The Diophantine Equation $x^{2} \pm l y^{2}=z^{l}$ Connected with Fermat's Last Theorem

Norio ADACHI
Waseda University
Dedicated to late Professor M. Kinoshita

Introduction.

Let l be an odd prime number and put $l^{*}=(-1)^{(l-1) / 2} l$. Fermat's Last Theorem was proved by Euler for the exponent $l=3$ ([3]) and by Dirichlet for the exponent $l=5$ ([1]). Their proofs, which will be reproduced in §2 in modern terms (cf. Edwards [2]), are based on the fact that the implication

$$
a^{2}-l^{*} b^{2}=l \text {-th power } \Rightarrow \exists u, v ; a+b \sqrt{l^{*}}=\left(u+v \sqrt{l^{*}}\right)^{l}
$$

is justified for $l=3$ or $l=5$ under some subsidiary conditions. It is often said that their success is due to the unique factorization property in the maximal order of the quadratic field $\boldsymbol{Q}\left(\sqrt{l^{*}}\right)$ for $l=3$ or $l=5$, respectively. But, this point of view is not exact, as will be seen in $\S 1$; for the above implication is true virtually for any prime l (Theorem 1, Theorem 2). The examples in $\S 2$ will show that the difficulty lies in finding the step of "infinite descent", not in the failure of the unique factorization.
§1. The Diophantine equation $x^{2}-l^{*} y^{2}=\boldsymbol{z}^{l}$.
Let l be an odd prime number fixed throughout the present paper and put $l^{*}=(-1)^{(l-1) / 2} l$. We use roman small letters such as a, b, u, v, \cdots to designate rational integers. We say that a and b have the property (P), if they are relatively prime, of opposite parity, and $a^{2}-l^{*} b^{2}$ is an l-th power of a rational integer.

We consider here whether the following implication (*) is justified:
$(\mathrm{P}) \quad \Rightarrow \quad \exists u, v ; a+b \sqrt{l^{*}}=\left(u+v \sqrt{l^{*}}\right)^{l}$

In his Algebra [3], Euler used the fact that the implication (*) is valid in the case $l=3$. While his proof was incomplete, we know that the assertion is true. In 1825 Dirichlet presented a paper ([1]), where he proved that the implication is valid in the case $l=5$ under the subsidiary condition that b is divisible by 5 , which is obviously a necessary condition. We generalize their results as follows:

Theorem 1. The implication (*) is always valid in the case $l \equiv-1$ $(\bmod 4)$.

Corollary. Suppose $l \equiv-1(\bmod 4)$ and $a^{2}+l b^{2}$ to be a $2 l$-th power, where a, b are relatively prime and of opposite parity. Then there exist u, v such that $a+b \sqrt{-l}= \pm(u+v \sqrt{-l})^{2 l}$.

Theorem 2. In the case $l \equiv 1(\bmod 4)$, we suppose that the Bernoulli number $B_{(l-1) / 2}$ is not divisible by l. Then the implication (*) is valid under the condition that b is divisible by l.

Corollary. Suppose $l \equiv 1(\bmod 4)$ and $a^{2}-l b^{2}$ to be a $2 l$-th power, where a, b are relatively prime and of opposite parity. In addition, suppose that $B_{(l-1) / 2}$ is not divisible by l. Then there exist u, v such that $a+b \sqrt{l}= \pm(u+v \sqrt{l})^{2 l}$.

The theorems immediately follow from the following four lemmas.
Lemma 1. Suppose that a and b have the property (P). Then $a+b \sqrt{l^{*}}$ and $a-b \sqrt{l^{*}}$ are relatively prime in the maximal order of the quadratic field $\boldsymbol{Q}\left(\sqrt{l^{*}}\right)$.

Proof. Suppose that there is a prime ideal \mathfrak{p} in the maximal order which divides both $a+b \sqrt{l^{*}}$ and $a-b \sqrt{l^{*}}$. The number 2 is not divisible by \mathfrak{p}, since $a^{2}-l^{*} b^{2}$ is odd. Hence \mathfrak{p} divides $b \sqrt{l^{*}}$ as well as a. If \mathfrak{p} does not divide $\sqrt{l^{*}}$, then \mathfrak{p} divides both a and b, which is impossible, since a is supposed to be prime to b. Therefore \mathfrak{p} divides $\sqrt{l^{*}}$, hence also l. It follows from this that a is divisible by l. Thus l divides $a^{2}-l^{*} b^{2}$, which is an l-th power by the assumption. This means that b is also divisible by l. This contradiction completes the proof of the lemma.

While the following is a known result, its proof will be given, for the author cannot find one in the literatures at hand:

Lemma 2. Let K be the quadratic field with discriminant d. Then the class number h_{K} of K is smaller than $d / 4$, if $d>0$, and $|d| / 3$, if $d<0$.

Proof. Let D denote the number $\sqrt{d} / 2$, if $d>0$, and $\sqrt{|d| / 3}$, if $d<0$. It is well known that in each ideal class of K there exists an ideal A whose norm is smaller than D (cf., e.g. Hasse [4], p. 565). Let n be any positive integer $<D$, and $p_{1} \cdots p_{m}$ the decomposition of n into prime factors. Then for each n there are at most 2^{m} ideals whose norms are n. On the other hand we have

$$
2^{m} \leqq p_{1} \cdots p_{m}=n<D
$$

Therefore there are at most D ideals whose norms are a given number $<D$. This implies that h_{K} is smaller than D^{2}.

Lemma 3. Suppose that a and b have the property (P) and, in case $l \equiv 1(\bmod 4)$, that b is divisible by l and that the Bernoulli number $B_{(l-1) / 2}$ is not divisible by l. Then there exist x and y such that $a+b \sqrt{l^{*}}=$ $(x+y \omega)^{2}$, where ω denotes $\left(1+\sqrt{l^{*}}\right) / 2$.

Proof. By Lemma 1, $a+b \sqrt{l^{*}}$ and $a-b \sqrt{l^{*}}$ are relatively prime. So there is an ideal A of the quadratic field $K=\boldsymbol{Q}\left(\sqrt{l^{*}}\right)$ such that

$$
a+b \sqrt{l^{*}}=A^{l} .
$$

By Lemma 2, the class number h_{K} of the field K is smaller than l, hence prime to l. Therefore A is a principal ideal. Hence there are an algebraic integer $x+y \omega$ and a unit ε of the maximal order of the field K such that

$$
a+b \sqrt{l^{*}}=\varepsilon(x+y \omega)^{l} .
$$

If $l \equiv-1(\bmod 4)$ and $l \neq 3$, then the units of the maximal order of K are ± 1; hence the assertion is clear in this case. Suppose $l \equiv 1(\bmod 4)$ and write

$$
x+y \omega=\frac{c+d \sqrt{l^{*}}}{2}
$$

and

$$
\left(\frac{c+d \sqrt{l^{*}}}{2}\right)^{l}=\frac{c_{1}+d_{1} \sqrt{l^{*}}}{2} .
$$

Then it must hold that $c_{1} \neq 0(\bmod l)$, whereas $d_{1} \equiv 0(\bmod l)$. Write $\varepsilon=$ $\left(s+t \sqrt{l^{*}}\right) / 2$. Then we have

$$
\begin{aligned}
a+b \sqrt{l^{*}} & =\frac{s+t \sqrt{l^{*}}}{2} \cdot \frac{c_{1}+d_{1} \sqrt{l^{*}}}{2} \\
& =\frac{\left(c_{1} s+d_{1} t l^{*}\right)+\left(c_{1} t+d_{1} s\right) \sqrt{l^{*}}}{4}
\end{aligned}
$$

Since d_{1} is divisible by l and c_{1} is not, we have $c_{1} t+d_{1} s \equiv 0(\bmod l)$, if and only if $t \equiv 0(\bmod l)$. Now it holds that $c_{1} t+d_{1} s \equiv 0(\bmod l)$, since it is assumed that b is divisible by l; hence t must be divisible by l.

Let $E=\left(u+v \sqrt{l^{*}}\right) / 2$ be a fundamental unit of the maximal order of the field K. Then we may assume that there is a positive integer m such that $\varepsilon= \pm E^{m}$. It remains to show that m is divisible by l. The following congruence is known (cf., e.g. Washington [5], p. 81);

$$
h_{K} \cdot \frac{v}{u} \equiv B_{(l-1) / 2} \quad(\bmod l) .
$$

By Lemma 2 and the assumption of our lemma, neither h_{K} nor $B_{(l-1) / 2}$ is divisible by l. Hence v is not divisible by l. Therefore, it follows from the binomial expansion of $\left(u+v \sqrt{l^{*}}\right)^{m}$ that m is divisible by l, since t is divisible by l.

Finally, we treat the case $l=3$. Note that $(x+y \omega)^{3}=((c+d \sqrt{-3}) / 2)^{3} \epsilon$ $Z[\sqrt{-3}]$ and that it is prime to 2. Therefore, $\varepsilon=(a+b \sqrt{-3}) /(x+y \omega)^{3}$ is an element of $Z[\sqrt{-3}]$. If we write ε as $\pm((1+\sqrt{-3}) / 2)^{j}$, where $j=0$, 1 or 2 , then j must be 0 . Hence the proof of the lemma is complete.

Lemma 4. Put $\omega=\left(1+\sqrt{l^{*}}\right) / 2$. If $a+b \sqrt{l^{*}}$ is an l-th power in the field $K=Q\left(\sqrt{l^{*}}\right)$, say $(x+y \omega)^{l}$, then y is divisible by 2.

Proof. Let ζ be a primitive l-th root of unity and $\bar{\omega}$ the conjugate of ω. Then we have

$$
\begin{aligned}
a & =\frac{1}{2}\left\{\left(a+b \sqrt{l^{*}}\right)+\left(a-b \sqrt{l^{*}}\right)\right\} \\
& =\frac{1}{2}\left\{(x+y \omega)^{l}+(x+y \bar{\omega})^{l}\right\} \\
& =\frac{1}{2}\left\{\left(\frac{c+d \sqrt{l^{*}}}{2}\right)^{l}+\left(\frac{c-d \sqrt{l^{*}}}{2}\right)^{l}\right\} \\
& =\frac{c}{2} \prod_{j=1}^{l-1}\left(\frac{c+d \sqrt{l^{*}}}{2}+\zeta^{j} \frac{c-d \sqrt{l^{*}}}{2}\right)
\end{aligned}
$$

Let \mathfrak{p} be a prime divisor of 2 in the cyclotomic field $\boldsymbol{Q}(\zeta)$, and suppose that \mathfrak{p} divides some factor of the above product, say $\left(c+d \sqrt{l^{*}}\right) / 2+$ $\zeta\left(c-d \sqrt{l^{*}}\right) / 2$. Then we have

$$
\begin{aligned}
c(1+\zeta)+d(1-\zeta) \sqrt{l^{*}} \equiv 0 & (\bmod 2 \mathfrak{p}) \\
\therefore \quad c(1+\zeta) \equiv d(\zeta-1) \sqrt{l^{*}} & (\bmod 2 \mathfrak{p})
\end{aligned}
$$

Squaring both sides, we obtain

$$
c^{2}(1+\zeta)^{2} \equiv d^{2}(\zeta-1)^{2} l^{*} \quad(\bmod 4 \mathfrak{p})
$$

What we have to show is that c is even. Suppose the contrary; then $c \equiv d \equiv 1(\bmod 2)$. If we take m so that $l^{*}=4 m+1$, we obtain the congruence

$$
m \zeta^{2}+\zeta+m \equiv 0 \quad(\bmod \mathfrak{p})
$$

since $c^{2} \equiv d^{2} \equiv 1(\bmod 8)$. It follows from this that $\zeta \equiv 0(\bmod \mathfrak{p})$ or $\zeta^{2}+\zeta+$ $1 \equiv 0(\bmod \mathfrak{p})$, according as m is even or not. But both ζ and $\zeta^{2}+\zeta+1$ are units, unless $l=3$. This is a contradiction. Therefore c must be even; so is y.

It remains to take care of the case $l=3$. It is easily seen that

$$
\begin{equation*}
(x+y \omega)^{3}=\left(x \omega+y \omega^{2}\right)^{3}=(-y+(x-y) \omega)^{3} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(x+y \omega)^{3}=\left(x \omega^{2}+y\right)^{3}=(y-x-x \omega)^{3} . \tag{2}
\end{equation*}
$$

If y is even, we have nothing to do. Suppose that y is odd. If x is odd, the equalities (1) show that we have only to substitute $-y$ or $x-y$ for x or y, respectively; if x is even, the equalities (2) show that we have only to substitute $y-x$ or $-x$ for x or y, respectively. Thus the proof of the lemma is complete.

Proof of Corollary to Theorem 1. The class number of the quadratic field $K=\boldsymbol{Q}(\sqrt{\overline{-l}})$ is not divisible by 2 , since the discriminant of K has no prime divisor other than l. Hence we can write

$$
\begin{aligned}
a+b \sqrt{-l} & = \pm(x+y \omega)^{2 l} \\
& = \pm\left\{\left(x^{2}-\frac{l+1}{4} y^{2}\right)+\left(2 x y+y^{2}\right) \omega\right\}^{l}
\end{aligned}
$$

where $\omega=(1+\sqrt{-l}) / 2$. By Lemma $4,2 x y+y^{2} \equiv 0(\bmod 2)$; hence $y \equiv 0$ $(\bmod 2)$.

The proof of Corollary to Theorem 2 is almost the same as above. In fact, substitute l for $-l$, and $\pm \varepsilon$ for \pm, where ε is a suitable positive unit in the maximal order of the field $K=\boldsymbol{Q}(\sqrt{l})$. It is clear that ε has positive norm. Hence ε is a square of another unit, since any of the fundamental units have negative norm, provided $l \equiv 1(\bmod 4)$. The corollary follows from this and Theorem 2.

§ 2. Connection with Fermat's Last Theorem.

Let l be an odd prime number fixed as in the preceding section, and consider the Fermat equation

$$
\begin{equation*}
x^{l}+y^{l}+z^{l}=0 \tag{3}
\end{equation*}
$$

Suppose that the equation (3) has a non-trivial solution (x, y, z) such that x, y and z are relatively prime and one of them is divisible by l, say we suppose $z \equiv 0(\bmod l)$. Moreover, we suppose, for simplicity, that z is also even (if this is not the case, we must use a slight variant of our theorems in §1; cf. Edwards [2], pp. 70-73);

$$
\begin{equation*}
z \equiv 0 \quad(\bmod 2 l) \tag{4}
\end{equation*}
$$

This is the case which Dirichlet first treated in his paper [1] in 1825.
Since x and y are odd, we can set $x+y=2 u, x-y=2 v$. Then we have $x=u+v, y=u-v$.

Lemma 5. Let the notations be as above. Then u and v are of opposite parity and relatively prime. Moreover, u is divisible by $2 l$.

Proof. The first part is clear, since x and y are relatively prime. And also it is clear that u is divisible by l, since z is divisible by l. As x and y are odd, $x^{l-1}+x^{l-2} y+\cdots+y^{l-1}$ is also odd. Hence $x+y=2 u$ is divisible by 2^{l}, for z^{l} is divisible by 2^{l}. This completes the proof of the lemma.

Let ζ be a primitive l-th root of unity. Denote by L the cyclotomic field $\boldsymbol{Q}(\zeta)$, and by N_{L} the norm map from the field L to the rational number field Q. We can set $u=l w$ by Lemma 5 . Then we have

$$
\begin{aligned}
x^{l}+y^{l} & =(u+v)^{\imath}+(u-v)^{\imath} \\
& =2 u N_{L}((u+v)+\zeta(u-v)) \\
& =2 l w N_{L}(1-\zeta) N_{L}\left(v+\frac{1+\zeta}{1-\zeta} l w\right) \\
& =2 l^{2} w N_{L}\left(v+\frac{1+\zeta}{1-\zeta} l w\right),
\end{aligned}
$$

since $N_{L}(1-\zeta)=l$. It follows from Lemma 5 and $N_{L}(v+((1+\zeta) /(1-\zeta)) l w) \equiv$ $v^{l}(\bmod 1-\zeta)$ that $2 l^{2} w$ and $N_{L}(v+((1+\zeta) /(1-\zeta)) l w)$ are relatively prime. By (3), $x^{l}+y^{l}$ is an l-th power. Hence we have

$$
\left\{\begin{array}{l}
2 l^{2} w=l \text {-th power } \tag{5}\\
N_{L}\left(v+\frac{1+\zeta}{1-\zeta} l w\right)=l \text {-th power }
\end{array}\right.
$$

Lemma 6. The number $N_{L}(v+((1+\zeta) /(1-\zeta)) l w)$ can be written in the form $p^{2}-l^{*} q^{2}$ where p and q are rational integers which have opposite parity and relatively prime.

Proof. As is well known, $\sqrt{l^{*}} \in L$. Let K be the quadratic field $\boldsymbol{Q}\left(\sqrt{l^{*}}\right)$ which is contained in the field L. Then we have

$$
\begin{aligned}
N_{L}\left(v+\frac{1+\zeta}{1-\zeta} l w\right) & =N_{K} N_{L / K}\left(v+\frac{1+\zeta}{1-\zeta} l w\right) \\
& =N_{K}\left(p+q \sqrt{l^{*}}\right) \\
& =p^{2}-l^{*} q^{2} .
\end{aligned}
$$

Indeed p and q are rational integers, since u and hence w is even by Lemma 5. And it is also clear that they are of opposite parity, since $p^{2}-l^{*} q^{2}$ is odd. They are relatively prime, because $p+\sqrt{l^{*}} q$ and $p-\sqrt{l^{*}} q$ must be relatively prime.

Applying Lemma 6 to the second equation of (5), we have

$$
\left\{\begin{array}{l}
2 l^{2} w=l \text {-th power }, \tag{6}\\
p^{2}-l^{*} q^{2}=l \text {-th power },
\end{array}\right.
$$

where p and q are polynomials of v and w.
Example 1 (the case $l=3 ; l^{*}=-3$). In this case, we have $p=v$ and $q=w$. The relations (6) are

$$
\begin{equation*}
2 \cdot 3^{2} w=\text { cube } \tag{7}
\end{equation*}
$$

and

$$
v^{2}+3 w^{2}=\text { cube } .
$$

By Theorem 1 there are s and t such that

$$
v+\sqrt{-3} w=(s+\sqrt{-3} t)^{3} .
$$

Then we have

$$
v=s(s+3 t)(s-3 t)
$$

and

$$
w=3 t(s+t)(s-t)
$$

It follows that s is odd and t is divisible by $2 \cdot 3$, since v is odd and w is divisible by $2 \cdot 3$. Substituting $3 t(s+t)(s-t)$ for w in (7), we have

$$
2 t(s+t)(s-t)=\text { cube }
$$

As $2 t, s+t$ and $s-t$ are pairwise relatively prime, we can conclude that all of them are cubic numbers;

$$
\begin{gathered}
s-t=a^{3}, \quad s+t=b^{3} \quad \text { and } 2 t=c^{3} . \\
\therefore a^{3}+(-b)^{3}+c^{3}=0 .
\end{gathered}
$$

Furthermore, c is divisible by $2 \cdot 3$. It is easily seen that $|c|$ is smaller than $|z|$ in (3). This supplies the step of infinite descent.

Example 2 (the case $l=5 ; l^{*}=5$). In this case, we have $p=v^{2}+5^{2} w^{2}$ and $q=2.5 w^{2}$; for the calculation, see Example 3 below. The relations (6) are written as follows in this case:

$$
\left\{\begin{array}{l}
2 \cdot 5^{3} q=\text { fifth power } \tag{8}\\
p^{2}-5 q^{2}=\text { fifth power }
\end{array}\right.
$$

Since $q \equiv 0(\bmod 5)$, applying Theorem 2 to the second relation of (8), we have

$$
p+\sqrt{5} q=(a+\sqrt{5} b)^{s}
$$

for some a and b. Put

$$
\alpha=a+\sqrt{5} b
$$

Then we have

$$
\begin{aligned}
q & =\frac{1}{2 \sqrt{5}}\left\{(a+\sqrt{5} b)^{s}-(a-\sqrt{5} b)^{s}\right\} \\
& =b \prod_{j=1}^{l-1}\left(\alpha-\zeta^{j} \bar{\alpha}\right) \\
& =b N_{L}(\alpha-\zeta \bar{\alpha}) \quad(\because 5 \equiv 1(\bmod 4) \text { and } \alpha \in K) \\
& =5 b N_{L}\left(a+\frac{1+\zeta}{1-\zeta} \sqrt{5} b\right) \\
& =5 b\left(u^{2}-5 v^{2}\right)
\end{aligned}
$$

where $u=a^{2}+5 b^{2}, v=2 b^{2}$. Substituting $5 b\left(u^{2}-5 v^{2}\right)$ for q in the first relation of (8), we have

$$
2 \cdot 5^{4} b\left(u^{2}-5 v^{2}\right)=\text { fifth power } .
$$

Therefore

$$
\left\{\begin{array}{l}
2 \cdot 5^{4} b=\text { fifth power } \\
u^{2}-5 v^{2}=\text { fifth power }
\end{array}\right.
$$

Since $v=2 b^{2}$, we have

$$
\left\{\begin{array}{l}
2 \cdot 5^{3} v=\text { fifth power } \\
u^{2}-5 v^{2}=\text { fifth power }
\end{array}\right.
$$

Thus u and v satisfy the same conditions satisfied by p and q in (8), and $|q|>|v|>0$. Therefore the argument can be repeated indefinitely and this leads to an impossible infinite descent.

Example 3 (the case $l=7 ; l^{*}=-7$). Let K be the quadratic field $\boldsymbol{Q}(\sqrt{-7})$, and $\omega=(1+\sqrt{-7}) / 2$. In order to determine p and q in Lemma 6, we need the minimal polynomial of ζ over the field K :

Lemma 7. Let ζ be the normalized 7 -th root of unity; $\zeta=e^{2 \pi i / 7}$. Then the minimal polynomial of ζ, or $(1+\zeta) /(1-\zeta)$ over K is

$$
x^{3}+(1-\omega) x^{2}-\omega x-1
$$

or

$$
x^{3}-\sqrt{-7} x^{2}-x+\frac{1}{\sqrt{-7}}
$$

respectively.
Proof. By the well known theorem of Gaussian sum we have

$$
\zeta+\zeta^{2}-\zeta^{3}+\zeta^{4}-\zeta^{3}-\zeta^{6}=\sqrt{-7} .
$$

On the other hand, ζ satisfies the equation

$$
\begin{equation*}
\zeta^{6}+\zeta^{5}+\zeta^{4}+\zeta^{3}+\zeta^{2}+\zeta+1=0 \tag{9}
\end{equation*}
$$

Therefore we have

$$
\zeta^{4}+\zeta^{2}+\zeta+1-\omega=0 .
$$

From this and (9) we obtain the assertion for ζ. Calculation of the minimal equation for $(1+\zeta) /(1-\zeta)$ is straightforward from the one for ζ.

By Lemma 7 we obtain

$$
N_{L / K}\left(v+\frac{1+\zeta}{1-\zeta} 7 w\right)=\left(v^{3}-7^{2} v w^{2}\right)+\left(7 v^{2} w+7^{2} w^{3}\right) \sqrt{-7}
$$

hence

$$
\left\{\begin{array}{l}
p=v(v+7 w)(v-7 w) \\
q=7 w\left(v^{2}+7 w^{2}\right)
\end{array}\right.
$$

The same method would be applied to the case $l>7$; for example, if $l=13$, then for (6) we obtain

$$
\left\{\begin{array}{l}
2 \cdot 13^{2} w=13 \text {-th power } \\
p^{2}-13 q^{2}=13 \text {-th power }
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
p=v^{6}+11 \cdot 13^{2} v^{4} w^{2}+15 \cdot 13^{4} v^{2} w^{4}+5 \cdot 13^{6} w^{6}, \\
q=2 \cdot 13^{2} w^{2}\left\{\left(v^{2}+13^{2} w^{2}\right)^{2}-13\left(2 \cdot 13 w^{2}\right)^{2}\right\}
\end{array}\right.
$$

However, there seems to be no easy way of finding the step of infinite descent for $l>5$. Though we could also give the modern version of Dirichlet's proof for the case for which the exponent is 14, using Corollary to Theorem 1 (cf. Edwards [2], pp. 74-75), the trial to generalize it to a larger even exponent $2 l$ is confronted with analogous difficulties.

References

[1] G.L. Dirichlet, Mémoire sur l'impossibilité de quelques équations indéterminées du cinquième degré, J. Reine Angew. Math. (Crelles J.), 3 (1928), 354-375 (Werke, vol. 1, 21-46).
[2] H. M. Edwards, Fermat's Last Theorem, Springer, 1977.
[3] L. Euler, Vollständige Einleitung zur Algebra, Opera Omnia, Ser. 1, Vol. 1, St. Petersburg, 1770.
[4] H. HAsse, Number Theory, Springer, 1980 (Translation of "Zahlentheorie").
[5] L. C. Washington, Introduction to Cyclotomic Fields, Springer, 1982.

Present Address:

Department of Mathematics
School of Science and Engineering, Waseda University
Okubo, Shinjuku-ku, Toryo 160, Japan

