Токуо Ј. Матн. Vol. 11, No. 1, 1988

On Compact Generalized Jordan Triple Systems of the Second Kind

Hiroshi ASANO and Soji KANEYUKI

Yokohama City University and Sophia University

Dedicated to Professor Nagayoshi Iwahori on his sixtieth birthday

Introduction.

A finite dimensional graded Lie algebra $\mathcal{G} = \sum \mathcal{G}_k$ over a field F of characteristic zero is said to be of the ν -th kind, if $\mathscr{G}_{\pm k} = \{0\}$ for $k > \nu$. Let $B: (x, y, z) \mapsto (xyz)$ be a triple operation on a vector space U over F. The operation B is called a generalized Jordan triple system, if the equality (uv(xyz)) = ((uvx)yz) - (x(vuy)z) + (xy(uvz)) is valid for $u, v, x, y, z \in U$. If, in addition, the relation (xyz) = (zyx) holds for x, y, $z \in U$, then B is said to be a Jordan triple system. Koecher [5] and Meyberg [7] studied interesting relationship between Jordan triple systems with nondegenerate trace forms and symmetric Lie algebras (G, τ); here G is a semisimple graded Lie algebra of the 1st kind with $\mathcal{G}_0 = [\mathcal{G}_{-1}, \mathcal{G}_1]$, and τ is a gradereversing involution of \mathcal{G} . Our main concern is to generalize this connection to the case of generalized Jordan triple systems. It is known (Kantor [3]) that to a generalized Jordan triple system B on U there corresponds a graded Lie algebra $\mathcal{L}(B) = \sum U_i$ with $U_{-1} = U$. The triple system B is called of the ν -th kind, if the graded Lie algebra $\mathcal{L}(B)$ is of the ν -th kind. Under a certain condition (A) for B (cf. § 1), $\mathcal{L}(B)$ admits a grade-reversing involution τ_B . The pair $(\mathcal{L}(B), \tau_B)$ is considered to be a generalization of the symmetric Lie algebra corresponding to a Jordan triple system. On the other hand, K. Yamaguti [8] introduced the bilinear forms γ_B for a wider class of triple systems. For a generalized Jordan triple system B, the form γ_B is symmetric, and, as is seen in the present paper, it plays the same role as the trace form for a Jordan triple system does. Now suppose B is of the 2nd kind. The first aim of this paper is to prove the following implications (Propositions 2.4, 2.5, 2.10 and Theorem 2.8):

Received April 20, 1987

B satisfies the condition (A)
B is simple
$$\gamma_B$$
 is nondegenerate

Under the assumption that γ_B is nondegenerate, we will next give a formula which describes a relationship between the Killing form of $\mathscr{L}(B)$ and the symmetric bilinear form γ_B (Theorem 2.13). For the case where F is the field of real numbers, B is said to be compact if γ_B is positive definite. We will prove that B is compact if and only if the grade-reversing involution τ_B is a Cartan involution (Theorem 3.3). In Theorem 3.7 we will show that, under the assumption of compactness for B, $\mathscr{L}(B)$ is simple if and only if B is simple.

Finally we should remark that compact real simple generalized Jordan triple systems B of the 2nd kind with $\mathscr{L}(B)$ classical can be classified (see [2]).

§1. Basic facts on the generalized Jordan triple systems of the second kind.

Let U be a finite dimensional vector space over a field F of characteristic zero and B: $U \times U \times U \to U$ be a trilinear mapping. Then the pair (U, B) is called a *triple system* over F. We shall often write (xyz) instead of B(x, y, z). For subspaces V_i $(1 \le i \le 3)$ of U, we denote by $(V_1 V_2 V_3)$ the subspace spanned by all elements of the form $(x_1x_2x_3)$ for $x_i \in V_i$. A triple system (U, B) is called a *generalized Jordan triple system* (abbreviated as GJTS) if the following equality is valid:

$$(1.1) (uv(xyz)) = ((uvx)yz) - (x(vuy)z) + (xy(uvz))$$

for $u, v, x, y, z \in U$. Furthermore, if the additional condition

$$(xyz) = (zyx)$$
 $x, y, z \in U$

is satisfied, then (U, B) is called a Jordan triple system (abbreviated as JTS). For a GJTS which is not a JTS, see Example 2.1. Starting from a given GJTS (U, B), Kantor [3] constructed a certain graded Lie algebra $\mathscr{L}(B) = \sum U_i$ such that $U_{-1} = U$. We call this Lie algebra $\mathscr{L}(B)$ the Kantor algebra for (U, B). We say that (U, B) is of the *i*-th kind if $U_{\pm k} = \{0\}$ for all k > i. Note that in our conventions every GJTS of the 1st kind is considered as a GJTS of the 2nd kind satisfying $U_{\pm 2} = \{0\}$. It is known [3] that a GJTS is of the 1st kind if and only if it is a JTS. For an element $a \in U$, let us define a bilinear map B_a on U by putting

$$B_a(x, y) = B(x, a, y)$$
 for $x, y \in U$.

We say that (U, B) satisfies the condition (A) if $B_a=0$ implies a=0. In this case there exists a grade-reversing involutive automorphism τ_B of $\mathscr{L}(B)$ such that $\tau_B(a)=B_a$ for $a \in U$ (see [2] Proposition 3.8). The automorphism τ_B is called the grade-reversing canonical involution of $\mathscr{L}(B)$. Let us define the two linear endomorphisms L_{ab} and S_{ab} on U $(a, b \in U)$ by

$$L_{ab}(x) = (abx)$$
, $S_{ab}(x) = (axb) - (bxa)$.

Let \mathscr{S} be the subspace of $\operatorname{End}(U)$ spanned by operators S_{ab} . Following the arguments in Kantor [3], one can prove that if (U, B) satisfies the condition (A), then there exists a linear isomorphism of U_{-2} onto \mathscr{S} . We can thus identify U_{-2} with \mathscr{S} . We restate a result of Kantor [3] as follows, in which the condition (A) should be added as an assumption; a bracket relation there should be also corrected.

THEOREM 1.1 ([3]). Let (U, B) be a GJTS of the 2nd kind satisfying the condition (A) and let τ_B be the grade-reversing canonical involution of the Kantor algebra $\mathscr{L}(B) = \sum U_i$ for (U, B). Then,

- (i) $U_{-2} = \mathcal{S}, U_{-1} = U, U_1 = \tau_B(U_{-1}), U_2 = \tau_B(U_{-2}); U_0$ is the subspace of End(U) spanned by operators L_{ab} .
- (ii) If we denote $\tau_B(X)$ by \overline{X} , then we have the following bracket relations in $\mathscr{L}(B)$:

(1.2) $\begin{bmatrix} a, b \end{bmatrix} = S_{ba}, \quad [\bar{a}, b] = L_{ba}, \quad [L_{ab}, c] = (abc), \quad [L_{ab}, \bar{c}] = -\overline{(bac)}, \\ [\bar{S}_{ab}, c] = \overline{S_{ab}(c)}, \quad [L_{ab}, S_{cd}] = S_{(abc)d} + S_{c(abd)}, \\ [S_{ab}, \bar{S}_{cd}] = L_{(acb)d} - L_{(bca)d} - L_{(adb)c} + L_{(bda)c}, \\ [L_{ab}, L_{cd}] = L_{(abc)d} - L_{c(bad)},$

where $a, b, c, d \in U$.

Let (U, B) be a GJTS of the 2nd kind over F. Put

$$W = U_{-1} + U_1$$
, $V = U_{-2} + U_0 + U_2$.

Then, since $\mathscr{L}(B) = \sum U_i$ is a graded Lie algebra, the following relations are obviously valid:

(1.3)
$$\mathscr{L}(B) = V + W$$
, $[V, V] \subset V$, $[V, W] \subset W$, $[W, W] \subset V$.

Therefore the space W becomes a Lie triple system (abbreviated as LTS) with triple product $\{XYZ\} = [[X, Y], Z]$. By L(X, Y) we denote the linear endomorphism $Z \mapsto \{XYZ\}$ on W. Let L(W, W) be the space spanned by

operators L(X, Y) and let

$$\mathcal{L}(W) = L(W, W) + W$$

be the standard imbedding Lie algebra of the LTS W (see [6]). Note that L(W, W) is a subalgebra of $\mathscr{L}(W)$. We define the linear mapping φ of V into End(W) by

(1.4)
$$\varphi(X) = \operatorname{ad}_W(X)$$
 (the restriction of $\operatorname{ad}(X)$ on W).

Note that $\varphi([X, Y]) = \operatorname{ad}_{W}([X, Y]) = L(X, Y)$ for $X, Y \in W$.

LEMMA 1.2. If (U, B) satisfies the condition (A), then φ is a Lie isomorphism of V onto L(W, W).

PROOF. It follows from Theorem 1.1 that $[U_{-1}, U_{-1}] = U_{-2}, [U_{-1}, U_{1}] = U_{0}, [U_{1}, U_{1}] = U_{2}$, and consequently [W, W] = V. Hence, we get $\varphi(V) = \varphi([W, W]) = L(W, W)$. Therefore φ is surjective. Since φ is obviously a Lie homomorphism, it is enough to prove that φ is injective. Suppose that $\varphi(X) = 0$ for $X \in V$. Denoting X by $X = S_{1} + T + \overline{S}_{2}$ $(S_{i} \in U_{-2}, T \in U_{0})$, we have $\{0\} = \varphi(X)W = [X, W] = [S_{1} + T + \overline{S}_{2}, U_{-1} + U_{1}] = ([S_{1}, U_{1}] + [T, U_{-1}]) + ([T, U_{1}] + [\overline{S}_{2}, U_{-1}])$. Since $U_{-1} + U_{1}$ is a direct sum, this means that $[S_{1}, U_{1}] + [T, U_{-1}] = \{0\}$ and $[T, U_{1}] + [\overline{S}_{2}, U_{-1}] = \{0\}$. Hence, for any elements $x, y \in U_{-1} = U$, we have

(1.5)
$$[S_1, \bar{x}] + [T, y] = 0$$
, $[T, \bar{x}] + [\bar{S}_2, y] = 0$.

Putting x=0 in (1.5), we get [T, y]=0 and $[\bar{S}_2, y]=0$. By (1.2), we have T(y)=0 and $\overline{S_2(y)}=0$. Since y is an arbitrary element in U, and since τ_B is an isomorphism, it follows that $T=S_2=0$. Similarly, putting y=0 in (1.5), we can show that $S_1=0$. Therefore we have X=0.

PROPOSITION 1.3. Let (U, B) be a GJTS of the 2nd kind and $\mathcal{L}(B)$ be the Kantor algebra for (U, B). Let $\mathcal{L}(W)$ be the standard imbedding Lie algebra of the LTS W. If (U, B) satisfies the condition (A), then $\mathcal{L}(B)$ is isomorphic to $\mathcal{L}(W)$.

PROOF. We define the map $\psi \colon \mathscr{L}(B) \to \mathscr{L}(W)$ by $\psi(X+Y) = \varphi(X) + Y$ $(X \in V, Y \in W)$. Since φ is a Lie isomorphism by Lemma 1.2, it can be easily proved that ψ is also a Lie isomorphism.

By this proposition, the Kantor algebra for a GJTS of the 2nd kind satisfying the condition (A) may be viewed as the standard imbedding Lie algebra of a certain LTS.

§ 2. Nondegenerate generalized Jordan triple systems of the second kind.

Throughout this section, we will keep the notations in the previous section.

2.1. Let (U, B) be a GJTS of the 2nd kind over F. We denote the linear endomorphism $z \mapsto (zxy)$ on U by R_{xy} . Let us consider the symmetric bilinear form on U:

$$\gamma_{B}(x, y) = \frac{1}{2} \operatorname{Tr}(2R_{xy} + 2R_{yx} - L_{xy} - L_{yx}),$$

where $\operatorname{Tr}(f)$ means the trace of a linear endomorphism f. The form γ_B is a special case of the bilinear form considered by K. Yamaguti [8]. In the case of a JTS, this form coincides with the usual trace form γ defined by $\gamma(x, y) = (1/2)\operatorname{Tr}(L_{xy} + L_{yx})$. We call γ_B the trace form of the GJTS of the 2nd kind (U, B).

EXAMPLE 2.1. Let M(p, q-p; C), p < q be the real vector space of all $p \times (q-p)$ matrices with coefficients in the complex number field C. For an element $X \in M(p, q-p; C)$ we denote by X^* the transposed conjugate matrix of X. We define a trilinear map B on M(p, q-p; C) by

$$B(X, Y, Z) = XY^*Z + ZY^*X - ZX^*Y$$
.

Then, by direct calculations, (M(p, q-p; C), B) is seen to be a real GJTS of the 2nd kind, which is not a JTS. In this case $\mathscr{L}(B)$ is isomorphic to the Lie algebra $\mathfrak{su}(p, q)$ (see [2]). We will compute the trace form γ_B . For given $X, Y \in M(p, q-p; C)$, let us first consider the real linear endomorphism T on M(p, q-p; C) defined by $T(Z) = XZ^*Y$. Then, direct computations show that

$$\operatorname{Tr}_{\boldsymbol{R}}(T) = 0$$

Let A (resp. B) be a square matrix of degree p (resp. q-p), and let λ_A (resp. ρ_B) be the left (resp. right) multiplication by A (resp. B) on M(p, q-p; C). By using (2.1), we have

$$\gamma_{B}(X, Y) = \frac{1}{2} \operatorname{Tr}_{R}(2\rho_{X^{*}Y} + 2\rho_{Y^{*}X} + \lambda_{YX^{*}} + \lambda_{XY^{*}}).$$

On the other hand, we see that

$$\begin{split} &\operatorname{Tr}_{\boldsymbol{c}}(\rho_{X^{*Y}}) = \operatorname{Tr}(E_{p} \otimes X^{*}Y) = p(\overline{\operatorname{Tr} XY^{*}}) , \\ &\operatorname{Tr}_{\boldsymbol{c}}(\lambda_{XY^{*}}) = \operatorname{Tr}(XY^{*} \otimes E_{q-p}) = (q-p)(\operatorname{Tr} XY^{*}) , \end{split}$$

where E_p (resp. E_{q-p}) is the unit matrix of degree p (resp. q-p). By using these equalities we get

$$\gamma_B(X, Y) = 2(p+q) \operatorname{Re}(\operatorname{Tr} XY^*)$$
,

where Re denotes the real part. γ_B is thus positive definite.

Let β be the Killing form of the Kantor algebra $\mathscr{L}(B)$. Since $\mathscr{L}(B) = \sum U_i$ is a graded Lie algebra, we have that $\beta(U_i, U_j) = 0$ if $i+j \neq 0$. Hence we get

$$(2.2) \qquad \qquad \beta(V, W) = 0.$$

From now on, we assume that (U, B) satisfies the condition (A). Then, since $\mathscr{L}(B)$ is isomorphic with $\mathscr{L}(W)$ by Proposition 1.3, β can be considered to be the Killing form of $\mathscr{L}(W)$. Let α be the Ricci (or Killing) form of the LTS W defined by

$$\alpha(X, Y) = \frac{1}{2} \operatorname{Tr}(R(X, Y) + R(Y, X)),$$

where R(X, Y) is the linear endomorphism on W defined by $Z \mapsto \{ZXY\}$. It is well known (see [6]) that

$$\beta(X, Y) = 2\alpha(X, Y)$$
 for $X, Y \in W$.

The following lemma is essentially obtained by Yamaguti [8]. His result is different from ours only in the sign.

LEMMA 2.2. For $x_i, y_i \in U$ (i=1, 2), we have

$$\beta(x_1 + \bar{x}_2, y_1 + \bar{y}_2) = -2\{\gamma_B(x_1, y_2) + \gamma_B(x_2, y_1)\}$$

PROPOSITION 2.3. Let (U, B) be a GJTS of the 2nd kind satisfying the condition (A). If the trace form γ_B is identically zero, then the Kantor algebra $\mathcal{L}(B)$ is solvable.

PROOF. By Lemma 2.2 the Killing form β of $\mathscr{L}(B)$ is identically zero on W. Choose an element $X \in V$. Since V = [W, W], X can be written as $X = \sum [Y_i, Z_i] (Y_i, Z_i \in W)$. Then, for an arbitrary element $X' \in V$, we have $\beta(X, X') = \sum \beta([Y_i, Z_i], X') = \sum \beta(Y_i, [Z_i, X']) = 0$, because Y_i and $[Z_i, X']$ are in W. Therefore β is also identically zero on V. In view of (2.2), we obtain that β is identically zero on $\mathscr{L}(B)$. Hence $\mathscr{L}(B)$ is solvable.

PROPOSITION 2.4. Let (U, B) be a GJTS of the 2nd kind satisfying the condition (A). Let γ_B be the trace form of (U, B) and $\mathcal{L}(B)$ be the

Kantor algebra for (U, B). Then γ_B is nondegenerate if and only if $\mathcal{L}(B)$ is semisimple.

PROOF. Kamiya [1] proved that γ_B is nondegenerate if and only if $\mathscr{L}(W)$ is semisimple. Combining this with Proposition 1.3, we obtain this proposition.

2.2. Let (U, B) be a GJTS over F. A subspace I of U is called an *ideal* (resp. *K-ideal*) if $(UUI)+(UIU)+(IUU)\subset I$ (resp. $(UUI)+(IUU)\subset I$) is valid. Obviously any ideal is a *K*-ideal. The whole space U and $\{0\}$ are called the trivial ideals. (U, B) is said to be *simple* (resp. *K-simple*) if B is not a zero map and U has no non-trivial ideal (resp. *K*-ideal). Hence every *K*-simple GJTS is simple.

PROPOSITION 2.5. Every simple GJTS(U, B) satisfies the condition (A).

PROOF. Put $I = \{a \in U | B_a = 0\}$. Let $u, v, x, y \in U$ and $a \in I$. Using (1.1), we get $B_{(xya)}(u, v) = (u(xya)v) = -(yx(uav)) + ((yxu)av) + (ua(yxv)) = 0$. It follows that $B_{(xya)} = 0$, that is, $(xya) \in I$. Hence we have $(UUI) \subset I$. Similarly we can obtain $(IUU) \subset I$. Obviously we have $(UIU) = \{0\} \subset I$. Therefore I is an ideal of U. From the assumption of simplicity, we have $I = \{0\}$ or I = U. If we suppose that I = U, then we have $(UUU) = \{0\}$, which contradicts the assumption that B is not a zero map. Hence we have to have $I = \{0\}$. This means that (U, B) satisfies the condition (A).

LEMMA 2.6. Let (U, B) be a GJTS of the 2nd kind. If it is simple, then [V, W] = W is valid.

PROOF. Since (UUU) is an ideal of U, we have (UUU) = U from the assumption of simplicity. By Proposition 2.5 and Theorem 1.1, we have $U_0 = [U_1, U_{-1}] = [\tau_B(U_{-1}), U_{-1}]$ and $U_{-1} = U$. Hence, using the equality $[[\bar{x}, y], z] = [L_{yx}, z] = (yxz)$, we obtain that

$$[U_0, U_{-1}] = [[\tau_B(U_{-1}), U_{-1}], U_{-1}] = (UUU) = U_{-1}.$$

By applying τ_B to this equality, we have also that

 $[U_0, U_1] = \tau_B([U_0, U_{-1}]) = \tau_B(U_{-1}) = U_1$.

From these two equalities, we get the relation

 $[V, W] \supset [U_0, U_{-1} + U_1] = U_{-1} + U_1 = W.$

Since the converse inclusion is known in (1.3), we obtain [V, W] = W.

LEMMA 2.7 ([1]). For a GJTS (U, B) of the 2nd kind, the following

relation is valid:

$$\gamma_B((xyz), w) = \gamma_B(z, (yxw)) = \gamma_B(x, (wzy))$$
.

THEOREM 2.8. Let (U, B) be a GJTS of the 2nd kind. If it is simple, then the trace form γ_B is nondegenerate.

PROOF. Put $U^{\perp} = \{a \in U \mid \gamma_B(a, U) = 0\}$. Let $x, y, z \in U$ and $a \in U^{\perp}$. By Lemma 2.7, we have that

$$\begin{split} \gamma_B((xya), z) &= \gamma_B(a, (yxz)) = 0 , \\ \gamma_B((axy), z) &= \gamma_B(a, (zyx)) = 0 , \\ \gamma_B((xay), z) &= \gamma_B(x, (zya)) = \gamma_B((yzx), a) = 0 . \end{split}$$

It follows from these equalities that U^{\perp} is an ideal of U. Hence we have $U^{\perp} = \{0\}$ or $U^{\perp} = U$, that is, γ_B is nondegenerate or identically zero. Now let us assume that γ_B is identically zero. Then, by Proposition 2.3, $\mathscr{L}(B)$ is a solvable Lie algebra. Consequently, we have

(2.3) $[\mathscr{L}(B), \mathscr{L}(B)] \neq \mathscr{L}(B).$

On the other hand, using Proposition 2.5, Lemma 2.6 and (1.3), we obtain that

$$[\mathscr{L}(B), \mathscr{L}(B)] = [V + W, V + W]$$
$$= [V, V] + [V, W] + [W, W] = V + W = \mathscr{L}(B),$$

which contradicts (2.3). Therefore γ_B is nondegenerate.

Combining this theorem with Propositions 2.4 and 2.5, we obtain a Kantor's result [4], which was stated without proof.

COROLLARY 2.9. Let (U, B) be a GJTS of the 2nd kind. If it is simple, then the Kantor algebra $\mathcal{L}(B)$ is semisimple.

2.3. Let (U, B) be a GJTS of the 2nd kind over F. (U, B) is said to be *nondegenerate* if its trace form γ_B is nondegenerate. In this subsection, we assume that (U, B) is a nondegenerate GJTS of the 2nd kind. We denote by X^{ν} the adjoint operator of $X \in \text{End}(U)$ relative to γ_B .

PROPOSITION 2.10. A nondegenerate GJTS of the 2nd kind satisfies the condition (A).

PROOF. Let a be an element satisfying $B_a=0$, that is, (xay)=0 for $x, y \in U$. It follows that $L_{xa}=R_{ax}=0$. Hence $\gamma_B(a, x)$ is expressed as follows:

(2.4)
$$\gamma_B(a, x) = \frac{1}{2} \operatorname{Tr}(2R_{xa} - L_{ax}) .$$

Since $\gamma_{\scriptscriptstyle B}$ is nondegenerate, it follows from Lemma 2.7 that

$$(2.5) L_{xy} = L_{yx}, R_{xy} = R_{yx}.$$

Hence we have $\operatorname{Tr} L_{yx} = \operatorname{Tr} L_{xy}$ and $\operatorname{Tr} R_{yx} = \operatorname{Tr} R_{xy}$. Substituting these into (2.4), we get $\gamma_B(a, x) = (1/2)\operatorname{Tr}(2R_{xa} - L_{ax}) = (1/2)\operatorname{Tr}(2R_{ax} - L_{xa}) = 0$. From the nondegeneracy of γ_B , it follows that a = 0. This completes the proof.

LEMMA 2.11. In a nondegenerate GJTS (U, B) of the 2nd kind, we have

$$(2.6) T^{\nu} = -\bar{T} for T \in U_{0},$$

(2.7)
$$S^{\nu} = -S \quad for \quad S \in U_{-2}$$
.

PROOF. Using (1.2), we have $\bar{L}_{xy} = \tau_B([\bar{y}, x]) = [y, \bar{x}] = -L_{yx}$. Combining this with (2.5), we get $L_{xy}{}^{\nu} = -\bar{L}_{xy}$. Since U_0 is the linear span of operators L_{xy} , (2.6) is valid. Using Lemma 2.7, we have

$$\begin{split} \gamma_{B}(S_{xy}(u), v) &= \gamma_{B}((xuy), v) - \gamma_{B}((yux), v) = \gamma_{B}(y, (uxv)) - \gamma_{B}(y, (vxu)) \\ &= \gamma_{B}((yvx), u) - \gamma_{B}((xvy), u) = -\gamma_{B}(S_{xy}(v), u) \;. \end{split}$$

It follows that $S_{xy}^{\nu} = -S_{xy}$. Since U_{-2} is the linear span of operators S_{xy} , (2.7) is also valid.

Let us recall the homomorphism φ in (1.4). Lemma 1.2 and Proposition 2.10 show that φ is a Lie isomorphism of V onto L(W, W) if (U, B) is nondegenerate.

LEMMA 2.12. For a nondegenerate GJTS(U, B) of the 2nd kind, we have

(2.8)
$$\operatorname{Tr}_{W} \varphi(T_{1})\varphi(T_{2}) = 2 \operatorname{Tr}_{U}(T_{1}T_{2}) \quad for \quad T_{i} \in U_{0},$$

(2.9)
$$\operatorname{Tr}_{W} \varphi(S_{1}) \varphi(\overline{S}_{2}) = \operatorname{Tr}_{U}(S_{1}S_{2}) \qquad for \quad S_{i} \in U_{-2}.$$

PROOF. For $x \in U$ and $T \in U_0$, we have that [T, x] = T(x) and $[T, \overline{x}] = \tau_B([\overline{T}, x]) = \tau_B(\overline{T}(x))$. Let $x, y \in U$ and $T_i \in U_0$ (i=1, 2). Using those two relations, we get

$$\begin{aligned} \varphi(T_1)\varphi(T_2)(x+\tau_B(y)) = & [T_1, [T_2, x+\bar{y}]] = [T_1, T_2(x)+\tau_B(\bar{T}_2(y))] \\ & = & T_1T_2(x)+\tau_B(\bar{T}_1\bar{T}_2(y)) \ . \end{aligned}$$

Since τ_B is an isomorphism, it follows that

(2.10) $\operatorname{Tr}_{w} \varphi(T_{1})\varphi(T_{2}) = \operatorname{Tr}_{v}(T_{1}T_{2}) + \operatorname{Tr}_{v}(\overline{T}_{1}\overline{T}_{2}) .$

By Lemma 2.11, we have

$$\operatorname{Tr}_{\mathcal{U}}(\overline{T}_{1}\overline{T}_{2}) = \operatorname{Tr}_{\mathcal{U}}(T_{1}^{\nu}T_{2}^{\nu}) = \operatorname{Tr}_{\mathcal{U}}(T_{2}T_{1})^{\nu} = \operatorname{Tr}_{\mathcal{U}}(T_{2}T_{1}) = \operatorname{Tr}_{\mathcal{U}}(T_{1}T_{2})$$

Substituting this into (2.10), we obtain (2.8). Similarly, from the relation

$$\varphi(S_1)\varphi(\bar{S}_2)(x+\tau_B(y)) = [S_1, [\bar{S}_2, x+\bar{y}]] = [S_1, \bar{S}_2(x)] = S_1S_2(x)$$

we get (2.9).

THEOREM 2.13. Let (U, B) be a nondegenerate GJTS of the 2nd kind, and let β be the Killing form of the Kantor algebra $\mathcal{L}(B)$ for (U, B). Let $X_i = S_i + x_i + T_i + \overline{y}_i + \overline{S}'_i$ (i=1, 2) be elements in $\mathcal{L}(B)$, where $S_i, S'_i \in U_{-2}$, $T_i \in U_0, x_i, y_i \in U$. Then we have

(2.11)
$$\beta(X_1, X_2) = \beta_v(S_1, \bar{S}_2') + \beta_v(T_1, T_2) + \beta_v(\bar{S}_1', S_2) + \operatorname{Tr}_v(S_1S_2' + 2T_1T_2 + S_1'S_2) - 2\{\gamma_B(x_1, y_2) + \gamma_B(y_1, x_2)\},$$

where β_v is the Killing form of the subalgebra V of $\mathcal{L}(B)$.

PROOF. Since $\beta(U_i, U_j) = 0$ for i and j such that $i+j \neq 0$, we have

$$(2.12) \qquad \beta(X_1, X_2) = \beta(S_1, \overline{S}_2') + \beta(T_1, T_2) + \beta(\overline{S}_1', S_2) + \beta(x_1, \overline{y}_2) + \beta(\overline{y}_1, x_2) .$$

It follows from Lemma 2.2 that

$$(2.13) \qquad \beta(x_1, \bar{y}_2) + \beta(\bar{y}_1, x_2) = -2\{\gamma_B(x_1, y_2) + \gamma_B(y_1, x_2)\}.$$

Now let us assume that Y and Z are elements in V. Since the subspaces V and W are invariant under the map ad(Y)ad(Z), we have

(2.14)
$$\beta(Y, Z) = \operatorname{Tr}_{V} \operatorname{ad}(Y) \operatorname{ad}(Z) + \operatorname{Tr}_{W} \operatorname{ad}(Y) \operatorname{ad}(Z)$$
$$= \beta_{V}(Y, Z) + \operatorname{Tr}_{W} \varphi(Y) \varphi(Z) .$$

Hence, using Lemma 2.12, we have

(2.15)

$$\beta(S_{1}, \bar{S}_{2}') = \beta_{v}(S_{1}, \bar{S}_{2}') + \operatorname{Tr}_{v}(S_{1}S_{2}'),$$

$$\beta(T_{1}, T_{2}) = \beta_{v}(T_{1}, T_{2}) + 2\operatorname{Tr}_{v}(T_{1}T_{2}),$$

$$\beta(\bar{S}_{1}', S_{2}) = \beta_{v}(\bar{S}_{1}', S_{2}) + \operatorname{Tr}_{v}(S_{1}'S_{2}).$$

Substituting (2.13) and (2.15) into (2.12), we obtain (2.11).

REMARK. The above theorem contains the corresponding result for JTS's by Koecher [5].

\S 3. Compact generalized Jordan triple systems of the second kind.

In this section, we restrict our attention to the case where F is the real number field R. We keep the notations in the previous sections.

3.1. Let (U, B) be a real GJTS of the 2nd kind. (U, B) is said to be *compact* if its trace form γ_B is positive definite. Later on, let us assume that (U, B) is a compact GJTS of the 2nd kind. Since γ_B is non-degenerate, (U, B) satisfies the condition (A) by Proposition 2.10. Hence, by Proposition 2.4, $\mathcal{L}(B)$ is semisimple. We define an inner product \langle , \rangle on the subspace W of $\mathcal{L}(B)$ as follows:

$$\langle x_1 + \tau_B(x_2), y_1 + \tau_B(y_2) \rangle = \gamma_B(x_1, y_1) + \gamma_B(x_2, y_2)$$

for $x_i, y_i \in U$ (i=1, 2). From Lemma 2.2 it follows that

(3.1)
$$\langle X, Y \rangle = -\frac{1}{2}\beta(X, \tau_B(Y)) \quad \text{for} \quad X, Y \in W.$$

For $P \in End(W)$, let us denote its adjoint operator relative to \langle , \rangle by P^* .

LEMMA 3.1. We have

(3.2)
$$\varphi(X)^* = -\varphi(\tau_B(X)) \qquad \text{for} \quad X \in V,$$

(3.3)
$$L(Y, Z)^* = L(\tau_B(Z), \tau_B(Y)) \quad for \quad Y, Z \in W.$$

PROOF. For $Y, Z \in W$, using (3.1), we get

$$\begin{split} \langle \varphi(X)^*(Y), Z \rangle &= \langle Y, \varphi(X)(Z) \rangle = \langle Y, [X, Z] \rangle = -\frac{1}{2} \beta(Y, \tau_B([X, Z])) \\ &= -\frac{1}{2} \beta(Y, [\tau_B(X), \tau_B(Z)]) = -\frac{1}{2} \beta([Y, \tau_B(X)], \tau_B(Z)) \\ &= \frac{1}{2} \beta(\varphi(\tau_B(X))(Y), \tau_B(Z)) = -\langle \varphi(\tau_B(X))(Y), Z \rangle , \end{split}$$

from which (3.2) follows. Moreover we have $L(Y,Z)^* = \varphi([Y,Z])^* = -\varphi(\tau_B([Y,Z])) = -\varphi([\tau_B(Y),\tau_B(Z)]) = L(\tau_B(Z),\tau_B(Y)).$ Hence (3.3) is also valid.

The relation (3.3) implies that $L(W, W)^* \subset L(W, W)$. Let us define an inner product (,) on the space L(W, W) by

$$(P, Q) = \operatorname{Tr}_{W} PQ^*$$
 for $P, Q \in L(W, W)$.

We denote by σ^{\sim} the adjoint operator of $\sigma \in \text{End}(L(W, W))$ relative to (,). For P, Q, $R \in L(W, W)$, we have

$$([P, Q], R) = \operatorname{Tr}_{W}(PQ - QP)R^{*} = \operatorname{Tr}_{W}Q(R^{*}P - PR^{*})$$
$$= \operatorname{Tr}_{W}Q(P^{*}R - RP^{*})^{*} = (Q, [P^{*}, R]).$$

This means that

(3.4) $(\operatorname{ad}(P))^{\sim} = \operatorname{ad}(P^*)$ for $P \in L(W, W)$.

LEMMA 3.2. $\beta_v(X, \tau_B(X)) \leq 0$ for $X \in V$.

PROOF. Let us denote by β_L the Killing form of the Lie algebra L(W, W). Since the map φ is an isomorphism of V onto L(W, W), we have

$$\beta_{v}(X, Y) = \beta_{L}(\varphi(X), \varphi(Y))$$
 for $X, Y \in V$.

Using this equality together with (3.2) and (3.4), we obtain

$$\beta_{\mathcal{V}}(X, \tau_{\mathcal{B}}(X)) = \beta_{\mathcal{L}}(\varphi(X), \varphi(\tau_{\mathcal{B}}(X))) = -\beta_{\mathcal{L}}(\varphi(X), \varphi(X)^*)$$

= $-\operatorname{Tr}_{\mathcal{L}(W,W)} \operatorname{ad}(\varphi(X)) \operatorname{ad}(\varphi(X)^*)$
= $-\operatorname{Tr}_{\mathcal{L}(W,W)} \operatorname{ad}(\varphi(X)) (\operatorname{ad}(\varphi(X)))^{\sim} \leq 0.$

The following theorem gives a characterization for a GJTS to be compact.

THEOREM 3.3. Let (U, B) be a real nondegenerate GJTS of the 2nd kind and τ_B be the grade-reversing canonical involution of the Kantor algebra $\mathcal{L}(B)$. Then (U, B) is compact if and only if τ_B is a Cartan involution of $\mathcal{L}(B)$.

PROOF. Let us assume that (U, B) is compact. Since γ_B is nondegenerate in this case, it follows from Propositions 2.4 and 2.10 that $\mathscr{L}(B)$ is semisimple. For an element $X \in \mathscr{L}(B)$, we write it as $X = X_V + X_W$ $(X_V \in V, X_W \in W)$. Then, using (2.2), (2.14), (3.1) and (3.2), we have

$$\beta(X, \tau_B(X)) = \beta_V(X_V, \tau_B(X_V)) + \operatorname{Tr}_W \varphi(X_V) \varphi(\tau_B(X_V)) + \beta(X_W, \tau_B(X_W)) = \beta_V(X_V, \tau_B(X_V)) - \operatorname{Tr}_W \varphi(X_V) \varphi(X_V)^* - 2\langle X_W, X_W \rangle .$$

From Lemma 3.2, we obtain $\beta(X, \tau_B(X)) \leq 0$. Now suppose that $\beta(X, \tau_B(X)) = 0$. Then, in view of Lemma 3.2, we have $\operatorname{Tr}_W \varphi(X_V) \varphi(X_V)^* = \langle X_W, X_W \rangle = 0$. It follows that $\varphi(X_V) = 0$ and $X_W = 0$. Since φ is an isomorphism, we obtain $X_V = 0$, and consequently X = 0. Thus we have shown that the bilinear form $\beta(X, \tau_B(Y))$ on $\mathscr{L}(B)$ is negative definite. Consequently τ_B is a Cartan involution.

Conversely, let us assume that τ_B is a Cartan involution of $\mathscr{L}(B)$. Then the bilinear form $\beta(X, \tau_B(Y))$ is negative definite. Since γ_B is nondegenerate, Proposition 2.10 and Lemma 2.2 give the relation

$$\gamma_{\scriptscriptstyle B}(x, y) = -\frac{1}{2}\beta(x, \tau_{\scriptscriptstyle B}(y))$$

Therefore γ_B is positive definite, that is, (U, B) is compact.

From Theorems 2.8 and 3.3, we obtain the following

COROLLARY 3.4. Let (U, B) be a real simple GJTS of the 2nd kind and τ_B be the grade-reversing canonical involution of the Kantor algebra $\mathscr{L}(B)$. Then (U, B) is compact if and only if τ_B is a Cartan involution of $\mathscr{L}(B)$.

3.2. Let (U, B) be a compact simple GJTS of the 2nd kind. By Corollary 2.9, the Kantor algebra $\mathscr{L}(B) = \sum U_i$ is a semisimple graded Lie algebra. Therefore there exists the unique element $E \in U_0$ such that

$$U_i = \{X \in \mathscr{L}(B) \mid [E, X] = iX\}.$$

Let $\mathscr{L}(B) = \sum \mathscr{L}^k$ be the decomposition into the direct sum of simple ideals. Considering the operator $\operatorname{ad}(E)$, we can prove that every ideal \mathscr{L}^k is a graded ideal, that is,

$$(3.5) \qquad \qquad \mathscr{L}^k = \sum (\mathscr{L}^k \cap U_i) \; .$$

LEMMA 3.5. $\tau_B(\mathscr{L}^k) = \mathscr{L}^k$ for each k.

PROOF. Assume that $\tau_B(\mathscr{L}^k) = \mathscr{L}^l$ $(k \neq l)$. Since the relation $\beta(\mathscr{L}^k, \mathscr{L}^l) = 0$ holds, we have $\beta(X, \tau_B(X)) = 0$ for $X \in \mathscr{L}^k$. This contradicts the fact that the bilinear form $\beta(X, \tau_B(Y))$ is negative definite. Hence every simple ideal \mathscr{L}^k is τ_B -invariant.

From the above lemma, it follows that

(3.6)
$$\tau_{\scriptscriptstyle B}(\mathscr{L}^k \cap U_{-i}) = \mathscr{L}^k \cap U_i \quad (i=1,2).$$

We put $U^k = \mathscr{L}^k \cap U = \mathscr{L}^k \cap U_{-1}$.

LEMMA 3.6. U^k is a non-zero ideal of (U, B).

PROOF. Let $x \in U^k$. By Lemma 3.5, we have $\overline{x} = \tau_B(x) \in \mathscr{L}^k \cap U_1 \subset \mathscr{L}^k$. It follows that

$$(yxz) = [[\bar{x}, y], z] \in U^k$$
 for $y, z \in U$.

Furthermore we have

 $(xyz) = [[\bar{y}, x], z] \in U^k$, $(yzx) = [[\bar{z}, y], x] \in U^k$.

These relations imply that U^k is an ideal of the GJTS (U, B). Now suppose that $U^k = \{0\}$. Then, from (3.6), we have $\mathscr{L}^k \cap U_1 = \{0\}$. Furthermore, since $[U_{-1}, U_{-1}] = U_{-2}$ and $[U_{-1}, U_1] = U_0$, we obtain

$$\mathscr{L}^k \cap U_{-2} = \{0\}$$
, $\mathscr{L}^k \cap U_2 = \{0\}$, $\mathscr{L}^k \cap U_0 = \{0\}$.

It follows from (3.5) that $\mathcal{L}^{k} = \{0\}$, which is a contradiction. Therefore U^{k} is not zero.

THEOREM 3.7. Let (U, B) be a compact GJTS of the 2nd kind. Then the Kantor algebra $\mathcal{L}(B)$ is simple if and only if (U, B) is simple.

PROOF. The "if" part follows from Propositions 2.4, 2.5 and Lemma 3.6. Suppose that $\mathcal{L}(B)$ is simple. Then, by a result of Kantor (Proposition 7' in [3]), (U, B) is K-simple and hence it is simple.

From Theorem 3.7 and its proof we get

THEOREM 3.8. Let (U, B) be a compact GJTS of the 2nd kind. Then (U, B) is simple if and only if it is K-simple.

References

- N. KAMIYA, A structure theory of Freudenthal-Kantor triple systems, J. of Algebra, 110 (1987), 108-123.
- [2] S. KANEYUKI and H. ASANO, Graded Lie algebras and generalized Jordan triple systems, 1987, to appear in Nagoya Math. J., 112 (1988).
- [3] I. L. KANTOR, Some generalizations of Jordan algebras, Trudy Sem. Vekt. Tenz. Anal., 16 (1972), 407-499 (in Russian).
- [4] I.L. KANTOR, Models of exceptional Lie algebras, Soviet Math. Dokl., 14 (1973), 254-258.
- [5] M. KOECHER, An Elementary Approach to Bounded Symmetric Domains, Lecture Notes, Rice Univ., Houston, 1969.
- [6] O. Loos, Symmetric Spaces I, Benjamin, New York, 1969.
- [7] K. MEYBERG, Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren, Math. Z., 115 (1970), 58-78.
- [8] K. YAMAGUTI, On the metasymplectic geometry and triple systems, RIMS Kokyuroku, 308 (1977), 55-92, Res. Inst. Math. Sci., Kyoto Univ. (in Japanese).

Present Address: Hiroshi Asano Department of Mathematics, Yokohama City University Seto, Yokohama 236, Japan

Soji Kaneyuki Department of Mathematics, Sophia University Kioicho, Chiyoda-ku, Tokyo 102, Japan