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Introduction.

A finite dimensional graded Lie algebra $\mathcal{G}=\sum \mathcal{G}_{k}$ over a field $F$ of
characteristic zero is said to be of the v-th kind, if $\mathcal{G}_{\pm k}=\{0\}$ for $ k>\nu$ .
Let $B:(x, y, z)\mapsto(xyz)$ be a triple operation on a vector space $U$ over $F$.
The operation $B$ is called a generalized Jordan triple system, if the equality
$(uv(xyz))=((uvx)yz)-(x(vuy)z)+(xy(uvz))$ is valid for $u,$ $v,$ $x,$ $y,$ $z\in U$. If,
in addition, the relation $(xyz)=(zyx)$ holds for $x,$ $y,$ $z\in U$, then $B$ is said
to be a Jordan triple system. Koecher [5] and Meyberg [7] studied in-
teresting relationship between Jordan triple systems with nondegenerate
trace forms and symmetric Lie algebras $(\mathcal{G}, \tau)$ ; here $\mathcal{G}$ is a semisimple
graded Lie algebra of the 1st kind with $\mathcal{G}_{0}=[\mathcal{G}_{-1}, \mathcal{G}_{1}]$ , and $\tau$ is a grade-
reversing involution of $\mathcal{G}$. Our main concern is to generalize this con-
nection to the case of generalized Jordan triple systems. It is known
(Kantor [3]) that to a generalized Jordan triple system $B$ on $U$ there cor-
responds a graded Lie algebra $-\mathscr{G}(B)=\sum U_{i}$ with $U_{-1}=U$. The triple
system $B$ is called of the v-th kind, if the graded Lie algebra $\mathscr{L}(B)$ is of
the v-th kind. Under a certain condition (A) for $B$ (cf. \S 1), $\mathscr{L}(B)$ admits
a grade-reversing involution $\tau_{B}$ . The pair $(\mathscr{L}(B), \tau_{B})$ is considered to be a
generalization of the symmetric Lie algebra corresponding to a Jordan
triple system. On the other hand, K. Yamaguti [8] introduced the bilinear
forms $\gamma_{B}$ for a wider class of triple systems. For a generalized Jordan
triple system $B$ , the form $\gamma_{B}$ is symmetric, and, as is seen in the present
paper, it plays the same role as the trace form for a Jordan triple system
does. Now suppose $B$ is of the 2nd kind. The first aim of this paper
is to prove the following implications (Propositions 2.4, 2.5, 2.10 and
Theorem 2.8):
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$B$ satisfies the condition (A)

$B$ is $simple^{\nearrow}\backslash $ $\uparrow$

$\nearrow \mathscr{L}(B)$ is semisimple.
$\gamma_{B}$ is nondegenerate

Under the assumption that $\gamma_{B}$ is nondegenerate, we will next give a
formula which describes a relationship between the Killing form of $\mathscr{L}(B)$

and the symmetric bilinear form $\gamma_{B}$ (Theorem 2.13). For the case where
$F$ is the field of real numbers, $B$ is said to be compact if $\gamma_{B}$ is positive
definite. We will prove that $B$ is compact if and only if the grade-
reversing involution $\tau_{B}$ is a Cartan involution (Theorem 3.3). In Theorem
3.7 we will show that, under the assumption of compactness for $B,$ $\mathscr{L}(B)$

is simple if and only if $B$ is simple.
Finally we should remark that compact real simple generalized Jordan

triple systems $B$ of the 2nd kind with $\mathscr{L}(B)$ classical can be classified
(see [2]).

\S 1. Basic facts on the generalized Jordan triple systems of the
second kind.

Let $U$ be a finite dimensional vector space over a field $F$ of charac-
teristic zero and $B:U\times U\times U\rightarrow U$ be a trilinear mapping. Then the pair
$(U, B)$ is called a triple system over $F$. We shall often write $(xyz)$ in-
stead of $B(x, y, z)$ . For subspaces $V(1\leqq i\leqq 3)$ of $U$, we denote by $(V_{1}V_{2}V_{S})$

the subspace spanned by all elements of the form $(x_{1}x_{2}x_{3})$ for $xeV_{i}$ . A
triple system $(U, B)$ is called a generalized Jordan triple system (abbre-
viated as GJTS) if the following equality is valid:

(1.1) $(uv(xyz))=((uvx)yz)-(x(vuy)z)+(xy(uvz))$

for $u,$ $v,$ $x,$ $y,$ $z\in U$. Furthermore, if the additional condition

$(xyz)=(zyx)$ $x,$ $y,$ $z\in U$

is satisfied, then $(U, B)$ is called a Jordan triple system (abbreviated as
JTS). For a GJTS which is not a JTS, see Example 2.1. Starting from
a given GJTS $(U, B)$ , Kantor [3] constructed a certain graded Lie algebra
$\mathscr{L}(B)=\sum U$ such that $U_{-1}=U$. We call this Lie algebra.$\mathscr{G}(B)$ the Kantor
algebra for $(U, B)$ . We say that $(U, B)$ is of the i-th kind if $U_{\pm k}=\{0\}$

for all $k>i$ . Note that in our conventions every GJTS of the 1st kind
is considered as a GJTS of the 2nd kind satisfying $U_{\pm 2}=\{0\}$ . It is known
[3] that a GJTS is of the 1st kind if and only if it is a JTS. For an
element $a\in U$, let us define a bilinear map $B_{a}$ on $U$ by putting
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$B_{a}(x, y)=B(x, a, y)$ for $x,$ $y\in U$ .
We say that $(U, B)$ satisfies the condition (A) if $B_{a}=0$ implies $a=0$ . In
this case there exists a grade-reversing involutive automorphism $\tau_{B}$ of
$-\mathscr{G}(B)$ such that $\tau_{B}(a)=B_{a}$ for $a\in U$ (see [2] Proposition 3.8). The auto-
morphism $\tau_{B}$ is called the grade-reversing canonical involution of $\mathscr{L}(B)$ .
Let us define the two linear endomorphisms $L_{ab}$ and $S_{ab}$ on $U(a, b\in U)$ by

$L_{ab}(x)=(abx)$ , $S_{ab}(x)=(axb)-(bxa)$ .
Let $\mathscr{G}$ be the subspace of End$(U)$ spanned by operators $S_{ab}$ . Following
the arguments in Kantor [3], one can prove that if $(U, B)$ satisfies the
condition (A), then there exists a linear isomorphism of $U_{-2}$ onto SZ We
can thus identify $U_{-2}$ with $\mathscr{L}$ We restate a result of Kantor [3] as follows,
in which the condition (A) should be added as an assumption; a bracket
relation there should be also corrected.

THEOREM 1.1 ([3]). Let $(U, B)$ be a GJTS of the 2nd kind satisfying
the condition (A) and let $\tau_{B}$ be the grade-reversing canonical involution
of the Kantor algebra $\mathscr{L}(B)=\sum U_{i}$ for $(U, B)$ . Then,
(i) $U_{-2}=\mathscr{G}U_{-1}=U,$ $U_{1}=\tau_{B}(U_{-1}),$ $U_{2}=\tau_{B}(U_{-2});U_{0}$ is the subspace ofEnd$(U)$

spanned by operators $L_{ab}$ .
(ii) If we denote $\tau_{B}(X)$ by $\overline{X}$, then we have the following bracket rela-

tions in $-\mathscr{G}(B)$ :

$[a, b]=S_{ba}$ , $[\overline{a}, b]=L_{ba}$ , $[L_{ab}, c]=(abc)$ , $[L_{ab},\overline{c}]=-\overline{(bac)}$ ,
$[\overline{S}_{ab}, c]=\overline{S_{ab}(c)}$ , $[L_{ab}, S_{cd}]=S_{(abc)d}+S_{c(abd)}$ ,

(1.2)
$[S_{ab},\overline{S}_{cd}]=L_{(acb)d}-L_{(bca)d}-L_{(adb)c}+L_{(bda)c}$ ,
$[L_{ab}, L_{cd}]=L_{(abc)d}-L_{e(bad)}$ ,

where $a,$ $b,$ $c,$ $d\in U$.
Let $(U, B)$ be a GJTS of the 2nd kind over $F$. Put

$W=U_{-1}+U_{1}$ , $V=U_{-2}+U_{0}+U_{2}$ .
Then, since $\mathscr{L}(B)=\sum U_{i}$ is a graded Lie algebra, the following relations
are obviously valid:

(1.3) $\mathscr{L}(B)=V+W$ , [V, $V$] $\subset V$ , [V, $W$] $\subset W$ , $[W, W]\subset V$ .
Therefore the space $W$ becomes a Lie triple system (abbreviated as LTS)
with triple product $\{XYZ\}=[[X, Y],$ $Z$]. By $L(X, Y)$ we denote the linear
endomorphism $Z$ト\rightarrow {XYZ} on $W$. Let $L(W, W)$ be the space spanned by
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operators $L(X, Y)$ and let

$\mathscr{L}(W)=L(W, W)+W$

be the standard imbedding Lie algebra of the LTS $W$ (see [6]). Note
that $L(W, W)$ is a subalgebra of $\mathscr{L}(W)$ . We define the linear mapping
$\varphi$ of $V$ into End$(W)$ by

(1.4) $\varphi(X)=ad_{W}(X)$ (the restriction of ad(X) on $W$).

Note that $\varphi([X, Y])=ad_{W}([X, Y])=L(X, Y)$ for $X$, Ye $W$.
LEMMA 1.2. If $(U, B)$ satisfies the condition (A), then $\varphi$ is a Lie

isomorphism of $V$ onto $L(W, W)$ .
PROOF. It follows from Theorem 1.1 that $[U_{-1}, U_{-1}]=U_{-2},$ $[U_{-1}, U_{1}]=$

$U_{0},$ $[U_{1}, U_{1}]=U_{2}$ , and consequently $[W, W]=V$. Hence, we get $\varphi(V)=$

$\varphi([W, W])=L(W, W)$ . Therefore $\varphi$ is suriective. Since $\varphi$ is obviously
a Lie homomorphism, it is enough to prove that $\varphi$ is injective. Suppose
that $\varphi(X)=0$ for $X\in V$. Denoting $X$ by $X=S_{1}+T+\overline{S}_{2}(S_{i}\in U_{-2}, T\in U_{0})$ ,
we have $\{O\}=\varphi(X)W=[X, W]=[S_{1}+T+\overline{S}_{2}, U_{-1}+U_{1}]=([S_{1}, U_{1}]+[T, U_{-1}])+$

$([T, U_{1}]+[\overline{S}_{2}, U_{-1}])$ . Since $U_{-1}+U_{1}$ is a direct sum, this means that $[S_{1}, U_{1}]+$

$[T, U_{-1}]=\{0\}$ and $[T, U_{1}]+[\overline{S}_{2}, U_{-1}]=\{0\}$ . Hence, for any elements $x,$ $y\in U_{-1}=$

$U$, we have

(1.5) $[S_{1},\overline{x}]+[T, y]=0$ , $[T,\overline{x}]+[\overline{S}_{2}, y]=0$ .
Putting $x=0$ in (1.5), we get $[T, y]=0$ and $[\overline{S}_{2}, y]=0$ . By (1.2), we have
$T(y)=0$ and $\overline{S_{2}(y)}=0$ . Since $y$ is an arbitrary element in $U$, and since $\tau_{B}$

is an isomorphism, it follows that $T=S_{2}=0$ . Similarly, putting $y=0$ in
(1.5), we can show that $S_{1}=0$ . Therefore we have $X=0$ .

PROPOSITION 1.3. Let $(U, B)$ be a GJTS of the 2nd kind and $\mathscr{L}(B)$

be the Kantor algebra for $(U, B)$ . Let $Z(W)$ be the standard imbedding
Lie algebra of the LTS W. If $(U, B)$ satisfies the condition (A), then
$\mathscr{L}(B)$ is isomorphic to $\mathscr{L}(W)$ .

PROOF. We define the map $\psi;\mathscr{L}(B)\rightarrow \mathscr{L}(W)$ by $\psi(X+Y)=\varphi(X)+Y$

($X\in V$, YG $W$). Since $\varphi$ is a Lie isomorphism by Lemma 1.2, it can be
easily proved that $\psi$ is also a Lie isomorphism.

By this proposition, the Kantor algebra for a GJTS of the 2nd kind
satisfying the condition (A) may be viewed as the standard imbedding
Lie algebra of a certain LTS.
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\S 2. Nondegenerate generalized Jordan triple systems of the second
kind.

Throughout this section, we will keep the notations in the previous
section.

2.1. Let $(U, B)$ be a GJTS of the 2nd kind over $F$. We denote the
linear endomorphism $z->(zxy)$ on $U$ by $R_{xy}$ . Let us consider the symmetric
bilinear form on $U$:

$\gamma_{B}(x, y)=\frac{1}{2}Tr(2R_{xy}+2R_{yx}-L_{xy}-L_{yx})$ ,

where $Tr(f)$ means the trace of a linear endomorphism $f$. The form $\gamma_{B}$

is a special case of the bilinear form considered by K. Yamaguti [8]. In
the case of a JTS, this form coincides with the usual trace form $\gamma$ defined
by $\gamma(x, y)=(1/2)Tr(L_{xy}+L_{yx})$ . We call $\gamma_{B}$ the trace form of the GJTS of
the 2nd kind $(U, B)$ .

EXAMPLE 2.1. Let $M(p, q-p;C),$ $p<q$ be the real vector space of
all $p\times(q-p)$ matrices with coefficients in the complex number field $C$.
For an element $X\in M(p, q-p;C)$ we denote by $X^{*}$ the transposed con-
jugate matrix of $X$. We define a trilinear map $B$ on $M(p, q-p;C)$ by

$B(X, Y, Z)=XY^{*}Z+ZY^{*}X-ZX^{*}$ Y.

Then, by direct calculations, $(M(p, q-p;C),$ $B$) is seen to be a real GJTS
of the 2nd kind, which is not a JTS. In this case.$\mathscr{G}(B)$ is isomorphic
to the Lie algebra $\epsilon u(p, q)$ (see [2]). We will compute the trace form $\gamma_{B}$ .
For given $X$, Ye $M(p, q-p;C)$ , let us first consider the real linear endo-
morphism $T$ on $M(p, q-p;C)$ defined by $T(Z)=XZ^{*}Y$. Then, direct com-
putations show that
(2.1) $Tr_{R}(T)=0$ .
Let $A$ (resp. $B$) be a square matrix of degree $p$ (resp. $q-p$), and let $\lambda_{A}$

(resp. $\rho_{B}$) be the left (resp. right) multiplication by $A$ (resp. $B$) on
$M(p, q-p;C)$ . By using (2.1), we have

$\gamma_{B}(X, Y)=\frac{1}{2}Tr_{R}(2\rho_{x*r}+2\rho_{Y^{*}X}+x_{YX^{*}}+x_{XY^{l}})$ .
On the other hand, we see that

$Tr_{c}(\rho_{XY})=Tr(E_{p}\otimes X^{*}Y)=p\overline{(TrXY^{*})}$ ,
$Tr,,(\lambda_{YV*})=Tr(XY^{*}\cap\times E_{n-m})=(a-v)(TrXY^{*})$ ,
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where $E_{p}$ (resp. $E_{q-p}$ ) is the unit matrix of degree $p$ (resp. $q-p$). By
using these equalities we get

$\gamma_{B}(X, Y)=2(p+q){\rm Re}(TrXY^{*})$ ,

where ${\rm Re}$ denotes the real part. $\gamma_{B}$ is thus positive definite.

Let $\beta$ be the Killing form of the Kantor algebra $\mathscr{L}(B)$ . Since
$\mathscr{L}(B)=\sum U$ is a graded Lie algebra, we have that $\beta(U_{i}, U_{\dot{f}})=0$ if
$i+j\neq 0$ . Hence we get

(2.2) $\beta(V, W)=0$ .
From now on, we assume that $(U, B)$ satisfies the condition (A). Then,

since $\mathscr{L}(B)$ is isomorphic with $\mathscr{L}(W)$ by Proposition 1.3, $\beta$ can be con-
sidered to be the Killing form of $\mathscr{L}(W)$ . Let $\alpha$ be the Ricci (or Killing)
form of the LTS $W$ defined by

$\alpha(X, Y)=\frac{1}{2}Tr(R(X, Y)+R(Y, X))$ ,

where $R(X, Y)$ is the linear endomorphism on $W$ defined by $Z\mapsto\{ZXY\}$ .
It is well known (see [6]) that

$\beta(X, Y)=2\alpha(X, Y)$ for $X$, Ye $W$ .
The following lemma is essentially obtained by Yamaguti [8]. His result
is different from ours only in the sign.

LEMMA 2.2. For $x_{i},$ $y_{i}\in U(i=1,2)$ , we have

$\beta(x_{1}+\overline{x}_{2}, y_{1}+\overline{y}_{2})=-2\{\gamma_{B}(x_{1}, y_{2})+\gamma_{B}(x_{2}, y_{1})\}$ .
PROPOSITION 2.3. Let $(U, B)$ be a GJTS of the 2nd kind satisfying

the condition (A). If the trace form $\gamma_{B}$ is identically zero, then the
Kantor algebra.$\mathscr{L}(B)$ is solvable.

PROOF. By Lemma 2.2 the Killing form $\beta$ of $-\mathscr{G}(B)$ is identically
zero on $W$. Choose an element $x\in V$. Since $V=[W, W],$ $X$ can be written
as $X=\sum[Y_{i}, Z](Y_{i}, Z_{l}\in W)$ . Then, for an arbitrary element $XeV$, we
have $\beta(X, X)=\sum\beta([Y, Z_{i}], X)=\sum\beta(Y, [Z_{i}, X])=0$ , because $Y_{i}$ and $[Z_{i}, X]$

are in $W$. Therefore $\beta$ is also identically zero on $V$. In view of (2.2),
we obtain that $\beta$ is identically zero on $\mathscr{L}(B)$ . Hence $Z(B)$ is solvable.

PROPOSITION 2.4. Let $(U, B)$ be a GJTS of the 2nd kind satisfying
$\# h_{\Phi}$ $\Gamma 1md\dot{o}t\dot{o}n\alpha l$ $/A$ ) T.pf $\gamma_{-}hothp\star\nu npp$ $r_{\iota 0\cdot m}$, $nf(TT$ $Ptnmd$ $i^{\rho}(Rth_{p}\neq hp$
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Kantor algebra for $(U, B)$ . Then $\gamma_{B}$ is nondegenerate $i^{\mathfrak{l}}f$ and only if
$\mathscr{L}(B)$ is semisimple.

PROOF. Kamiya [1] proved that $\gamma_{B}$ is nondegenerate if and only if
$\mathscr{L}(W)$ is semisimple. Combining this with Proposition 1.3, we obtain
this proposition.

2.2. Let $(U, B)$ be a GJTS over $F$. A subspace $I$ of $U$ is called an
ideal (resp. K-ideal) if $(UUI)+(UIU)+(IUU)\subset I$ (resp. $(UUI)+(IUU)\subset I$ )
is valid. Obviously any ideal is a K-ideal. The whole space $U$ and $\{0\}$

are called the trivial ideals. $(U, B)$ is said to be simple (resp. K-simple)
if $B$ is not a zero map and $U$ has no non-trivial ideal (resp. K-ideal).
Hence every K-simple GJTS is simple.

PROPOSITION 2.5. Every simple GJTS $(U,B)$ satisfies the condition (A).

PROOF. Put $I=\{a\in U|B_{a}=0\}$ . Let $u,$ $v,$ $x,$ $y\in U$ and $a\in I$. Using
(1.1), we get $B_{(xya)}(u, v)=(u(xya)v)=-(yx(uav))+((yxu)av)+(ua(yxv))=0$ .
It follows that $B_{(xya)}=0$ , that is, $(xya)\in I$. Hence we have $(UUI)\subset I$.
Similarly we can obtain $(IUU)\subset I$. 0bviously we have $(UIU)=\{0\}\subset I$.
Therefore $I$ is an ideal of $U$. From the assumption of simplicity, we have
$I=\{0\}$ or $I=U$. If we suppose that $I=U$, then we have $(UUU)=\{0\}$ , which
contradicts the assumption that $B$ is not a zero map. Hence we have
to have $I=\{0\}$ . This means that $(U, B)$ satisfies the condition (A).

LEMMA 2.6. Let $(U, B)$ be a GJTS of the 2nd kind. If it is simple,
then [V, $W$] $=W$ is valid.

PROOF. Since $(UUU)$ is an ideal of $U$, we have $(UUU)=U$ from
the assumption of simplicity. By Proposition 2.5 and Theorem 1.1, we
have $U_{0}=[U_{1}, U_{-1}]=[\tau_{B}(U_{-1}), U_{-1}]$ and $U_{-1}=U$. Hence, using the equality
$[[\overline{x}, y],$ $z$] $=[L_{yx}, z]=(yxz)$ , we obtain that

$[U_{0}, U_{-1}]=[[\tau_{B}(U_{-1}), U_{-1}], U_{-1}]=(UUU)=U_{-1}$ .
By applying $\tau_{B}$ to this equality, we have also that

$[U_{0}, U_{1}]=\tau_{B}([U_{0}, U_{-1}])=\tau_{B}(U_{-1})=U_{1}$ .
From these two equalities, we get the relation

[V, $W$] $\supset[U_{0}, U_{-\iota}+U_{1}]=U_{-1}+U_{1}=W$ .
Since the converse inclusion is known in (1.3), we obtain [V, $W$] $=W$.

LEMMA 2.7 ([1]). For a GJTS $(U, B)$ of the 2nd kind, the following
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relation is valid:
$\gamma_{B}((xyz), w)=\gamma_{B}(z, (yxw))=\gamma_{B}(x, (wzy))$ .

THEOREM 2.8. Let $(U, B)$ be a GJTS of the 2nd kind. If it is simple,
then the trace form $\gamma_{B}\dot{j}S$ nondegenerate.

PROOF. Put $U^{\perp}=\{aeU|\gamma_{B}(a, U)=0\}$ . Let $x,$ $y,$ $zeU$ and $a\in U^{\perp}$ . By
Lemma 2.7, we have that

$\gamma_{B}((xya), z)=\gamma_{B}(a, (yxz))=0$ ,
$\gamma_{B}((axy), z)=\gamma_{B}(a, (zyx))=0$ ,
$\gamma_{B}((xay), z)=\gamma_{B}(x, (zya))=\gamma_{B}((yzx), a)=0$ .

It follows from these equalities that $U^{\perp}$ is an ideal of $U$. Hence we
have $U^{\perp}=\{0\}$ or $U^{\perp}=U$, that is, $\gamma_{B}$ is nondegenerate or identically zero.
Now let us assume that $\gamma_{B}$ is identically zero. Then, by Proposition 2.3,
$\mathscr{L}(B)$ is a solvable Lie algebra. Consequently, we have

(2.3) $[\mathscr{L}(B), \mathscr{L}(B)]\neq \mathscr{L}(B)$ .
On the other hand, using Proposition 2.5, Lemma 2.6 and (1.3), we ob-
tain that

$[\mathscr{L}(B), \mathscr{L}(B)]=[V+W, V+W]$

$=[V, V]+[V, W]+[W, W]=V+W=\mathscr{L}(B)$ ,

which contradicts (2.3). Therefore $\gamma_{B}$ is nondegenerate.

Combining this theorem with Propositions 2.4 and 2.5, we obtain a
Kantor’s result [4], which was stated without proof.

COROLLARY 2.9. Let $(U, B)$ be a GJTS of the 2nd kind. If it is
simple, then the Kantor algebra $Z(B)$ is semisimple.

2.3. Let $(U, B)$ be a GJTS of the 2nd kind over F. $(U, B)$ is said
to be nondegenerate if its trace form $\gamma_{B}$ is nondegenerate. In this sub-
section, we assume that $(U, B)$ is a nondegenerate GJTS of the 2nd kind.
We denote by $X^{\nu}$ the adjoint operator of $X\in End(U)$ relative to $\gamma_{B}$ .

PROPOSITION 2.10. A nondegenerate GJTS of the 2nd kind satisfies
the condition (A).

PROOF. Let $a$ be an element satisfying $B_{a}=0$ , that is, $(xay)=0$ for
$x,$ $y\in U$. It follows that $L_{xa}=R_{ax}=0$ . Hence $\gamma_{B}(a, x)$ is expressed as
$fnl\ln\iota\pi s_{-}$.
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(2.4) $\gamma_{B}(a, x)=\frac{1}{2}Tr(2R_{xa}-L_{ax})$ .
Since $\gamma_{B}$ is nondegenerate, it follows from Lemma 2.7 that
(2.5) $L_{xy}^{\nu}=L_{yx}$ , $R_{xy}^{\nu}=R_{yx}$ .
Hence we have Tr $L_{yx}=TrL_{xy}$ and Tr $R_{yx}=TrR_{xy}$ . Substituting these into
(2.4), we get $\gamma_{B}(a, x)=(1/2)Tr(2R_{xa}-L_{ax})=(1/2)Tr(2R_{a},-L_{xa})=0$ . From the
nondegeneracy of $\gamma_{B}$ , it follows that $a=0$ . This completes the proof.

LEMMA 2.11. In a nondegenerate GJTS $(U, B)$ of the 2nd kind, $we$

have

(2.6) $T^{\nu}=-\overline{T}$ for $T\in U_{0}$ ,

(2.7) $S^{\nu}=-S$ for $S\in U_{-2}$ .
PROOF. Using (1.2), we have $\overline{L}_{xy}=\tau_{B}([\overline{y}, x])=[y,\overline{x}]=-L_{yx}$ . Combining

this with (2.5), we get $L_{xy}^{\nu}=-\overline{L}_{xy}$ . Since $U_{0}$ is the linear span of oper-
ators L.,, (2.6) is valid. Using Lemma 2.7, we have

$\gamma_{B}(S_{xy}(u), v)=\gamma_{B}((xuy), v)-\gamma_{B}((yux), v)=\gamma_{B}(y, (uxv))-\gamma_{B}(y, (vxu))$

$=\gamma_{B}((yvx), u)-\gamma_{B}((xvy), u)=-\gamma_{B}(S_{xy}(v), u)$ .
It follows that $S_{xy}^{\nu}=-S_{xy}$ . Since $U_{-2}$ is the linear span of operators $S_{xy}$ ,
(2.7) is also valid.

Let us recall the homomorphism $\varphi$ in (1.4). Lemma 1.2 and Propo-
sition 2.10 show that $\varphi$ is a Lie isomorphism of $V$ onto $L(W, W)$ if $(U, B)$

is nondegenerate.

LEMMA 2.12. For a nondegenerate GJTS $(U, B)$ of the 2nd kind, $we$

have

(2.8) $Tr_{W}\varphi(T_{1})\varphi(T_{2})=2Tr_{U}(T_{1}T_{2})$ for $T_{i}\in U_{0}$ ,

(2.9) $Tr_{W}\varphi(S_{1})\varphi(\overline{S}_{2})=Tr_{U}(S_{1}S_{2})$ for $S_{i}\in U_{-2}$ .
PROOF. For $x\in U$ and $T\in U_{0}$ , we have that $[T, x]=T(x)$ and $[T,\overline{x}]=$

$\tau_{B}([\overline{T}, x])=\tau_{B}(\overline{T}(x))$ . Let $x,$ $y\in U$ and $T_{i}\in U_{0}(i=1,2)$ . Using those two
relations, we get

$\varphi(T_{1})\varphi(T_{2})(x+\tau_{B}(y))=[T_{1}, [T_{2}, x+\overline{y}]]=[T_{1}, T_{2}(x)+\tau_{B}(\overline{T}_{2}(y))]$

$=T_{1}T_{2}(x)+\tau_{B}(\overline{T}_{1}\overline{T}_{2}(y))$ .
Since $\tau_{B}$ is an isomorphism, it follows that
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(2.10) $Tr_{W}\varphi(T_{1})\varphi(T_{2})=Tr_{\sigma}(T_{1}T_{2})+Tr_{\sigma}(\overline{T}_{1}\overline{T}_{2})$ .
By Lemma 2.11, we have

$Tr_{\sigma}(\overline{T}_{1}\overline{T}_{2})=Tr_{\sigma}(T_{1}^{\nu}T_{2}^{\nu})=Tr_{\sigma}(T_{2}T_{1})^{\nu}=Tr_{\sigma}(T_{2}T_{1})=Tr_{\sigma}(T_{1}T_{2})$ .
Substituting this into (2.10), we obtain (2.8). Similarly, from the relation

$\varphi(S_{1})\varphi(\overline{S}_{2})(x+\tau_{B}(y))=[S_{1}, [\overline{S}_{2}, x+\overline{y}]]=[S_{1},\overline{S_{2}(x)}]=S_{1}S_{2}(x)$ ,

we get (2.9).

THEOREM 2.13. Let $(U, B)$ be a nondegenerate GJTS of the 2nd kind,
and let $\beta$ be the Killing form of the Kantor algebra $\mathscr{L}(B)$ for $(U, B)$ .
Let $X_{i}=S_{i}+x+T_{i}+\overline{y}_{i}+\overline{S}$; $(i=1,2)$ be elements in $\mathscr{L}(B)$ , where $S,$ $S’\in U_{-2}$ ,
$T\in U_{0},$ $x,$ $y_{i}\in U.$ Then we have

(2.11) $\beta(X_{1}, X_{2})=\beta_{V}(S_{1},\overline{S}_{2})+\beta_{V}(T_{1}, T_{2})+\beta_{V}(\overline{S}_{1}^{\prime}, S_{2})$

$+Tr_{\sigma}(S_{1}S_{2}^{\prime}+2T_{1}T_{2}+S_{1}^{\prime}S_{2})-2\{\gamma_{B}(x_{1}, y_{2})+\gamma_{B}(y_{1}, x_{2})\}$ ,

where $\beta_{V}$ is the Killing form of the subalgebra $V$ of $\mathscr{L}(B)$ .
PROOF. Since $\beta(U, U_{\dot{g}})=0$ for $i$ and $j$ such that $i+j\neq 0$ , we have

(2.12) $\beta(X_{1}, X_{2})=\beta(S_{1},\overline{S}_{2}^{\prime})+\beta(T_{1}, T_{2})+\beta(\overline{S}_{1}, S_{2})+\beta(x_{1},\overline{y}_{2})+\beta(\overline{y}_{1}, x_{2})$ .
It follows from Lemma 2.2 that

(2.13) $\beta(x_{1},\overline{y}_{2})+\beta(\overline{y}_{1}, x_{2})=-2\{\gamma_{B}(x_{1}, y_{2})+\gamma_{B}(y_{1}, x_{2})\}$ .
Now let us assume that $Y$ and $Z$ are elements in $V$. Since the subspaces
$V$ and $W$ are invariant under the map $ad(Y)ad(Z)$ , we have

(2.14) $\beta(Y, Z)=Tr_{V}ad(Y)ad(Z)+Tr_{W}ad(Y)ad(Z)$

$=\beta_{V}(Y, Z)+Tr_{W}\varphi(Y)\varphi(Z)$ .
Hence, using Lemma 2.12, we have

$\beta(S_{1},\overline{S}_{2})=\beta_{V}(S_{1},\overline{S}_{2}^{\prime})+Tr_{\sigma}(S_{1}S_{2}^{\prime})$ ,
(2.15) $\beta(T_{1}, T_{2})=\beta_{V}(T_{1}, T_{2})+2Tr_{\sigma}(T_{1}T_{2})$ ,

$\beta(\overline{S}i, S_{2})=\beta_{V}(\overline{S}_{1}^{\prime}, S_{2})+Tr_{\sigma}(S_{1}S_{2})$ .
Substituting (2.13) and (2.15) into (2.12), we obtain (2.11).

REMARK. The above theorem contains the corresponding result for
JTS’s bv Koecher $\lceil 51$ .
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\S 3. Compact generalized Jordan triple systems of the second kind.

In this section, we restrict our attention to the case where $F$ is the
real number field $R$ . We keep the notations in the previous sections.

3.1. Let $(U, B)$ be a real GJTS of the 2nd kind. $(U, B)$ is said to
be compact if its trace form $\gamma_{B}$ is positive definite. Later on, let us
assume that $(U, B)$ is a compact GJTS of the 2nd kind. Since $\gamma_{B}$ is non-
degenerate, $(U, B)$ satisfies the condition (A) by Proposition 2.10. Hence,
by Proposition 2.4, $\mathscr{L}(B)$ is semisimple. We define an inner product $\langle, \rangle$

on the subspace $W$ of $\mathscr{L}(B)$ as follows:
$\langle x_{1}+\tau_{B}(x_{2}), y_{1}+\tau_{B}(y_{2})\rangle=\gamma_{B}(x_{1}, y_{1})+\gamma_{B}(x_{2}, y_{2})$

for $x_{i},$ $y_{i}\in U(i=1,2)$ . From Lemma 2.2 it follows that

(3.1) \langle X, $Y\rangle$ $=-\frac{1}{2}\beta(X, \tau_{B}(Y))$ for $X$, Ye $W$ .

For $P\in End(W)$ , let us denote its adjoint operator relative to $\langle, \rangle$ by $P^{*}$ .
LEMMA 3.1. We have

(3.2) $\varphi(X)^{*}=-\varphi(\tau_{B}(X))$ for $X\in V$ ,

(3.3) $L(Y, Z)^{*}=L(\tau_{B}(Z), \tau_{B}(Y))$ for $Y,$ $Z\in W$ .
PROOF. For $Y,$ $Z\in W$, using (3.1), we get

$\langle\varphi(X)^{*}(Y), Z\rangle=\langle Y, \varphi(X)(Z)\rangle=\langle Y, [X, Z]\rangle=-\frac{1}{2}\beta(Y, \tau_{B}([X, Z]))$

$=-\frac{1}{2}\beta(Y, [\tau_{B}(X), \tau_{B}(Z)])=-\frac{1}{2}\beta([Y, \tau_{B}(X)], \tau_{B}(Z))$

$=\frac{1}{2}\beta(\varphi(\tau_{B}(X))(Y), \tau_{B}(Z))=-\langle\varphi(\tau_{B}(X))(Y), Z\rangle$ ,

from which (3.2) follows. Moreover we have

$L(Y, Z)^{*}=\varphi([Y, Z])^{*}=-\varphi(\tau_{B}([Y, Z]))=-\varphi([\tau_{B}(Y), \tau_{B}(Z)])=L(\tau_{B}(Z),\tau_{B}(Y))$ .
Hence (3.3) is also valid.

The relation (3.3) implies that $L(W, W)^{*}\subset L(W, W)$ . Let us define
an inner product $(, )$ on the space $L(W, W)$ by

$(P, Q)=Tr_{W}PQ^{*}$ for $P,$ $Q\in L(W, W)$ .
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We denote by $\sigma^{\sim}$ the adjoint operator of $\sigma\in End(L(W, W))$ relative to
$(, )$ . For $P,$ $Q,$ $R\in L(W, W)$ , we have

$([P, Q], R)=Tr_{W}(PQ-QP)R^{*}=Tr_{W}Q(R^{*}P-PR^{*})$

$=Tr_{W}Q(P^{*}R-RP^{*})^{*}=(Q, [P^{*}, R])$ .
This means that

(3.4) $(ad(P))^{\sim}=ad(P^{*})$ for $P\in L(W, W)$ .
LEMMA 3.2. $\beta_{\gamma}(X, \tau_{B}(X))\leqq 0$ for $x\in V$.
PROOF. Let us denote by $\beta_{L}$ the Killing form of the Lie algebra

$L(W, W)$ . Since the map $\varphi$ is an isomorphism of $V$ onto $L(W, W)$ , we have

$\beta_{V}(X, Y)=\beta_{L}(\varphi(X), \varphi(Y))$ for $X$, Ye $V$ .
Using this equality together with (3.2) and (3.4), we obtain

$\beta_{V}(X, \tau_{B}(X))=\beta_{L}(\varphi(X), \varphi(\tau_{B}(X)))=-\beta_{L}(\varphi(X), \varphi(X)^{*})$

$=-Tr_{L\{W,W)}ad(\varphi(X))ad(\varphi(X)^{*})$

$=-Tr_{L(W,W)}ad(\varphi(X))(ad(\varphi(X)))^{\sim}\leqq 0$ .
The following theorem gives a characterization for a GJTS to be

compact.

THEOREA 3.3. Let $(U, B)$ be a real nondegenerate GJTS of the 2nd
kind and $\tau_{B}$ be the grade-reversing canonical involution of the Kantor
algebra $\mathscr{L}(B)$ . Then $(U, B)$ is compact if and only if $\tau_{B}$ is a Cartan
involution of $\mathscr{L}(B)$ .

PROOF. Let us assume that $(U, B)$ is compact. Since $\gamma_{B}$ is nonde-
generate in this case, it follows from Propositions 2.4 and 2.10 that $\mathscr{L}(B)$

is semisimple. For an element $x\in \mathscr{L}(B)$ , we write it as $X=X_{\gamma}+X_{W}$

$(X_{\gamma}\in V, X_{W}\in W)$ . Then, using (2.2), (2.14), (3.1) and (3.2), we have

$\beta(X, \tau_{B}(X))=\beta_{V}(X_{\gamma}, \tau_{B}(X_{\gamma}))+Tr_{W}\varphi(X_{\gamma})\varphi(\tau_{B}(X_{\gamma}))+\beta(X_{W}, \tau_{B}(X_{W}))$

$=\beta_{\gamma}(X_{\gamma}, \tau_{B}(X_{\gamma}))-Tr_{W}\varphi(X_{\gamma})\varphi(X_{V})^{*}-2\langle X_{W}, X_{W}\rangle$ .
From Lemma3.2, we obtain $\beta(X, \tau_{B}(X))\leqq 0$ . Now suppose that $\beta(X, \tau_{B}(X))=0$ .
Then, in view of Lemma 3.2, we have $Tr_{W}\varphi(X_{\gamma})\varphi(X_{\gamma})^{*}=\langle X_{W}, X_{W}\rangle=0$ .
It follows that $\varphi(X_{V})=0$ and $X_{W}=0$ . Since $\varphi$ is an isomorphism, we ob-
tain $X_{\gamma}=0$ , and consequently $X=0$ . Thus we have shown that the bilinear
form $\beta(X, \tau_{B}(Y))$ on $\mathscr{L}(B)$ is negative definite. Consequently $\tau_{B}$ is a
Cartan involution.
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Conversely, let us assume that $\tau_{B}$ is a Cartan involution of $\mathscr{L}(B)$ .
Then the bilinear form $\beta(X, \tau_{B}(Y))$ is negative definite. Since $\gamma_{B}$ is non-
degenerate, Proposition 2.10 and Lemma 2.2 give the relation

$\gamma_{B}(x, y)=-\frac{1}{2}\beta(x, \tau_{B}(y))$ .
Therefore $\gamma_{B}$ is positive definite, that is, $(U, B)$ is compact.

From Theorems 2.8 and 3.3, we obtain the following

COROLLARY 3.4. Let $(U, B)$ be a real simple GJTS of the 2nd kind
and $\tau_{B}$ be the grade-reversing canonical involution of the Kantor algebra
$\mathscr{L}(B)$ . Then $(U, B)$ is compact if and only if $\tau_{B}$ is a Cartan involu-
tion of $\mathscr{L}(B)$ .

3.2. Let $(U, B)$ be a compact simple GJTS of the 2nd kind. By
Corollary 2.9, the Kantor algebra $-\mathscr{G}(B)=\sum U_{i}$ is a semisimple graded Lie
algebra. Therefore there exists the unique element $E\in U_{0}$ such that

$U_{i}=\{X\in \mathscr{L}(B)|[E, X]=iX\}$ .
Let $\mathscr{L}(B)=\sum \mathscr{L}^{k}$ be the decomposition into the direct sum of simple
ideals. Considering the operator $ad(E)$ , we can prove that every ideal
$-\mathscr{G}^{k}$ is a graded ideal, that is,

(3.5) $\mathscr{L}^{k}=\sum(\mathscr{L}^{k}\cap U_{i})$ .
LEMMA 3.5. $\tau_{B}(\mathscr{L}^{k})=\mathscr{L}^{k}$ for each $k$ .
PROOF. Assume that $\tau_{B}( \mathscr{G}^{k})=- \mathscr{G}^{l}(k\neq l)$ . Since the relation $\beta(\mathscr{L}^{k}$ ,

$-\mathscr{G}^{l})=0$ holds, we have $\beta(X, \tau_{B}(X))=0$ for $X\in \mathscr{L}^{k}$ . This contradicts the
fact that the bilinear form $\beta(X, \tau_{B}(Y))$ is negative definite. Hence every
simple ideal $\mathscr{L}^{k}$ is $\tau_{B}$-invariant.

From the above lemma, it follows that

(3.6) $\tau_{B}(\mathscr{L}^{k}\cap U_{-i})=\mathscr{L}^{k}\cap U_{i}$ $(i=1,2)$ .
We put $U^{k}=Z^{k}\cap U=\mathscr{L}^{k}\cap U_{-1}$ .

LEMMA 3.6. $U^{k}$ is a non-zero ideal of $(U, B)$ .
PROOF. Let $x\in U^{k}$ . By Lemma 3.5, we have $\overline{x}=\tau_{B}(x)\in \mathscr{L}^{k}\cap U_{1}\subset \mathscr{L}^{k}$ .

It follows that
$(yxz)=[[\overline{x}, y],$ $z$] $\in U^{k}$ for $y,$ $z\in U$ .

Furthermore we have
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$(xyz)=[[\overline{y}, x],$ $z$] $\in U^{k}$ , $(yzx)=[[\overline{z}, y],$ $x$] $\in U^{k}$ .
These relations imply that $U^{k}$ is an ideal of the GJTS $(U, B)$ . Now sup-
pose that $U^{k}=\{0\}$ . Then, from (3.6), we have.$\mathscr{L}^{k}\cap U_{1}=\{0\}$ . Furthermore,
sinoe $[U_{-1}, U_{-1}]=U_{-2}$ and $[U_{-1}, U_{1}]=U_{0}$ , we obtain

$\mathscr{L}^{k}\cap U_{-2}=\{0\}$ , $\mathscr{L}^{k}\cap U_{l}=\{0\}$ , $\mathscr{L}^{k}\cap U_{0}=\{0\}$ .
It follows from (3.5) that $\mathscr{L}^{k}=\{0\}$ , which is a contradiction. Therefore
$U^{k}$ is not zero.

THEOREM 3.7. Let $(U, B)$ be a compact $GJTS$ of the 2nd kind. Then
the Kantor algebra $\mathscr{L}(B)$ is simple if and only if $(U, B)$ is simple.

PROOF. The “if” part follows from Plopositions 2.4, 2.5 and Lemma
3.6. Suppose that $\mathscr{L}(B)$ is simple. Then, by a result of Kantor (Propo-
sition 7’ in [3]), $(U, B)$ is K-simple and hence it is simple.

From Theorem 3.7 and its proof we get

THEOREM 3.8. Let $(U, B)$ be a compact GJTS of the 2nd kind. Then
$(U, B)$ is simple if and only if it is K-simple.
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