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Introduction.

Let $l$ be an odd prime number and put $l^{*}=(-1)^{(l-1)/2}l$ . Fermat’s Last
Theorem was proved by Euler for the exponent $l=3$ ([8]) and by Dirichlet
for the exponent $l=5$ ([1]). Their proofs, which will be reproduced in
\S 2 in modern terms (cf. Edwards [2]), are based on the fact that the
implication

$a^{2}-l^{*}b^{2}$ $=l$-th power $\Rightarrow$ $\exists u,$ $v;a+b\sqrt{l^{*}}=(u+v\sqrt{l^{*}})^{l}$

is justified for $l=3$ or $l=5$ under some subsidiary conditions. It is often
said that their success is due to the unique factorization property in the
maximal order of the quadratic field $Q(\sqrt{l^{*}})$ for $l=3$ or $l=5$ , respectively.
But, this point of view is not exact, as will be seen in \S 1; for the above
implication is true virtually for any prime $l$ (Theorem 1, Theorem 2). The
examples in \S 2 will show that the difficulty lies in finding the step of
“infinite descent”, not in the failure of the unique factorization.

\S 1. The Diophantine equation $x^{2}-l^{*}y^{2}=z^{l}$ .
Let $l$ be an odd prime number fixed throughout the present paper

and put $l^{*}=(-1)^{(l-1)/2}l$ . We use roman small letters such as $a,$ $b,$ $u,$ $ v,\cdots$

to designate rational integers. We say that $a$ and $b$ have the property
(P), if they are relatively prime, of opposite parity, and $a^{2}-l^{*}b^{2}$ is an
l-th power of a rational integer.

We consider here whether the following implication $(*)$ is justified:

$(*)$ (P) $\Rightarrow$ $\exists u,$ $v;a+b\sqrt{l^{*}}=(u+v\sqrt{l^{*}})^{l}$
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In his Algebra [3], Euler used the fact that the implication $(*)$ is
valid in the case $l=3$ . While his proof was incomplete, we know that
the assertion is true. In 1825 Dirichlet presented a paper ([1]), where
he proved that the implication is valid in the case $l=5$ under the sub-
sidiary condition that $b$ is divisible by 5, which is obviously a necessary
condition. We generalize their results as follows:

THEOREM 1. The implication $(*)$ is always valid in the case $l\equiv-1$

$(mod 4)$ .
COROLLARY. Suppose $l\equiv-1(mod 4)$ and $a^{2}+lb^{2}$ to be a 2l-th power,

where $a,$
$b$ are relatively prime and of opposite parity. Then there exist

$u,$ $v$ such that $a+b\sqrt{-l}=\pm(u+v\sqrt{-l})^{2\}}$ .
THEOREM 2. In the case $l\equiv 1$ (mod4), we suppose that the Bernoulli

number $B_{(l-1)/2}$ is not divisible by $l$ . Then the implication $(*)$ is valid
under the condition that $b$ is divisible by $l$ .

COROLLARY. Suppose $l\equiv 1(mod 4)$ and $a^{2}-lb^{2}$ to be a $2l$-th power,
where $a,$

$b$ are relatively prime and of opposite parity. In addition,
suppose that $B_{(l-1)/2}$ is not divisible by $l$ . Then there exis$tu,$ $v$ such that
$a+b\sqrt{l}=\pm(u+v\sqrt{l})^{2l}$ .

The theorems immediately follow from the following four lemmas.

LEMMA 1. Suppose that $a$ and $b$ have the property (P). Then
$a+b\sqrt{l^{*}}$ and $a-b\sqrt{l^{*}}$ are relatively prime in the maximal order of
the quadratic field $Q(\sqrt{\iota*})$ .

PROOF. Suppose that there is a prime ideal $\mathfrak{p}$ in the maximal ordex
which divides both $a+b\sqrt{l^{*}}$ and $a-b\sqrt{l^{*}}$ . The number 2 is not divisible
by $\mathfrak{p}$ , since $a^{2}-l^{*}b^{2}$ is odd. Hence $\mathfrak{p}$ divides $b\sqrt{l^{*}}$ as well as $a$ . If $f$

does not divide $\sqrt{l^{*}}$ , then $\mathfrak{p}$ divides both $a$ and $b$ , which is $impossible_{1}$

since $a$ is supposed to be prime to $b$ . Therefore $\mathfrak{p}$ divides $\sqrt{l^{*}}$ , hence
also $l$ . It follows from this that $a$ is divisible by $l$ . Thus $l$ dividef
$a^{2}-l^{*}b^{2}$ , which is an l-th power by the assumption. This means that $l$

is also divisible by $l$ . This contradiction completes the proof of the
lemma.

While the following is a known result, its proof will be given, $fol$

the author cannot find one in the literatures at hand:

$aL_{r\wedge}I-\wedge\wedge\sim\wedge\cdot-h-\sim LEMMA2.LetL\wedge Kbethequadraticfieldw_{\dot{\wedge}}ith,disc\gamma iminantd.The7_{(}cr_{*\cdot\wedge r\sim}’|l_{\wedge\sim}sh\sim m’ J’ AtJ\backslash n_{\wedge m\prime J^{-}|,l|l9}il_{l}l/\cap$
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PROOF. Let $D$ denote the number $\sqrt{d}/2$ , if $d>0$ , and $\sqrt{|d|}/3$ , if
$d<0$ . It is well known that in each ideal class of $K$ there exists an
ideal $A$ whose norm is smaller than $D$ (cf., e.g. Hasse [4], p. 565). Let
$n$ be any positive integer $<D$ , and $p_{1}\cdots p_{m}$ the decomposition of $n$ into
prime factors. Then for each $n$ there are at most $2^{m}$ ideals whose norms
are $n$ . On the other hand we have

$2^{m}\leqq p_{1}\cdots p_{m}=n<D$ .
Therefore there are at most $D$ ideals whose norms are a given number
$<D$ . This implies that $h_{K}$ is smaller than $D^{2}$ .

LEMMA 3. Suppose that $a$ and $b$ have the property (P) and, in case
$l\equiv 1(mod 4)$ , that $b$ is divisible by $l$ and that the Bernoulli number $B_{(l-1)/2}$

is not divisible by $l$ . Then there exist $x$ and $y$ such that $a+b\sqrt{l^{*}}=$

$(x+y\omega)^{l}$ , where $\omega$ denotes $(1+\sqrt{}\overline{l^{*}})/2$ .
PROOF. By Lemma 1, $a+b\sqrt{l^{*}}$ and $a-b\sqrt{}\overline{l^{*}}$ are relatively prime.

So there is an ideal $A$ of the quadratic field $K=Q(\sqrt{l^{*}})$ such that

$a+b\sqrt{\iota*}=A^{l}$ .
By Lemma 2, the class number $h_{K}$ of the field $K$ is smaller than $l$ , hence
prime to $l$ . Therefore $A$ is a principal ideal. Hence there are an algebraic
integer $ x+y\omega$ and a unit $\epsilon$ of the maximal order of the field $K$ such that

$a+b\sqrt{l^{*}}=\epsilon(x+y\omega)^{l}$ .
If $l\equiv-1(mod 4)$ and $l\neq 3$ , then the units of the maximal order of

$K$ are $\pm 1$ ; hence the assertion is clear in this case. Suppose $l\equiv 1(mod 4)$

and write

$x+y\omega=\frac{c+d\sqrt{\iota*}}{2}$

and

$(\frac{c+d\sqrt{l^{*}}}{2})^{l}=\frac{c_{1}+d_{1}\sqrt{\iota*}}{2}$ .
Then it must hold that $c_{1}\not\equiv 0(mod l)$ , whereas $d_{1}\equiv 0(mod l)$ . Write $\epsilon=$

$(s+t\sqrt{l^{*}})/2$ . Then we have
$a+b\sqrt{l^{*}}=\frac{s+t\sqrt{l^{*}}}{2}\cdot\frac{c_{1}+d_{1}\sqrt{l^{*}}}{2}$

$=\frac{(c_{1}s+d_{1}tl^{*})+(c_{1}t+d_{1}s)\sqrt{l^{*}}}{4}$ .
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Since $d_{1}$ is divisible by $l$ and $c_{1}$ is not, we have $c_{1}t+d_{1}s\equiv 0(mod l)$ ,
if and only if $t\equiv 0(mod l)$ . Now it holds that $c_{1}t+d_{1}s\equiv 0(mod l)$ , since
it is assumed that $b$ is divisible by $l$ ; hence $t$ must be divisible by $l$ .

Let $E=(u+v\sqrt{l^{*}})/2$ be a fundamental unit of the maximal order of
the field $K$. Then we may assume that there is a positive integer $m$

such that $\epsilon=\pm E^{n}$ . It remains to show that $m$ is divisible by $l$ . The
following congruence is known (cf., e.g. Washington [5], p. 81);

$h_{K}\cdot\frac{v}{u}\equiv B_{(l-1)/2}$ $(mod l)$ .
By Lemma 2 and the assumption of our lemma, neither $h_{K}$ nor $B_{(\iota-1)/2}$ is
divisible by $l$ . Hence $v$ is not divisible by $l$ . Therefore, it follows from
the binomial expansion of $(u+v\sqrt{l^{*}})^{m}$ that $m$ is divisible by $l$ , since $t$ is
divisible by $l$ .

Finally, we treat the case $l=3$ . Note that $(x+y\omega)^{8}=((c+d\sqrt{-3})/2)^{8}\in$

$Z[\sqrt{-3}]$ and that it is prime to 2. Therefore, $\epsilon=(a+b\sqrt{-3})/(x+y\omega)^{8}$ is
an element of $Z[\sqrt{-3}]$ . If we write $\epsilon$ as $\pm((1+\sqrt{-3})/2)^{j}$ , where $j=0$ ,
1 or 2, then $j$ must be $0$ . Hence the proof of the lemma is complete.

LEMMA 4. Put $\omega=(1+\sqrt{l^{*}})/2$ . If $a+b\sqrt{l^{*}}$ is an l-th power in the
field $K=Q(\sqrt{l^{*}})$ , say $(x+y\omega)^{l}$ , then $y$ is divisible by 2.

PROOF. Let $\zeta$ be a primitive l-th root of unity and $\overline{\omega}$ the conjugate
of $\omega$ . Then we have

$a=\frac{1}{2}\{(a+b\sqrt{l^{*}})+(a-b\sqrt{l^{*}})\}$

$=\frac{1}{2}\{(x+y\omega)^{l}+(x+y\overline{\omega})^{l}\}$

$=\frac{1}{2}\{(\frac{c+d\sqrt{l^{*}}}{2})^{\iota}+(\frac{c-d\sqrt{\iota*}}{2})^{l}\}$

$=\frac{c}{2}\prod_{j=1}^{l-1}(\frac{c+d\sqrt{l^{*}}}{2}+\zeta^{j}\frac{c-d\sqrt{l^{*}}}{2})$ .
Let $\mathfrak{p}$ be a prime divisor of 2 in the cyclotomic field $Q(\zeta)$ , and suppose

that $\mathfrak{p}$ divides some factor of the above product, say $(c+d\sqrt{l^{*}})/2+$

$\zeta(c-d\sqrt{l^{*}})/2$ . Then we have

$c(1+\zeta)+d(1-\zeta)\sqrt{l^{*}}\equiv 0$ $(mod 2\mathfrak{p})$ ,
. . $c(1+\zeta)\equiv d(\zeta-1)\sqrt{\iota*}$ $(mod 2\mathfrak{p})$ .

Squaring both sides, we obtain
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$c^{2}(1+\zeta)^{2}\equiv d^{2}(\zeta-1)^{2}l^{*}$ $(mod 4\mathfrak{p})$ .
What we have to show is that $c$ is even. Suppose the contrary; then
$c\equiv d\equiv 1(mod 2)$ . If we take $m$ so that $l^{*}=4m+1$ , we obtain the con-
gruence

$m\zeta^{2}+\zeta+m\equiv 0$ $(mod \mathfrak{p})$ ,

since $c^{2}\equiv d^{2}\equiv 1(mod 8)$ . It follows from this that $\zeta\equiv 0(mod \mathfrak{p})$ or $\zeta^{2}+\zeta+$

$1\equiv 0(mod \mathfrak{p})$ , according as $m$ is even or not. But both $\zeta$ and $\zeta^{2}+\zeta+1$

are units, unless $l=3$ . This is a contradiction. Therefore $c$ must be
even; so is $y$ .

It remains to take care of the case $l=3$ . It is easily seen that

(1) $(x+y\omega)^{3}=(x\omega+y\omega^{2})^{3}=(-y+(x-y)\omega)^{3}$

and

(2) $(x+y\omega)^{3}=(x\omega^{2}+y)^{3}=(y-x-x\omega)^{8}$ .
If $y$ is even, we have nothing to do. Suppose that $y$ is odd. If $x$ is odd,
the equalities (1) show that we have only to substitute $-y$ or $x-y$ for
$x$ or $y$ , respectively; if $x$ is even, the equalities (2) show that we have
only to substitute $y-x$ or $-x$ for $x$ or $y$ , respectively. Thus the proof
of the lemma is complete.

PROOF OF COROLLARY TO THEOREM 1. The class number of the
quadratic field $K=Q(\sqrt{-l})$ is not divisible by 2, since the discriminant
of $K$ has no prime divisor other than $l$ . Hence we can write

$a+b\sqrt{-l}=\pm(x+y\omega)^{2l}$

$=\pm\{(x^{2}-\frac{l+1}{4}y^{2})+(2xy+y^{2})\omega\}^{l}$

where $\omega=(1+\sqrt{-l})/2$ . By Lemma 4, $2xy+y^{2}\equiv 0$ (mod2); hence $y\equiv 0$

$(mod 2)$ .
The proof of Corollary to Theorem 2 is almost the same as above.

In fact, substitute $l$ for $-l$ , and $\pm\epsilon$ for $\pm$ , where $\epsilon$ is a suitable positive
unit in the maximal order of the field $K=Q(\sqrt{l})$ . It is clear that $\epsilon$

has positive norm. Hence $\epsilon$ is a square of another unit, since any of
the fundamental units have negative norm, provided $l\equiv 1(mod 4)$ . The
corollary follows from this and Theorem 2.
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\S 2. Connection with Fermat’s Last Theorem.

Let $l$ be an odd prime number fixed as in the preceding section, and
consider the Fermat equation

(3) $x^{l}+y^{\iota}+z^{l}=0$ .
Suppose that the equation (3) has a non-trivial solution $(x, y, z)$ such

that $x,$ $y$ and $z$ are relatively prime and one of them is divisible by $l$ ,
say we suppose $z\equiv 0(mod l)$ . Moreover, we suppose, for simplicity, that
$z$ is also even (if this is not the case, we must use a slight variant of
our theorems in \S 1; cf. Edwards [2], pp. 70-73);

(4) $z\equiv 0$ $(mod 2l)$ .
This is the case which Dirichlet first treated in his paper [1] in 1825.

Since $x$ and $y$ are odd, we can set $x+y=2u,$ $x-y=2v$ . Then we
have $x=u+v,$ $y=u-v$ .

LEMMA 5. Let the notations be as above. Then $u$ and $v$ are of opposite
parity and relatively prime. Moreover, $u$ is divisible by $2l$ .

PROOF. The first part is clear, since $x$ and $y$ are relatively prime.
And also it is clear that $u$ is divisible by $l$ , since $z$ is divisible by $l$ . As
$x$ and $y$ are odd, $x^{l-1}+x^{l-2}y+\cdots+y^{l-1}$ is also odd. Hence $x+y=2u$ is
divisible by $2^{l}$ , for $z^{l}$ is divisible by $2^{l}$ . This completes the proof of the
lemma.

Let $\zeta$ be a primitive l-th root of unity. Denote by $L$ the cyclotomic
field $Q(\zeta)$ , and by $N_{L}$ the norm map from the field $L$ to the rational
number field $Q$ . We can set $u=lw$ by Lemma 5. Then we have

$x^{\iota}+y^{l}=(u+v)^{l}+(u-v)^{l}$

$=2uN_{L}((u+v)+\zeta(u-v))$

$=2lwN_{L}(1-\zeta)N_{L}(v+\frac{1+\zeta}{1-\zeta}lw)$

$=2l^{2}wN_{L}(v+\frac{1+\zeta}{1-\zeta}lw)$ ,

since $N_{L}(1-\zeta)=l$ . It follows from Lemma 5 and $ N_{L}(v+((1+\zeta)/(1-\zeta))lw)\equiv$

$v^{l}(mod 1-\zeta)$ that 2$l^{2}w$ and $N_{L}(v+((1+\zeta)/(1-\zeta))lw)$ are relatively prime.
Bv (3). $x^{l}+u^{l}$ is an l-th power. Hence we have
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(5) $\left\{\begin{array}{l}2l^{2}w=l\\N_{L}(v+\frac{1+\zeta}{1-\zeta}lw)=l\end{array}\right.$

LEMMA 6. The number $N_{L}(v+((1+\zeta)/(1-\zeta))lw)$ can be written in the
form $p^{2}-l^{*}q^{2}$ where $p$ and $q$ are rational integers which have opposite
parity and relatively prime.

PROOF. As is well known, $\sqrt{l^{*}}\in L$ . Let $K$ be the quadratic field
$Q(\sqrt{\iota*})$ which is contained in the field $L$ . Then we have

$N_{L}(v+\frac{1+\zeta}{1-\zeta}lw)=N_{K}N_{L/K}(v+\frac{1+\zeta}{1-\zeta}lw)$

$=N_{K}(p+q\sqrt{l^{*}})$

$=p^{2}-l^{*}q^{2}$ .
Indeed $p$ and $q$ are rational integers, since $u$ and hence $w$ is even by
Lemma 5. And it is also clear that they are of opposite parity, since
$p^{2}-l^{*}q^{2}$ is odd. They are relatively prime, because $p+\sqrt{l^{*}}q$ and $p-\sqrt{l^{*}}q$

must be relatively prime.

Applying Lemma 6 to the second equation of (5), we have

(6) $\left\{\begin{array}{l}l^{2}w=\\p^{2}-l^{*}q^{2}=\end{array}\right.$

where $p$ and $q$ are polynomials of $v$ and $w$ .
EXAMPLE 1 (the case $l=3;l^{*}=-3$). In this case, we have $p=v$ and

$q=w$ . The relations (6) are
(7) 2 $\cdot 3^{2}w=cube$

and

$v^{2}+3w^{2}=$ cube.

By Theorem 1 there are $s$ and $t$ such that

$v+$ :liiw $=(s+\sqrt{-3}t)^{3}$ .
Then we have

$v=s(s+3t)(s-3t)$

and
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$w=3t(s+t)(s-t)$ .
It follows that $s$ is odd and $t$ is divisible by 2 $\cdot 3$ , since $v$ is odd and $w$

is divisible by $2\cdot 3$ . Substituting $3t(s+t)(s-t)$ for $w$ in (7), we have

$2t(s+t)(s-t)=$ cube.

As $2t,$ $s+t$ and $s-t$ are pairwise relatively prime, we can conclude that
all of them are cubic numbers;

$s-t=a^{3}$ , $s+t=b^{\epsilon}$ and $2t=c^{3}$ .
. . $a^{3}+(-b)^{3}+c^{3}=0$ .

Furthermore, $c$ is divisible by $2\cdot 3$ . It is easily seen that $|c|$ is smaller
than $|z|$ in (3). This supplies the step of infinite descent.

EXAMPLE 2 (the case $l=5;l^{*}=5$). In this case, we have $p=v^{2}+5^{2}w^{2}$

and $q=2\cdot 5w^{2}$ ; for the calculation, see Example 3 below. The relations
(6) are written as follows in this case:

(8) $\left\{\begin{array}{l}2\cdot 5^{3}q=fifth\\p^{2}-5q^{2}=fifth\end{array}\right.$

Since $q\equiv 0(mod 5)$ , applying Theorem 2 to the second relation of (8), we
have

$p+\sqrt{5}q=(a+V\overline{5}b)^{b}$

for some $a$ and $b$ . Put

$\alpha=a+\sqrt{5}b$ .
Then we have

$q=\frac{1}{2\sqrt{5}}\{(a+\sqrt{5}b)^{5}-(a-\sqrt{5}b)^{b}\}$

$=b\prod_{j=1}^{l-1}(\alpha-\zeta^{\dot{f}}\overline{\alpha})$

$=bN_{L}(\alpha-\zeta\overline{\alpha})$ (. $5\equiv 1(mod 4)$ and $\alpha eK$)

$=5bN_{L}(a+\frac{1+\zeta}{1-\zeta}\sqrt{5}b)$

$=5b(u^{2}-5v^{2})$ ,

where $u=a^{2}+5b^{2},$ $v=2b^{2}$ . Substituting $5b(u^{2}-5v^{2})$ for $q$ in the first re-
lation of (8). we have



DIOPHANTINE EQUATION 93

$2\cdot 5^{4}b(u^{2}-5v^{2})=fifth$ power.

Therefore

$\left\{\begin{array}{l}2\cdot 5^{4}b=fifth\\u^{2}-5v^{2}=fifth\end{array}\right.$

Since $v=2b^{2}$ , we have

$\left\{\begin{array}{l}2\cdot 5^{\epsilon}v=fifth\\u^{2}-5v^{2}=fifth\end{array}\right.$

Thus $u$ and $v$ satisfy the same conditions satisfied by $p$ and $q$ in (8),
and $|q|>|v|>0$ . Therefore the argument can be repeated indefinitely and
this leads to an impossible infinite descent.

EXAMPLE 3 (the case $l=7;\iota*=-7$). Let $K$ be the quadratic field
$Q(\sqrt{-7})$ , and $\omega=(1+\sqrt{-7})/2$ . In order to determine $p$ and $q$ in Lemma 6,
we need the minimal polynomial of $\zeta$ over the field $K$:

LEMMA 7. Let $\zeta$ be the normalized $7$-th root of unity; $\zeta=e^{2\pi i/7}$ . Then
the minimal polynomial of $\zeta$ , or $(1+\zeta)/(1-\zeta)$ over $K$ is

$x^{3}+(1-\omega)x^{2}-\omega x-1$ ,

$or$

$x^{3}-\sqrt{-7}x^{2}-x+\frac{1}{\sqrt{}-7}$ ,

respectively.

PROOF. By the well known theorem of Gaussian sum we have
$\zeta+\zeta^{2}-\zeta^{3}+\zeta^{4}-\zeta^{b}-\zeta^{6}=\sqrt{-7}$ .

On the other hand, $\zeta$ satisfies the equation

(9) $\zeta^{6}+\zeta^{6}+\zeta^{4}+\zeta^{3}+\zeta^{2}+\zeta+1=0$ .
Therefore we have

$\zeta^{4}+\zeta^{2}+\zeta+1-\omega=0$ .
From this and (9) we obtain the assertion for $\zeta$ . Calculation of the
minimal equation for $(1+\zeta)/(1-\zeta)$ is straightforward from the one for $\zeta$ .

By Lemma 7 we obtain
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$N_{L/K}(v+\frac{1+\zeta}{1-\zeta}7w)=(v^{3}-7^{2}vw^{2})+(7v^{2}w+7^{2}w^{S})\sqrt{-7}$ ;

hence

$\left\{\begin{array}{l}p=v(v+7w)(v-7w)\\q=7w(v^{2}+7w^{2})\end{array}\right.$

The same method would be applied to the case $l>7$ ; for example, if
$l=13$ , then for (6) we obtain

$\left\{\begin{array}{l}2\cdot 13^{2}w=\\p^{2}-13q^{2}=13\end{array}\right.$

where

$\left\{\begin{array}{l}p=v^{6}+11\cdot 13^{2}v^{4}w^{2}+15\cdot 13^{4}v^{2}w^{4}+5\cdot 13^{0}w^{6}\\q=2\cdot 13^{2}w^{2}\{(v^{2}+13^{2}w^{2})^{2}-13(2\cdot 13w^{2})^{2}\}\end{array}\right.$

However, there seems to be no easy way of finding the step oi
infinite descent for $l>5$ . Though we could also give the modern versior
of Dirichlet’s proof for the case for which the exponent is 14, using
Corollary to Theorem 1 (cf. Edwards [2], pp. 74-75), the trial to gener $\cdot$

alize it to a larger even exponent $2l$ is confronted with analogous $dif$.
ficulties.
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