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Introduction.

In this paper we study asymptotic formulas of distributions of
eigenvalues of operators associated with strongly elliptic sesquilinear
forms which have non-symmetric top terms.

For operators associated with symmetric forms, Maruo-Tanabe [6] and
Tsujimoto [10, 11] gave remainder estimates depending upon the smoothness
of the coefficients. Maruo [7] refined and extended the results of [6] to
the forms which have symmetric top terms and non-symmetric lower
terms. For differential operators, Robert [9] obtained the same results
as [7]. _
As for operators associated with the forms with non-symmetric top
terms, however, only the result by Watanabe [13] seems to have been
given. He assumed C*-smoothness for the coefficients of the top terms
to clarify his intention to give the formula for eigenvalues which dis-
tribute in a sector of the complex plane.

The purpose of this paper is to establish an asymptotic formula with
the optimal remainder estimate in the case of C't*-smoothness. In the
symmetric case, our result coincides with Maruo’s formula.

Now, we explain notations before stating our result. Let 2CR"
(n=2) be a bounded domain possessing the restricted cone property (see
[1, p. 11]). Set 2.={x € 2; 6(x)=¢} with ¢>0 where §(x)=min{l, dist(x, 62))
for x ¢ 2. We impose on 2 the following condition: There exists a con-
stant C>0 such that for any £>0

(0.1) Sg 0 Y(x)dx<C|log ¢l ;
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(0.2) Smdx<ce .

We write z=(,, -+, ,) € R*, x*=2"1 -+ g, D,= —10/0x,, D*=Df1 «+« D3n
for a multi-index a=(a, -+, a,) of nonnegative integers. For an integer
m=0, H,(2) denotes the usual Sobolev space of order m with norm | |..
Let V be a closed subspace of H,(2) containing H%(2), which is the
closure of Cy(2) in H,(R2). Let B be an integro-differential sesquilinear
form on VX V of order m (2m>n) with bounded coefficients:

Blu, 'v]=§ S @@ D*uDodw .

Q2 |al,|plsm

We impose on B the following conditions (0.8)~(0.5).
0.3) For |a|=|8|=m, a.s(x) belongs to C'**(2) for some 0<hr=<1/2.
(0.4) There exists a constant §,>0 such that for any ue V
Re Blu, u]=0d,||ul% -
(0.5) For some constant 0<8<x/4
{Blu, ul; ue VicI'={\€C; larg \|=6} .

Let A be the operator associated with the form B: An element w of V

belongs to D(A) and Au=fe L,(2) if Blu, vl=(f, v)., is valid for any

veV. It is well known (see [1]) that the spectrum of A consists of

discrete eigenvalues with finite multiplicity and has no accumulation point.

For t>0, N(¢) denotes the number of eigenvalues of A whose real parts

are smaller or equal to ¢ with repetition according to the multiplicities.
We now state our main result.

THEOREM. Assume (0.1)~(0.5). Then for any o satisfying 0<o<
(h+1)/(h+3), the following asymptotic formula for N(t) holds as t— oo:

0.6) | N {Re C,{HRE = 2)2m) _E, sin o} sec = 20}t

<{Re C,C, sin 4 sec™*™ 2g}¢ /™
_|_0(tn/2m- (h+1—a(h+3))/2m)‘/m+ O(t(n—a)lzm) ,

where

p=tan"'(1sec20—1),
¢=\ c@iz,
2
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©.7) Cm={ @m(_ 3 au@et+1dz,

C.=v'2 " cos(1 —n/2m)(w—P)) ,
C,=1"2 cos(8 +7/4)" sin((1 —n/2m) (T —P)) .

We shall briefly explain our approach. Our method is based upon the
resolvent kernel estimates obtained in [6] and Tauberian theorem obtained
in [12]. The main difficulty is that (Au, w),, belongs to I and hence the
results previously obtained for self-adjoint operators are not applicable
directly. For example, in estimation of the kernel K;(x, ¥) of (A—M\)"
for ) in the complement I° of I' in C, A has to be approximated by the
nice operator whose numerical range is contained exactly in I'. Hence,
the greater part of this paper is occupied in this task.

This paper is organized as follows. In Section j (j=1~4) we define
approximate forms B of Bi~* and estimate Ki(x, )— K} '(x, x), where Ki
is the resolvent kernel associated with A7 and B4, and K}=K,, A°=A and
B°=RB. Section 5 is devoted to the proof of Theorem by summing up the
results obtained in Sections 1~4.

The author wishes to express his sincere gratltude to the referee for
his many valuable advices, by which for example the formula in Theorem
was improved in the present form. The original version only contained
the second remainder for 0<o<(h+1)/(h+4).

§1. Fundamental properties of resolvent kernels.

In this section we recall some fundamental properties of resolvent
kernels.

It is well known that A is a densely defined closed operator in L,(2)
and its adjoint A* is given by the form B*[u, v]=B[v, u]. Denote by V*
the antidual space of V with norm || ||y« and by (, )y«xr the duality be-
tween V* and V. We extend A to a mapping from V to V*. This ex-
tended operator denoted again by A is defined by

Blu, v]=(Au, v)pexr for any ve V.

By Lemma 3.1 in [13], the resolvent set o(A) of A contains . Therefore,
by Lemma 1.2, (A—)\)™* has a kernel Kj(z, y) € C(2x2) for neI”. We
denote by Ki(x, y) the resolvent kernel of the operator A', which is as-
sociated with B!, the form B under the Dirichlet boundary condition.
Then the following estimate holds.

LEMMA 1.1 ([13, Lemma 4.1]). For any p>0 there exists a constant
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C,>0 such that for any nel and xR
(1.1) |Ki(%, ) — Ki(®@, ©)| < C,IN™"d(N, T @) 2md(\, I)™)? .
The estimate (1.1) follows from the following two lemmas.

LEMMA 1.2 ([6, Lemma 3.2]). Let S be a bounded operator on V*
to V. Then S has a kernel M(z, y) such that for any fe L,(2)

(SF)w)=| M@, Sy .

M(x, y) is continuous in 2x Q2 and there exists a constant C>0 such that
Sfor any x, ¥y in 2

(L2) M@, DISCIS | SISy o S| £ o | S ropem®

2 b4

where || | x-y denotes the morm of bounded operator from X to Y.

LEMMA 1.3 ([13, Lemma 3.3]). There exists a constant C>0 such that
for any N eI and tnteger k with 0<k=<m

(1.3) A= Fll=CIFEmd (N, )7 f Jor feL(2),
(1.4) [(A=N"F e SCIN ™28, 1) fllye  for feV*.

Applying Lemma 1.2and Lemma 1.3 to the operator (A'—n\)"Y,e— (A —2\)"4,
we obtain (1.1).

§2. Approximation of coefficients by C* functions.

In this section we approximate B' by a nice form B? and estimate

i, ) — Ki(x, ), where K3 is the resolvent kernel of the operator A?
associated with B2

Let ¢ be a real valued even function in Cy(t € R; |t|<n~Y?) such that

Sn¢(t)dt=1' We put o(x)=g¢(x,)- - -6(x,) for x=(x,, -+, x,) € R*. Hereafter,

we fix v,€ 2. For >0, we set o,(x)=9"p((x—2=,)/7). For §>0 and a,x(x)
with |a|=|8|=m, we put

D) (X —2,) 0%a,5(2,) for |z—wx|=0d,
2.1 QAgp ()= Iri=t
@1 pal) ;2 (B —2,)0%0p(2,)  for |x—2x|>0,

rist
where % is the point of intersection of the sphere |x—x,/=0 and the line
segment connecting x, and x. Moreover, put b,;(x)=@,*@.p (), Where =*
denotes the convolution of ¢, and a,;,. Then b,,(x) has the following
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properties (cf. [6, Lemma 5.2]): b,s(x) belongs to C~(R") and if 7<o,
b.s() =@, () in the set {x € R"; |x —x,| <d—%} and moreover, for any x € R"

lbaﬁ(w) - aaﬁ(xo)[ _S_ alrz];llara/aﬁ(xo)l .

Consider the following approximate form of B':

B).[u, v]=§9 S bs@)DuDfode  for w, ve HAY(D).

lal=[8l=m

Then using the ellipticity of B, the Fourier transform and the interpolation
inequality, we obtain that there exist positive constants C, and 4, such
that for any 0=4,, 7<0 and u € H;(2)

(2.2) Re B;,,[u, u]=é./lull%—C.llullf .
Now, we put
(2.3) B*u, v]=B; ,[u, v]+ Ci(u, v) for wu, ve HL(Q) .

Note that by definition of B? B[u, u] does not, in general, belong to I
for w e H%(Q).

LEMMA 2.1. There exist positive constants C, and 0, such that for
any 0<0, and N<é

{B[u, ul; w € Hn(@)}cI';={\ € C; larg A =6,} ,
where 6,=cos (cos § —C,5).

Proor. We have only to prove the assertion for u € HS () satisfying
lu|l.=1. We write

Blu, ul={] 3 (Gu@)—a.@)DuDFds}

2 |la|=|8l=

n {S a,5(@) D*uDFoda+ Cy(u, u)}=11+12 .
2 lal=8l=m

Since D ai=ipi=m Cap(X)E*F € I’ for almost all x,€2 and all £e R* (cf. .[13,
Lemma 38.6]), we obtain

ImLi=|Im| 5 ao@iareds

al={8]l=m

@us(200)|°6* Pde <tan 6 Re I, ,

<tan @ Re | S
=T8I

la

where 4 denotes the Fourier transform of w. This inequality implies
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that I, belongs to I"'. By (2.2) and (2.8) we obtain that there exists a
constant C>0 such that

Re BYu, u]=Re I,—Cd||u||Z=Re I,—C5 ,
| B[, u]| =|L|+Collullf=|L|+Cs ,
|I|=Re I2_2-61”u”3n=31 .

Using the above inequalities, we obtain

2.4) Re B*{u, u]/|B[u, u]|=(Re I,—Co)/(|L,|+ Co)
=Re L/|I,| —|(Re I,— C3)/(|I,| + Cd) —Re L/|L,| |
=Re L/|1,| —2Cé/6,=cos 8 —2C5/9, .

Choose & so small that cos §—2C8/5,>1/1"2. Then we get our assertion
by putting C,=2C/s, and §,=min{d,, (cos §—1/12)5,/2C} in (2.4). Q.E.D.

Denote by A? the operator associated with B? under the Dirichlet
boundary condition and by Kji(x, y¥) the resolvent kernel of A2. By Lemma
2.1, the resolvent set 0(A4* of A® contains I';, and just as in Lemma 1.3,
there exists a constant C>0 such that for any \el’;, §<d, and <o

(2.5) [CAZ =) [ (—p,00 S CIN|PHO2md (N, )",

where || ||_;.0 (», 4=0 or m) denote the norms of bounded operators from
H_,(2) to HXR2) and d(n, [";)=dist(n, ;).

In what follows, we put 7=46/2 in (2.2). The following lemma is the
aim of this section.

PROPOSITION 2.2. For any j € N there exists a constant C;>0 such
that for any x,€2, 0<20<6<6, and A with P\""™=1 (=1) and
ed(n, LHIA" =21 (5=2)

(2.6) | K3,y %) — K3(@o, %6)| = Cy(0'* + [N[TA™)IN[HF2md (N, )72
+Cin*2md (N, Tp)7H (07 d(N, Tp) N2,

We can show this proposition by a similar method to that used in

the proof of [6, Lemma 6.2] by replacing d(\) with d(n, I';). Hence we
omit the proof.

§3. Approximation by operators in a ball.

In this section we approximate B® by B® which is defined in the ball
Qr.={x € R*; x| <R} containing 2. Main result here is Proposition 3.4.
We begin with Agmon’s lemma which will be used later.
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LEMMA 3.1 (|2, Theorem 38.11]). Let T be a bounded linear operator
on L,(R") whose range R(T) and the range R(T*) of its adjoint operator

are contained in H,,(R"), where 2m>mn. Then T has a bounded continuous
kernel N(x, y) with the estimate

3.1 IN(, )I=CU| Tl 2yosryy+ 11 T* [ ||

Lz—'Lz ?

where C is a constant depending only on m and n.

Since b,,(x) belongs to C~(R"), the following form B?® is well defined
for u, ve HYW(Rz):

B[u, 'v]=S 3 bu@DuDRds+Cilu, )
Qg la|=[8l=m

Denote by A® and (A4®* the associated operators with B® and its adjoint
operator, respectively. Then, by a well known regularity theorem for
elliptic operators, D(A*)=D((A%*)=H%(2z) N H,,(2z) and for any wue€
H3(22) N H,,(25)

Alu= 3, D#bx)Du)+C,,

laj=|8=m

AN*u= 3, D*b.x)D?u)+C, .

le|=18]=m

LEMMA 3.2. Let K,>0 be a given constant and T; be a bounded linear
operator on L,(2) whose range and the range of its adjoint operator T¥
are contained in H,,(R2) for » with d(x, I';))= K \"""*™. Suppose that there
exists a constant C>0 such that for any 6<0,

“ TZ”L2—+L2§Cd(7\u Fa)-l ’

HTIHLz-Hm (resp. ”T;HLZ—'Hzm) =CN\dN, )™
Furthermore, for any fe L,(Q) let T, satisfy
(3.2) (A*—=NTf =0, (AH*—NTEf=0.

Let Ny(x, y) be the kermel of T: and 8(x, y)=min{l, é(x), 6(¥)}. Then for
any p>0 there exists a constant C,>0 such that for any 06<o,

(3.3) Ny, YIS CINmd(N, T (N0, 9)7'd(N )77

We can prove this lemma as in the proof of [3, Lemma 5.1]. Hence
we omit the proof.

For uwe HL(Q), let #=u in 2 and #=0 in 2,\2. Then & € HL(25).
Furthermore, for fe H_,(2z), rfc H_,(2) stands for the restriction of f
on HY%(R). Take &£.,(x) e Cr({x e R lx—ux,|<w=0(=,)}) such that £.(x)=1.
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For H_,(2z), we set
G =E((A*—=N) ()~ — (A*—N)" f} .

LEMMA 3.3. Let D, q=0 or m. Then for any p>0 there exists a
constant L,>0 such that for any x,€2, §<8, nel'i with w\|/*"=1

3.4) 1Gall 5,0 S Lp(IN "m0 d (N, Tp)™)? N FH02md (N, )™ .

PROOF. Let u=((A*—\)"'(7f))~—(4A*—\)"f and v=¢,u for fe H_,(2).
Noting that the support of v is contained in 2, we obtain

Be[v, v]—\(v, v)=B*v, v]— B[u, &,v] ,
which together with (2.5) yields (3.4). Q.E.D.
Combining Lemmas 1.2 and 8.3, we get the following proposition.

PROPOSITION 3.4. For any p>0, there exists a constant L,>0 such
that for any x,€ 2, 6<0,, and nel'; with d(x)\|"*"=1

(3.5) | K3(%0, 20) — K% 20)]
=L, N To) 7 (M2 m0 () T d (N T 7

§4. Approximation by operator in R".

This section is devoted to the study of the resolvent kernel of the
operator A* which is defined by the differential operator A*® and whose
domain D(A*)=H,,(R"). The final objects in this section are formulated
in Propositions 4.3 and 4.6.

To obtain the asymptotic formula of K%, we shall employ the method
used by Nagase [8] and construct a parametrix of A* The calculation in
this section is rather complicated since the estimates of derivatives of
b.s depend on parameter 6 and (A*w, u) only belongs to the sector I,.
For pseudo-differential operators we shall refer the reader to the book
[6] for example.

By definition, A* is a closed operator on L,(R") and its adjoint oper-
ator coincides with its formally adjoint operator with the domain
D({(AY*)=H,,(R"). Furthermore, the resolvent set p(4% contains I.
Applying Lemma 3.1 to A*, we obtain that for ) e I'{ the kernel Ki(x, v)
of (A*—)\)™" exists. It is easy to see that (A*—\)™' and ((4Y)*—\)* sat-
isfy the estimates (1.8) and (1.4) with I" replaced by I',. Therefore, by
(8.1) we obtain for any z, yc€ R
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(4.1) |K (2, IS CIN"d (N, Tp)7
We write
A‘*u=:2,: Ay, Du

where A;(x, £) is a homogeneus polynomials in ¢ of degree j. For neC
and z, £ € R", define the symbols ¢q,(\, 2, &) (k=0,1,2, --+) by

(Aun@, =GO 2, O+ 5y~ AR (@, i 3, =0,

T
¢+ai—|-¢lllcz| Ml
where A{#¥ =04D:A. Furthermore denote

Ryiv @, 8= 3 2 {AB®, &—Nuwn 2, &)

k+.‘i+k!§|1v;N+1#!
+A2(£‘n?—j(x: S)Qk(y)()’; x’ S)} hd

The following lemma is a variant of [8, Lemma 2.1].

LEMMA 4.1. Let K, >0 be a given constant and o6, be the constant
defined in Lemma 2.1. Then there exists a positive constant C such that
for any 6<06, 0<7<1, z, g€ R" and |\|>1 with d(\, I'))= K \|"°

(4.2) |Azm(, & —NZC(EP™+ N7

PrOOF. Let 4, be the positive number defined in Lemma 2.1 and
c,>0 satisfy |4,.(x, &)|=c,|e*™ for any x, £ € R*. Note that ¢, can be chosen
independently of §<d,. We fix x, £€ R*. We set

s,={n € C; arg n=arg A,,.(x, &)},
D,={\n e |larg n—arg A,,(x, &)|=7/2} .
For nel';ND;, let P) be the orthogonal projection of \ on s,. We set

’ (A2m(x’ 5)—7\-)%(7\:, Z, 5)20 ’
D,={xneI7; |arg n—arg Au(w, 8)|<7/2, |PN|<clél™/2},
D,={n e I';; larg n—arg A,,.(x, &)|<n/2, |PA|=clel*"/2} .
First case; A€ D,. Then we obtain
| Agm(2, &) =N Z(|Asm(@, O+ NV

2 [Aaal® DIE I 2 ¢gpm+ ) 2 g+ I -
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Second case; € D,. Then we obtain

|Azm(®, &) =N =(|Azn(®, &) — PA[*+[PA—\[)"

o 1A0(@, © = PA+IPA= o |40(@, & —|PA+|[PA—
= V% = %

2 { (Mo, 01— 1P~ LT 1 (S o)

By definition of D,, we obtain that

A, —|P & Imz zm_comzm_colflzmzcolélm ,
|Azm(, £)|— P n 2 Colé| 5 R
|Px—x|+ VR Ea i > z-5

Combining the above inequalities, we also obtain (4.2) in this case.
Last case; v € D,. Then,

Asale, M ZdOw T)ZK N2 KT | g I

2 KL 4 g P 2 cepmr vy

Thus we get (4.2). Q.E.D.

Here, following Nagase’s method [8, §38], we prepare the estimates
of ¢i and R{”. Hereafter, we fix an arbitrary ¢ with 0<e<1/4m.

LEMMA 4.2. Let K,>0 be a given constant. Then for all ke NU{0},
& and v, there exists a constant C,, ,>0 such that for any x, £ € R*, §<4,
and |N>1 with d(\, ;)= K |\|'74mte

(43) 160 7, OIS C, 0™ W (gm- [N om0 At
4.4) IREL(N, &, &) S C,, 10 FHmTID([g[em [ [)W/m=e) Ghtlul+lvl+em ~ et aD/ambe

PrROOF. By definition of b,, and mathematical induction on % and
|| +|v|, we can easily obtain for k=1, 2, --.-

2k ul+|v] D v(x, 5)
4.5 (l‘l y Wy §)= kg ’
(4.5) aoH\ , &) g Az, &))"
where p, ;,,..(%, £) are homogeneous polynomials in £ of degree 2mj—k— || =0
whose coefficients have the forms TJ, D'sb.(x) with 3, |7,|<k+|v|, and
Di,i,u(Z, §)=0 for 2mj—k—|p¢|<0. Then using (4.2) for r=1/4m—¢ and
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(4.5), we obtain

Zetlpl+ vl py 5 (2, 8)]
i=1 iAzm(w: E)__)\'lj-u

2k+|gl+1v] )
éca—(k+|vl) Z Iel2m1~k—|y[(|él2m+ |xl)—(1—1/4m+c) (7+1)
=0

i=1,2m—k—j

i\, &, &) =

SC&—(k+IuI)(l§|2m+|)\,I)(1/4m—s)(2k+|y|+|v|)—(k+[p])/2m .

Thus, we get (4.3).
We can show (4.4) easily by using (4.8) and (4.5). Q.E.D.

The following is the most important step of this paper, which is ob-
tained from the result of Nagase [8, Theorem] by replacement of (0, o)
with T,.

PROPOSITION 4.3. Let K,>0 be a given constant and C,x) be the
Junction defined by (0.7). Then for any large NeN and ke N with
k>m there exists a constant Cy >0 such that for any x,€ R", <4, and
N >1 with d(n, Ty)= K\ [i-vemte

N
(4.6) B3 )= Cola)(— 7)™ S o {35 (M= 972m-1575
+ ‘xl—(2N+2m)$+11/2—k(1/4m—~8)a— (N+2m)d()\', 1"6)—1} .

Proor. It is known from [8, §4] that
) |
4.7) K (2, xo)=’Z='.1(—>\-)‘""'“2"‘“(275)""qu(—1, z, £)dg
— K@y DRI, 2, =22 ,

where Ry(\, ., z)=(27t)‘"Se“"RN(>\,, %, &de (cf. [8, §4]). For any multi-
index u, we obtain

ZRih, @, )= @) 2| e Ry, 5, £)d8
:(—i)“"(2n‘)‘"§e““R1‘$"(7\,, z, &)de .

Then by (4.4), there exists a constant C,>0 such that
|2* By (N 20, 2)]
gcya—(NHM)S([flzm'*' |7\'D(1/4m-£) (2N+2m+I#I)—(N+l,u|)/2m+2d$

écya—(N+2m)§(I$|2m+ le)-—(2N+2m)t+5/2—(1/4m+t)|y|d$ .
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Choose N so large that the right hand side of the above inequality is
integrable in £. Then

lsz;v(x’ wo’ z)lgClla—(N+2m)‘Nl—(2N+2m)e+7/2—(1/4m+e)|p| .
Therefore, we obtain
!R;VO\:, x,, z)|éCpa—(N+2m)IM—(2N+2m)s-—(1/4m+e)I;z|+9/2(1+Iz|)—lm .

Then by (4.1) we obtain for any k=|yu|>n

4.8) |§ (o, 2RO\, 2, 2—2,)d2

éCN’kB—(NHm)IM—(2N+zm)s—(1/4m+s)k+n/2d(x’ Fa)—ISIZ—on""dZ .

Since (277:)‘”Sq1(—1, 2, £)de=Cyx)), we get (4.6) by combining (4.7) and
(4.8). Q.E.D.
LEMMA 4.4. For any p>0, there exists a constant C,>0 such that
for any x,€ 2, 6§<8, and A with d(n, I';) ="
(49) IKi(xo, xo)—Kzs (xo, mo)[
S C MM md(y, L) N2 d (N, T5) 7107 (%0))” -
ProoF. For fe L,(2y), let fi=fin 2 and f,=0 in R"\Q2. Put T,f=

(A*—\)"f—(A*—\)"Yfilo- Then clearly T, satisfies (3.2). Hence, by defi-
nition of A% (2.5) and (8.3), we get (4.9). Q.E.D.

We will here study d(\, I';) in comparison with d(\, I').

LEMMA 4.5. Let K,>0 be a given constant. Then there exists a con-
stant C>0 such that for any 6<9, and €'y with d(, I';)Z K\~ +e

(4.10) ld(n, D)7 —d(n, TS CanN = d (N, )7

PROOF. We have only to estimate d(\, I')—d(n, ;). By simple cal-
culation we obtain, for t=larg a|, that

(4.11)  [d(n, I)—d(\, 1) |
[n| |sin(t — @) —sin(t —6,)| for 6,<t<m/2+6,
<{IA| |1 —sin(t—6,)| for w/2+0=t=m/2+6,,
0 for w/2+60,<t=x.
=\e—a, .
Choose £>0 so small that k<0=<r/4—k. Then there exists a constant
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C.>0 such that for any « and g8 in [«, w/4—FK]
lcos™* a—cos™ B|=C/la—pa| . |
Furthermore, choose §,>0 so small that for any 0<6<4,, 6, belongs to
[k, w/4—k]. Then we obtain
4.12) 16 —6,/ <10 —cos™*(cos § —C9)|=C.C,o .
Using (4.11) and (4.12), we can get (4.10) easily. Q.E.D.

For a given constant K,>0, choose K, so large that K,—C,=K,. Then
putting o=[p\|""*"9 in (4.10), we obtain by Lemma 4.5 that for [n|>1
with d(\, I')= K,|\[|"V4mte

d(n, T)Zd(n, I —|d, T)—d, T2 (K, — C A Z K af7imee

Therefore, putting §=[x"*"° in (1.1), (2.6), (8.5), (4.6) and (4.9) and
kE=N>n in (4.6), we get the following proposition.

PROPOSITION 4.6. Let |\>1 satisfy d(n, I')=K,\|'"#"*, Then for
any p=0 and jc NU{0} there exist positive constants C, and L; such
that for any x,€82 and 0<O|\|["W4m=92 gwith PE|N"*"=1 (j=1) and
o~ d(\, D)7 <1 (§=22)

(4.13)  |K3(@s, @0) — Co(mo) (— )"
S GINMmd (8, D) TN 7 @) d (N )77
+ LI\ md(n, DY d Oy )7
+kzzll]Nl(n—k)/zm—-1+(1/4m—e)k+Cj(p1+h+|7\"—1/2m)i)\lln/2m+1d()” 1"')—2
+CN,sb\:l_z(2N+2M)e+u/2d(>\:, [v)—l .

§ 5. Asymptotic formula for the kernel and eigenvalues.

This section is devoted to the proof of the theorem. To this end,
we prove the following proposition.

PROPOSITION 5.1. Let 0<e’'<e<1/4m, ¢'=1/2—2me" and 0=1/2—2me.
Then for any large Ne N and je N, there exists a constant C>0 such
that for any |\|>1 with d(n, I Z KA\ and 0<7<K1

(5.1) P

q=1 7\,q —_
éclkl(n—llz)/zm—sd(l:, F)—1+Clhl("—l)/zm-‘_l-’-ﬂd(?u, F)—z
+C])\Jl'n/2m—l-— (h+1—a(h+3))/2m(l>\'|1—a’/2md(>\” 1")—1)2
+Ci [ md(n, D) (N2 d (N, )7
+CN|N1_2(2N+2m)'+11/2d(7\,, [')—1 .

— CO( — h’)’n/zm—l
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PrROOF. It is well known that

(5.2) Sa e, x)de= 2: i_—l—_x .

Set

Z={w € 2 0@)S ") ,
2=z € 25 N <O@) <IN
2={z € 25 8@ ZM"")

First, for 2,, using (0.2) and (1.2)~(1.4) we obtain

6.8 ||, (Kie 9GN]
<C| (Mmd0n, I+ I )dw S CIn = md 0, T)

Next, for 2,, put p=d(x) and p=35=1 in (4.18). Then we obtain by (0.1)

(5.4) l Sal(Kg(x, %) — Co(x)(——x)"’“‘“‘)dxl

éclhl(”_lmlzm—l_""(C1+L1)l7\-l1+(n_n/2md(7\» [v)-—z log |7\w|
+Cl(lxl—1/2m+ I)\ll—(l—-a’) (1+h)/2m)|h|1+n/2md()” I")—-z
+CNI7\:|—2(2N+2m)+11/2d(7\:, F)—1 .

Finally, put o=|\|"%""”" and p=j5 in (4.18). Then we obtain

65 |, &K@ o) —C@(—nde

éCle(n—llz)/Zﬂl—l—l+Cj|xl‘n/2md(x’ I"')—-l(lkll—c’/wmd(x” r)—l),’
+Ci(l)“l—(1+h) (1—0’)/2m+ lxl—l/wm)lxln/zm-l-ld(k, 1")-2
+CNI7\II—(2N+2m)c+11/2d(x’ I")—l .

Combining (5.2)~(5.5), we get (5.1). Q.E.D.

In order to prove the theorem, we use the following Tauberian
theorem.

LEMMA 5.2 ([12, Theorem II]). Let {»;} (4=1,2, ---) be a sequence
wn the sector I'={\ €C; |]arg A|=6} for some 0<6<z/4. Suppose that the
sequence has mo accumulation points and that

(5.6) 3 L =a(—nN)" - OON PN, 1))
=L N;—N
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as [\ — oo with d(\, I)=\|7, where 0<a<pg<1,0<7<1, p>0 and Rea=0.
Then as t— oo

(5.7) S, 1—Re a{Sin((l—a)(n‘——g)))
R -z

1—-a

—1V'2 cos(a(r —@))sin :9}sec‘1“"’/2 20—;2'_—
<172 Re a (cos(f +7/4))~* sin(a(r — a))sin 6 sec™ /% 20)t*~=

+ 0@ #1 sec(20—1)+ O™ ,

where p=tan"*(1 sec(26—1)).

Now we are ready to prove our main theorem by using Proposition
5.1 and Lemma 5.2.

PROOF OF THEOREM. We apply Lemma 5.2 to (5.1). We put
a=1—n/2m, y=1—¢/2m for ¢=1/2—2me. Comparing (5.1) with (5.6),
we obtain the following five B, (1=1, 2, ---, 5):

—Bl=—-—-—‘n~1 ‘—1+£ ’
2m m
n—1 o
— Q.= -1+ 9 ,
Be o +m+77
—8 =M _q{_ (h+1—a(h+3))
3 ’
2m 2m
n c (6—0))
—g =" _3 — ,
B 2m tom 2m

— By= —2@N+2m)e+ >+ L .
2 2m

Choose sufficiently large 7 and N, and a sufficiently small 7. Then we
see in application of Lemma 5.2 to (5.1) that remainder terms O(t'~#),
O(t*—%) and O(t'~%) are negligible. Hence, consider B, and B;. The condi-
tions 0<a<B;<1 (1=1, 38) are satisfied if 0<o<1/2and 0<o<(h+1)/(h+3),
and also 1—3,<7—a if 0<0<1/3. Moreover, 1—3,<1—23, is satisfied if
o=h/(L1+h). Since 0<h=1/2, one of the inequalities 1—3,<7Y—a and
1—3,<1—p3;, holds. Hence O(t'*) is negligible.

Thus, we get the remainder terms O(t/m~ *#+i—ct+a/zm) gnd O(t—/2m)
for any 0<o<(h+1)/(h+3). Q.E.D.
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