) \tag{2.3}
\end{equation*}
$$

On the other hand, using Proposition 2.5, Lemma 2.6 and (1.3), we obtain that

$$
\begin{aligned}
{[\mathscr{L}(B), \mathscr{L}(B)] } & =[V+W, V+W] \\
& =[V, V]+[V, W]+[W, W]=V+W=\mathscr{L}(B)
\end{aligned}
$$

which contradicts (2.3). Therefore γ_{B} is nondegenerate.
Combining this theorem with Propositions 2.4 and 2.5, we obtain a Kantor's result [4], which was stated without proof.

Corollary 2.9. Let (U, B) be a GJTS of the 2nd kind. If it is simple, then the Kantor algebra $\mathscr{L}(B)$ is semisimple.
2.3. Let (U, B) be a GJTS of the 2 nd kind over F. (U, B) is said to be nondegenerate if its trace form γ_{B} is nondegenerate. In this subsection, we assume that (U, B) is a nondegenerate GJTS of the 2 nd kind. We denote by X^{ν} the adjoint operator of $X \in \operatorname{End}(U)$ relative to γ_{B}.

Proposition 2.10. A nondegenerate GJTS of the 2 nd kind satisfies the condition (A).

Proof. Let a be an element satisfying $B_{a}=0$, that is, $(x a y)=0$ for $x, y \in U$. It follows that $L_{x a}=R_{a x}=0$. Hence $\gamma_{B}(a, x)$ is expressed as follows:

$$
\begin{equation*}
\gamma_{B}(a, x)=\frac{1}{2} \operatorname{Tr}\left(2 R_{x a}-L_{a x}\right) . \tag{2.4}
\end{equation*}
$$

Since γ_{B} is nondegenerate, it follows from Lemma 2.7 that

$$
\begin{equation*}
L_{x y}{ }^{\nu}=L_{y x}, \quad R_{x y}{ }^{\nu}=R_{y x} . \tag{2.5}
\end{equation*}
$$

Hence we have $\operatorname{Tr} L_{y x}=\operatorname{Tr} L_{x y}$ and $\operatorname{Tr} R_{y x}=\operatorname{Tr} R_{x y}$. Substituting these into (2.4), we get $\gamma_{B}(a, x)=(1 / 2) \operatorname{Tr}\left(2 R_{x a}-L_{a x}\right)=(1 / 2) \operatorname{Tr}\left(2 R_{a x}-L_{x a}\right)=0$. From the nondegeneracy of γ_{B}, it follows that $a=0$. This completes the proof.

Lemma 2.11. In a nondegenerate $G J T S(U, B)$ of the $2 n d$ kind, we have

$$
\begin{array}{lll}
T^{\nu}=-\bar{T} & \text { for } & T \in U_{0} \\
S^{\nu}=-S & \text { for } & S \in U_{-2} \tag{2.7}
\end{array}
$$

Proof. Using (1.2), we have $\bar{L}_{x y}=\tau_{B}([\bar{y}, x])=[y, \bar{x}]=-L_{y x}$. Combining this with (2.5), we get $L_{x y}{ }^{\nu}=-\bar{L}_{x y}$. Since U_{0} is the linear span of operators $L_{x y}$, (2.6) is valid. Using Lemma 2.7, we have

$$
\begin{aligned}
\gamma_{B}\left(S_{x y}(u), v\right) & =\gamma_{B}((x u y), v)-\gamma_{B}((y u x), v)=\gamma_{B}(y,(u x v))-\gamma_{B}(y,(v x u)) \\
& =\gamma_{B}((y v x), u)-\gamma_{B}((x v y), u)=-\gamma_{B}\left(S_{x y}(v), u\right) .
\end{aligned}
$$

It follows that $S_{x y}{ }^{\nu}=-S_{x y}$. Since U_{-2} is the linear span of operators $S_{x y}$, (2.7) is also valid.

Let us recall the homomorphism φ in (1.4). Lemma 1.2 and Proposition 2.10 show that φ is a Lie isomorphism of V onto $L(W, W)$ if (U, B) is nondegenerate.

Lemma 2.12. For a nondegenerate $G J T S(U, B)$ of the 2nd kind, we have

$$
\begin{array}{lll}
\operatorname{Tr}_{W} \varphi\left(T_{1}\right) \varphi\left(T_{2}\right)=2 \operatorname{Tr}_{U}\left(T_{1} T_{2}\right) & \text { for } & T_{i} \in U_{0} \\
\operatorname{Tr}_{W} \varphi\left(S_{1}\right) \varphi\left(\bar{S}_{2}\right)=\operatorname{Tr}_{U}\left(S_{1} S_{2}\right) & \text { for } & S_{i} \in U_{-2} \tag{2.9}
\end{array}
$$

Proof. For $x \in U$ and $T \in U_{0}$, we have that $[T, x]=T(x)$ and $[T, \bar{x}]=$ $\tau_{B}([\bar{T}, x])=\tau_{B}(\bar{T}(x))$. Let $x, y \in U$ and $T_{i} \in U_{0}(i=1,2)$. Using those two relations, we get

$$
\begin{aligned}
\varphi\left(T_{1}\right) \varphi\left(T_{2}\right)\left(x+\tau_{B}(y)\right) & =\left[T_{1},\left[T_{2}, x+\bar{y}\right]\right]=\left[T_{1}, T_{2}(x)+\tau_{B}\left(\bar{T}_{2}(y)\right)\right] \\
& =T_{1} T_{2}(x)+\tau_{B}\left(\bar{T}_{1} \bar{T}_{2}(y)\right) .
\end{aligned}
$$

Since τ_{B} is an isomorphism, it follows that

$$
\begin{equation*}
\operatorname{Tr}_{w} \varphi\left(T_{1}\right) \varphi\left(T_{2}\right)=\operatorname{Tr}_{v}\left(T_{1} T_{2}\right)+\operatorname{Tr}_{v}\left(\bar{T}_{1} \bar{T}_{2}\right) . \tag{2.10}
\end{equation*}
$$

By Lemma 2.11, we have

$$
\operatorname{Tr}_{U}\left(\bar{T}_{1} \bar{T}_{2}\right)=\operatorname{Tr}_{V}\left(T_{1}^{\nu} T_{2}^{\nu}\right)=\operatorname{Tr}_{V}\left(T_{2} T_{1}\right)^{\nu}=\operatorname{Tr}_{V}\left(T_{2} T_{1}\right)=\operatorname{Tr}_{U}\left(T_{1} T_{2}\right)
$$

Substituting this into (2.10), we obtain (2.8). Similarly, from the relation

$$
\varphi\left(S_{1}\right) \varphi\left(\bar{S}_{2}\right)\left(x+\tau_{B}(y)\right)=\left[S_{1},\left[\bar{S}_{2}, x+\bar{y}\right]\right]=\left[S_{1}, \overline{S_{2}(x)}\right]=S_{1} S_{2}(x),
$$

we get (2.9).
Theorem 2.13. Let (U, B) be a nondegenerate GJTS of the 2nd kind, and let β be the Killing form of the Kantor algebra $\mathscr{L}(B)$ for (U, B). Let $X_{i}=S_{i}+x_{i}+T_{i}+\bar{y}_{i}+\bar{S}_{i}^{\prime}(i=1,2)$ be elements in $\mathscr{L}(B)$, where $S_{i}, S_{i}^{\prime} \in U_{-2}$, $T_{i} \in U_{0}, x_{i}, y_{i} \in U$. Then we have

$$
\begin{align*}
\beta\left(X_{1}, X_{2}\right)= & \beta_{V}\left(S_{1}, \bar{S}_{2}^{\prime}\right)+\beta_{V}\left(T_{1}, T_{2}\right)+\beta_{V}\left(\bar{S}_{1}^{\prime}, S_{2}\right) \tag{2.11}\\
& +\operatorname{Tr}_{v}\left(S_{1} S_{2}^{\prime}+2 T_{1} T_{2}+S_{1}^{\prime} S_{2}\right)-2\left\{\gamma_{B}\left(x_{1}, y_{2}\right)+\gamma_{B}\left(y_{1}, x_{2}\right)\right\}
\end{align*}
$$

where β_{V} is the Killing form of the subalgebra V of $\mathscr{L}(B)$.
Proof. Since $\beta\left(U_{i}, U_{j}\right)=0$ for i and j such that $i+j \neq 0$, we have

$$
\begin{equation*}
\beta\left(X_{1}, X_{2}\right)=\beta\left(S_{1}, \bar{S}_{2}^{\prime}\right)+\beta\left(T_{1}, T_{2}\right)+\beta\left(\bar{S}_{1}^{\prime}, S_{2}\right)+\beta\left(x_{1}, \bar{y}_{2}\right)+\beta\left(\bar{y}_{1}, x_{2}\right) . \tag{2.12}
\end{equation*}
$$

It follows from Lemma 2.2 that

$$
\begin{equation*}
\beta\left(x_{1}, \bar{y}_{2}\right)+\beta\left(\bar{y}_{1}, x_{2}\right)=-2\left\{\gamma_{B}\left(x_{1}, y_{2}\right)+\gamma_{B}\left(y_{1}, x_{2}\right)\right\} . \tag{2.13}
\end{equation*}
$$

Now let us assume that Y and Z are elements in V. Since the subspaces V and W are invariant under the $\operatorname{map} \operatorname{ad}(Y) \operatorname{ad}(Z)$, we have

$$
\begin{align*}
\beta(Y, Z) & =\operatorname{Tr}_{V} \operatorname{ad}(Y) \operatorname{ad}(Z)+\operatorname{Tr}_{W} \operatorname{ad}(Y) \operatorname{ad}(Z) \tag{2.14}\\
& =\beta_{V}(Y, Z)+\operatorname{Tr}_{W} \varphi(Y) \varphi(Z) .
\end{align*}
$$

Hence, using Lemma 2.12, we have

$$
\begin{align*}
& \beta\left(S_{1}, \bar{S}_{2}^{\prime}\right)=\beta_{V}\left(S_{1}, \bar{S}_{2}^{\prime}\right)+\operatorname{Tr}_{V}\left(S_{1} S_{2}^{\prime}\right), \\
& \beta\left(T_{1}, T_{2}\right)=\beta_{V}\left(T_{1}, T_{2}\right)+2 \operatorname{Tr}_{v}\left(T_{1} T_{2}\right), \tag{2.15}\\
& \beta\left(\bar{S}_{1}^{\prime}, S_{2}\right)=\beta_{V}\left(\bar{S}_{1}^{\prime}, S_{2}\right)+\operatorname{Tr}_{U}\left(S_{1}^{\prime} S_{2}\right) .
\end{align*}
$$

Substituting (2.13) and (2.15) into (2.12), we obtain (2.11).
Remark. The above theorem contains the corresponding result for JTS's by Koecher [5].
§ 3. Compact generalized Jordan triple systems of the second kind.
In this section, we restrict our attention to the case where F is the real number field \boldsymbol{R}. We keep the notations in the previous sections.
3.1. Let (U, B) be a real GJTS of the 2 nd kind. (U, B) is said to be compact if its trace form γ_{B} is positive definite. Later on, let us assume that (U, B) is a compact GJTS of the 2nd kind. Since γ_{B} is nondegenerate, (U, B) satisfies the condition (A) by Proposition 2.10. Hence, by Proposition 2.4, $\mathscr{L}(B)$ is semisimple. We define an inner product 〈, > on the subspace W of $\mathscr{L}(B)$ as follows:

$$
\left\langle x_{1}+\tau_{B}\left(x_{2}\right), y_{1}+\tau_{B}\left(y_{2}\right)\right\rangle=\gamma_{B}\left(x_{1}, y_{1}\right)+\gamma_{B}\left(x_{2}, y_{2}\right)
$$

for $x_{i}, y_{i} \in U(i=1,2)$. From Lemma 2.2 it follows that

$$
\begin{equation*}
\langle X, Y\rangle=-\frac{1}{2} \beta\left(X, \tau_{B}(Y)\right) \quad \text { for } \quad X, Y \in W \tag{3.1}
\end{equation*}
$$

For $P \in \operatorname{End}(W)$, let us denote its adjoint operator relative to \langle,$\rangle by P^{*}$.
Lemma 3.1. We have

$$
\begin{array}{ll}
\varphi(X)^{*}=-\varphi\left(\tau_{B}(X)\right) & \text { for } \\
L(Y, Z)^{*}=L\left(\tau_{B}(Z), \tau_{B}(Y)\right) & \text { for } \tag{3.3}\\
Y, Z \in W
\end{array}
$$

Proof. For $Y, Z \in W$, using (3.1), we get

$$
\begin{aligned}
\left\langle\varphi(X)^{*}(Y), Z\right\rangle & =\langle Y, \varphi(X)(Z)\rangle=\langle Y,[X, Z]\rangle=-\frac{1}{2} \beta\left(Y, \tau_{B}([X, Z])\right) \\
& =-\frac{1}{2} \beta\left(Y,\left[\tau_{B}(X), \tau_{B}(Z)\right]\right)=-\frac{1}{2} \beta\left(\left[Y, \tau_{B}(X)\right], \tau_{B}(Z)\right) \\
& =\frac{1}{2} \beta\left(\varphi\left(\tau_{B}(X)\right)(Y), \tau_{B}(Z)\right)=-\left\langle\varphi\left(\tau_{B}(X)\right)(Y), Z\right\rangle
\end{aligned}
$$

from which (3.2) follows. Moreover we have
$L(Y, Z)^{*}=\varphi([Y, Z])^{*}=-\varphi\left(\tau_{B}([Y, Z])\right)=-\varphi\left(\left[\tau_{B}(Y), \tau_{B}(Z)\right]\right)=L\left(\tau_{B}(Z), \tau_{B}(Y)\right)$.
Hence (3.3) is also valid.
The relation (3.3) implies that $L(W, W)^{*} \subset L(W, W)$. Let us define an inner product (,) on the space $L(W, W)$ by

$$
(P, Q)=\operatorname{Tr}_{W} P Q^{*} \quad \text { for } \quad P, Q \in L(W, W)
$$

We denote by σ^{\sim} the adjoint operator of $\sigma \in \operatorname{End}(L(W, W))$ relative to (,). For $P, Q, R \in L(W, W)$, we have

$$
\begin{aligned}
([P, Q], R) & =\operatorname{Tr}_{W}(P Q-Q P) R^{*}=\operatorname{Tr}_{W} Q\left(R^{*} P-P R^{*}\right) \\
& =\operatorname{Tr}_{W} Q\left(P^{*} R-R P^{*}\right)^{*}=\left(Q,\left[P^{*}, R\right]\right)
\end{aligned}
$$

This means that

$$
\begin{equation*}
(\operatorname{ad}(P))^{\sim}=\operatorname{ad}\left(P^{*}\right) \quad \text { for } \quad P \in L(W, W) \tag{3.4}
\end{equation*}
$$

Lemma 3.2. $\beta_{V}\left(X, \tau_{B}(X)\right) \leqq 0$ for $X \in V$.
Proof. Let us denote by β_{L} the Killing form of the Lie algebra $L(W, W)$. Since the map ρ is an isomorphism of V onto $L(W, W)$, we have

$$
\beta_{V}(X, Y)=\beta_{L}(\varphi(X), \varphi(Y)) \quad \text { for } \quad X, Y \in V
$$

Using this equality together with (3.2) and (3.4), we obtain

$$
\begin{aligned}
\beta_{V}\left(X, \tau_{B}(X)\right) & =\beta_{L}\left(\varphi(X), \varphi\left(\tau_{B}(X)\right)\right)=-\beta_{L}\left(\varphi(X), \varphi(X)^{*}\right) \\
& =-\operatorname{Tr}_{L(W, W)} \operatorname{ad}(\varphi(X)) \operatorname{ad}\left(\varphi(X)^{*}\right) \\
& =-\operatorname{Tr}_{L(W, W)} \operatorname{ad}(\varphi(X))(\operatorname{ad}(\varphi(X)))^{\sim} \leqq 0
\end{aligned}
$$

The following theorem gives a characterization for a GJTS to be compact.

Theorem 3.3. Let (U, B) be a real nondegenerate GJTS of the 2nd kind and τ_{B} be the grade-reversing canonical involution of the Kantor algebra $\mathscr{L}(B)$. Then (U, B) is compact if and only if τ_{B} is a Cartan involution of $\mathscr{L}(B)$.

Proof. Let us assume that (U, B) is compact. Since γ_{B} is nondegenerate in this case, it follows from Propositions 2.4 and 2.10 that $\mathscr{L}(B)$ is semisimple. For an element $X \in \mathscr{L}(B)$, we write it as $X=X_{V}+X_{W}$ ($X_{V} \in V, X_{W} \in W$). Then, using (2.2), (2.14), (3.1) and (3.2), we have

$$
\begin{aligned}
\beta\left(X, \tau_{B}(X)\right) & =\beta_{V}\left(X_{V}, \tau_{B}\left(X_{V}\right)\right)+\operatorname{Tr}_{W} \varphi\left(X_{V}\right) \varphi\left(\tau_{B}\left(X_{V}\right)\right)+\beta\left(X_{W}, \tau_{B}\left(X_{W}\right)\right) \\
& =\beta_{V}\left(X_{V}, \tau_{B}\left(X_{V}\right)\right)-\operatorname{Tr}_{W} \varphi\left(X_{V}\right) \varphi\left(X_{V}\right)^{*}-2\left\langle X_{W}, X_{W}\right\rangle
\end{aligned}
$$

From Lemma3.2, we obtain $\beta\left(X, \tau_{B}(X)\right) \leqq 0$. Now suppose that $\beta\left(X, \tau_{B}(X)\right)=0$. Then, in view of Lemma 3.2, we have $\operatorname{Tr}_{w} \varphi\left(X_{V}\right) \varphi\left(X_{V}\right)^{*}=\left\langle X_{W}, X_{W}\right\rangle=0$. It follows that $\varphi\left(X_{V}\right)=0$ and $X_{W}=0$. Since φ is an isomorphism, we obtain $X_{V}=0$, and consequently $X=0$. Thus we have shown that the bilinear form $\beta\left(X, \tau_{B}(Y)\right)$ on $\mathscr{L}(B)$ is negative definite. Consequently τ_{B} is a Cartan involution.

Conversely, let us assume that τ_{B} is a Cartan involution of $\mathscr{C}(B)$. Then the bilinear form $\beta\left(X, \tau_{B}(Y)\right)$ is negative definite. Since γ_{B} is nondegenerate, Proposition 2.10 and Lemma 2.2 give the relation

$$
\gamma_{B}(x, y)=-\frac{1}{2} \beta\left(x, \tau_{B}(y)\right)
$$

Therefore γ_{B} is positive definite, that is, (U, B) is compact.
From Theorems 2.8 and 3.3, we obtain the following
COROLLARY 3.4. Let (U, B) be a real simple GJTS of the 2nd kind and τ_{B} be the grade-reversing canonical involution of the Kantor algebra $\mathscr{L}(B)$. Then (U, B) is compact if and only if τ_{B} is a Cartan involution of $\mathscr{L}(B)$.
3.2. Let (U, B) be a compact simple GJTS of the 2 nd kind. By Corollary 2.9, the Kantor algebra $\mathscr{L}(B)=\sum U_{i}$ is a semisimple graded Lie algebra. Therefore there exists the unique element $E \in U_{0}$ such that

$$
U_{i}=\{X \in \mathscr{L}(B) \mid[E, X]=i X\}
$$

Let $\mathscr{L}(B)=\sum \mathscr{L}^{k}$ be the decomposition into the direct sum of simple ideals. Considering the operator $\operatorname{ad}(E)$, we can prove that every ideal \mathscr{L}^{k} is a graded ideal, that is,

$$
\begin{equation*}
\mathscr{L}^{k}=\sum\left(\mathscr{L}^{k} \cap U_{i}\right) \tag{3.5}
\end{equation*}
$$

Lemma 3.5. $\quad \tau_{B}\left(\mathscr{L}^{k}\right)=\mathscr{L}^{k}$ for each k.
Proof. Assume that $\tau_{B}\left(\mathscr{L}^{k}\right)=\mathscr{L}^{l}(k \neq l)$. Since the relation $\beta\left(\mathscr{L}^{k}\right.$, $\left.\mathscr{L}^{l}\right)=0$ holds, we have $\beta\left(X, \tau_{B}(X)\right)=0$ for $X \in \mathscr{L}^{k}$. This contradicts the fact that the bilinear form $\beta\left(X, \tau_{B}(Y)\right)$ is negative definite. Hence every simple ideal \mathscr{L}^{k} is τ_{B}-invariant.

From the above lemma, it follows that

$$
\begin{equation*}
\tau_{B}\left(\mathscr{L}^{k} \cap U_{-i}\right)=\mathscr{L}^{k} \cap U_{i} \quad(i=1,2) \tag{3.6}
\end{equation*}
$$

We put $U^{k}=\mathscr{L}^{k} \cap U=\mathscr{L}^{k} \cap U_{-1}$.
Lemma 3.6. $\quad U^{k}$ is a non-zero ideal of (U, B).
Proof. Let $x \in U^{k}$. By Lemma 3.5, we have $\bar{x}=\tau_{B}(x) \in \mathscr{L}^{k} \cap U_{1} \subset \mathscr{L}^{k}$. It follows that

$$
(y x z)=[[\bar{x}, y], z] \in U^{k} \quad \text { for } \quad y, z \in U
$$

Furthermore we have

$$
(x y z)=[[\bar{y}, x], z] \in U^{k}, \quad(y z x)=[[\bar{z}, y], x] \in U^{k}
$$

These relations imply that U^{k} is an ideal of the GJTS (U, B). Now suppose that $U^{k}=\{0\}$. Then, from (3.6), we have $\mathscr{L}^{k} \cap U_{1}=\{0\}$. Furthermore, since $\left[U_{-1}, U_{-1}\right]=U_{-2}$ and $\left[U_{-1}, U_{1}\right]=U_{0}$, we obtain

$$
\mathscr{L}^{k} \cap U_{-2}=\{0\}, \quad \mathscr{L}^{k} \cap U_{2}=\{0\}, \quad \mathscr{L}^{k} \cap U_{0}=\{0\}
$$

It follows from (3.5) that $\mathscr{L}^{k}=\{0\}$, which is a contradiction. Therefore U^{k} is not zero.

Theorem 3.7. Let (U, B) be a compact GJTS of the 2 nd kind. Then the Kantor algebra $\mathscr{L}(B)$ is simple if and only if (U, B) is simple.

Proof. The "if" part follows from Propositions 2.4, 2.5 and Lemma 3.6. Suppose that $\mathscr{L}(B)$ is simple. Then, by a result of Kantor (Proposition 7^{\prime} in [3]), (U, B) is K-simple and hence it is simple.

From Theorem 3.7 and its proof we get
Theorem 3.8. Let (U, B) be a compact GJTS of the 2 nd kind. Then (U, B) is simple if and only if it is K-simple.

References

[1] N. Kamiya, A structure theory of Freudenthal-Kantor triple systems, J. of Algebra, 110 (1987), 108-123.
[2] S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems, 1987, to appear in Nagoya Math. J., 112 (1988).
[3] I. L. Kantor, Some generalizations of Jordan algebras, Trudy Sem. Vekt. Tenz. Anal., 16 (1972), 407-499 (in Russian).
[4] I. L. Kantor, Models of exceptional Lie algebras, Soviet Math. Dokl., 14 (1973), 254-258.
[5] M. Koecher, An Elementary Approach to Bounded Symmetric Domains, Lecture Notes, Rice Univ., Houston, 1969.
[6] O. Loos, Symmetric Spaces I, Benjamin, New York, 1969.
[7] K. Meyberg, Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren, Math. Z., 115 (1970), 58-78.
[8] K. Yamaguti, On the metasymplectic geometry and triple systems, RIMS Kokyuroku, 308 (1977), 55-92, Res. Inst. Math. Sci., Kyoto Univ. (in Japanese).

Present Address:
Hiroshi Asano
Department of Mathematics, Yokohama City University
Seto, Yokohama 236, Japan
Soji Kaneyuki
Department of Mathematics, Sophia University
Kioicho, Chiyoda-ku, Tokyo 102, Japan

[^0]: Received April 20, 1987

